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Abstract

Background: SUP35 and SUP45 are essential genes encoding polypeptide chain release factors. However, mutants
for these genes may be viable but display pleiotropic phenotypes which include, but are not limited to, nonsense
suppressor phenotype due to translation termination defect. [PSI+] prion formation is another Sup35p-associated
mechanism leading to nonsense suppression through decreased availability of functional Sup35p. [PSI+] differs from
genuine sup35 mutations by the possibility of its elimination and subsequent re-induction. Some suppressor sup35
mutants had also been shown to undergo a reversible phenotypic switch in the opposite direction. This reversible
switching had been attributed to a prion termed [ISP+]. However, even though many phenotypic and molecular
level features of [ISP+] were revealed, the mechanism behind this phenomenon has not been clearly explained and
might be more complex than suggested initially.

Results: Here we took a genomic approach to look into the molecular basis of the difference between the
suppressor (Isp−) and non-suppressor (Isp+) phenotypes. We report that the reason for the difference between the
Isp+ and the Isp− phenotypes is chromosome II copy number changes and support our finding with showing that
these changes are indeed reversible by reproducing the phenotypic switch and tracking karyotypic changes. Finally,
we suggest mechanisms that mediate elevation in nonsense suppression efficiency upon amplification of chromosome
II and facilitate switching between these states.

Conclusions: (i) In our experimental system, amplification of chromosome II confers nonsense suppressor phenotype
and guanidine hydrochloride resistance at the cost of overall decreased viability in rich medium. (ii) SFP1 might
represent a novel regulator of chromosome stability, as SFP1 overexpression elevates frequency of the additional
chromosome loss in our system. (iii) Prolonged treatment with guanidine hydrochloride leads to selection of
resistant isolates, some of which are disomic for chromosome II.
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Background
Translation is a very important and energy-demanding
process for all living cells including the yeast Saccharo-
myces cerevisiae. Synthesis of ribosomal components is
ultimately the main activity of the cell. Apart from copi-
ous rRNA molecules produced by RNA polymerases I
and III, mRNAs encoding ribosomal proteins and ribo-
some assembly factors comprise at least 60% of the tran-
scripts produced by RNA polymerase II [1, 2]; in addition,
not only ribosome components but many other proteins
are required for efficient protein synthesis. No wonder
that this system is tightly regulated, and many of its com-
ponents play a role in this regulation [3].
The process of translation ceases when the translating

ribosome encounters one of three stop codons. This
step, termed termination, is ensured by the release fac-
tors Sup35p (eRF3) and Sup45p (eRF1). These proteins
form a complex resembling tRNA; they act by binding to
the stop codon and prompting release of the newly syn-
thesized protein to the cytoplasm. Binding of tRNAs and
release factor complex to the stop codons exists in a dy-
namic equilibrium which may shift if levels of any of
these components are altered. If the equilibrium shifts in
a cell bearing a gene with a premature termination codon
(nonsense mutation), the effect of this mutation may be
partially compensated for. This phenomenon is referred to
as nonsense suppression. The most obvious reasons for
nonsense suppression are mutations in tRNA and release
factor genes [4]; in addition, partial inactivation of Sup35p
deposited in amyloid aggregates ([PSI+], [5]) was shown to
result in a similar phenotype. Mutations in the release fac-
tor genes may be adaptive or counter-adaptive depending
on the growth conditions, as easily illustrated by a simple
example of a sup35 mutation partially restoring growth
of an ade1-14 mutant strain on adenine dropout media
but leading to sensitivity of this strain to elevated
temperatures.
Rich collections of spontaneous suppressor mutations

in the SUP35 and SUP45 genes have been obtained and
extensively characterized in several strain backgrounds
with different suppressible nonsense mutations [6–9],
one of them being 2V-P3982 with ade1-14 (UGA),
his7-1 (UAA) and lys2-87 (UGA) and non-suppressor
Ade−His−Lys− phenotype. Two sup35 strains from this
collection were shown to switch from suppressor pheno-
type (Ade+His+Lys+) to non-suppressor (Ade±His−Lys−)
phenotype spontaneously. Curiously, the non-suppressor
phenotype was characterized by non-Mendelian inherit-
ance, could be eliminated on media containing guanidine
hydrochloride (GuHCl) and re-appeared after GuHCl-
caused elimination, similar to known prions [10].
This prion-like determinant associated with reduced

nonsense suppression efficiency was designated [ISP+] for
“inversion of suppressor phenotype”. Despite being similar

to a prion with a clear link to a transcriptional regulator
Sfp1p, a potentially prionogenic protein enriched in as-
paragine and glutamine residues [11], [ISP+] has a number
of features which distinguish it from most “canonical”
prions. Its propagation does not depend on the Hsp104
chaperone [10], which is required for propagation of other
prions [12], and deletion of the SFP1 gene conveys a
phenotype drastically different from the [ISP+] phenotype
[11]. In addition, [ISP+] strains have been found to contain
not only the sup35-25 suppressor mutation, but also a
missense substitution sup45-400. The combination of
sup35 and sup45 mutations contributes to the develop-
ment the suppressor phenotype, since introduction of
plasmid-borne wild-type SUP45 into the [ISP+] strain
leads to [isp−]-like suppressor phenotype [13].
In presence of pre-existing suppressors, translation

termination efficiency may be modulated by multiple
factors including the Ψ factor [14], i.e. the [PSI+] prion
[15], or an additional chromosome [16]. Similar to sup-
pressor mutations and prions, presence of an additional
chromosome may confer adaptiveness or counter-
adaptiveness depending on the conditions tested [17, 18].
Many natural isolates were shown to be aneuploid [19–21],
and in some natural isolates prions were revealed [22, 23],
which probably reflects the utility of these traits.
In this work, we show that in an unstable strain copy

number of chromosome II can modulate nonsense sup-
pressor phenotype and resistance to guanidinium chlor-
ide. Our results also suggest that Sfp1p, a transcriptional
regulator, is implicated in maintenance of chromosome
stability.

Results
Isp+ and Isp− isolates used for transcriptional profiling
differ in copy number of chromosomes II and IX, and
genome sequencing confirms this result
[ISP+] has been studied in a group of closely related
strains mostly ascending to 25-2V-P3982 (a 2V-P3982
derivative bearing the sup35-25 mutation [10]). In recent
works, the 25-25-2V-P3982 strain was used, which had
been derived from 25-2V-P3982 through mating type
switch [13]. The strain has been stored in glycerol stocks
with several episodes of partial defreezing; so, genetic
identity of the original strains of the early 2000s and the
strains used in this work cannot be guaranteed. For this
reason, throughout this work we will refer to sup35-25
isolates as either Isp+ or Isp−. Isp+ stands for His−Lys−

phenotype while Isp− refers to His+Lys+ phenotype; iso-
lates of both types are Ade+.
Recently, we compared the transcriptional profiles of

two isolates presumed to be [ISP+] and [isp−] [24]. In
this work, we will refer to these isolates as p2 (Isp+, p
for ‘plus’) and m2 (Isp−, m for ‘minus’), respectively (see
below). We found a small number (~300) of differentially
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expressed genes which fall into two classes, those upreg-
ulated in the Isp+ isolate and those upregulated in the
Isp− one. While genes of the first group formed particu-
lar functional clusters associated with nutrient assimila-
tion and metal ion import, the second group of genes
was not enriched in any particular functional groups and
thus similarly lacked common reason for changing ex-
pression [24]. However, genes of the second group were
united by another feature, their chromosomal location.
Hypergeometric test showed they were significantly
enriched in genes located on chromosomes II and IX
(p = 3 × 10−118 and p = 2 × 10−47, respectively). Plotting
relative (Isp−/Isp+) gene expression values against gene
position in the reference genome clearly illustrated the
same tendency (Fig. 1a).
In order to check how these data correspond to the

previously reported gene expression data for disomic
strains, we exploited the vast body of evidence generated
for twelve different haploid disomic strains and accu-
mulated in the work of Dephoure et al. [25]. Indeed,
the distribution of gene expression values looked very
similar (Additional file 1: Figure S1), even though

overall Pearson correlation of the expression profile of
the Isp− isolate with expression profiles of strains di-
somic for only chromosome II or only chromosome IX
[25] was not high (r = 0.38 and r = 0.20, respectively).
However, sequencing read depth could provide an

additional (and possibly more reliable) measure of
chromosome copy number than the mRNA level. It
could also indicate whether the isolates (even though
unlikely) differ in some point mutations which contrib-
ute to the phenotype. Two isolates were chosen for
whole genome sequencing. The Isp− isolate was a copy
of same Isp− isolate used for transcription profile ana-
lysis (m2), which had been passaged on YEPD and then
stored at −80 °C as a glycerol stock. The Isp+ isolate (p3)
was a derivative of m2 obtained with transient SFP1
overexpression (see Fig. 2). First, depth of coverage
analysis was performed (Fig. 1b, c). We indeed found a
difference in chromosome II and IX copy number. Sur-
prisingly, the Isp+ isolate (p3) showed non-integer
coverage for chromosome IX (Fig. 1c), which probably
means that it consisted of a mixture of monosomic and
disomic cells. In agreement to the gene expression values,
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Fig. 1 Isp+ and Isp− isolates differ in copy number of chromosomes II and IX. a Expression values for all the genes in an Isp− isolate (m2) relative
to an Isp+ one (p2), sorted by chromosome. b Normalized coverage throughout the reference genome for an Isp− isolate (m2). c Normalized
coverage throughout the reference genome for an Isp+ isolate (p3). Chromosome numbers are indicated at the bottom. Full datasets are
available in Additional file 2: Table S1
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the Isp− isolate (m2) showed approximately two-fold
higher coverage for chromosomes II and IX than for the
other chromosomes (Fig. 1b). In addition, we compared
single nucleotide variation data for the two isolates and
did not find any “suspicious” positions which could
have been selected for; chromosome II of the m2 gen-
ome was homozygous for the sup45-400, his7-1 and
lys2-87 alleles.

Transitions between Isp+ and Isp− phenotypes strongly
correlate with changes in chromosome II number
As the molecular difference between Isp+ and Isp− isolates
turned out to be distinct from the prion-like determinant
described previously, we asked whether it was also revers-
ible. Thus, it was crucial to establish whether the chromo-
some copy number difference would be reproduced in
newly obtained Isp+ and Isp− isolates.
There are two known means to obtain Isp+ clones from

Isp− ones, namely spontaneous appearance happening at a
frequency of about 1 per 10,000 cells [10] and SFP1 over-
expression elevating this frequency ~700-fold [11]. There
is only one known way to obtain Isp− isolates from Isp+

ones, GuHCl treatment [10]. We employed these three
methods and used m2 to obtain one spontaneous Isp+ iso-
late (p4; Fig. 2, lower part) and four more Isp+ isolates
after transient overexpression of SFP1 (isolates p10, p11,
p12, p13; Fig. 2, lower part); p3 was passaged on GuHCl-
containing media five times to select six Isp− isolates (m4,
m5, m7, m8, m9 and m11; Fig. 2, lower part). In addition,
we used the oldest glycerol stocks available to recover Isp+

and Isp− isolates p1 and m1. Finally, we tried to obtain
strains parental to 25-25-2V-P3982 (sup35-25 MATa) and
used in earlier works, 25-2V-P3982 (sup35-25 MATα) and
2V-P3982 (SUP35 MATα). 25-2V-P3982 was recovered
from glycerol stock (Fig. 2, isolate 25). No stocks of the

original 2V-P3982 strain were available but its [PSI+] de-
rivative was stored; we recovered it (Fig. 2, isolate [PSI+])
and also treated it with GuHCl to obtain a prionless strain
(Fig. 2, isolate [psi−]).
Then, we employed microarray-based comparative

genomic hybridization (aCGH) to infer copy number
of each chromosome in each of these isolates
(Table 1). Chromosome II copy number perfectly cor-
relates with the Lys+/Lys− phenotype of the particular
isolate: to sum up, all 7 Isp+ isolates tested were
monosomic for chromosome II while all 8 Isp− iso-
lates had this chromosome amplified. In addition, we
found some variability in copy number of chromo-
somes I, IX and XIV (Table 1). We could not associ-
ate chromosome I or XIV disomy with any changes
in nonsense suppression efficiency. Chromosome IX
copy number might influence his7-1 suppression effi-
ciency since m1, the only Isp− isolate monosomic for
chromosome IX in our analysis, is characterized by poorer
growth on histidine dropout medium than the other Isp−

Fig. 2 Relationship of the isolates used in this work. Grey contour, clones no longer existing in the collection; black contour, isolates
analyzed in our work. The dotted line separates SUP35 SUP45 and sup35-25 sup45-400 clones. Blue background signifies Lys+ or Lys+His+

phenotype (Isp−, m for ‘minus’); purple background signifies Lys−His− (Isp+, p for ‘plus’) phenotype. GuHCl, guanidine hydrochloride
treatment. Solid arrows signify passaging without treatment; dotted arrows signify GuHCl treatment or transformation (indicated above).
↑↑ SFP1, SFP1 overexpression with subsequent plasmid loss for isolation of Isp+ clones. ↑↑ SUP35, SUP35 overexpression with subsequent
plasmid loss for [PSI+] induction

Table 1 Isp− isolates differ from Isp+ ones by chromosome II copy
number

Isolate name Phenotype Karyotype

[PSI+] Ade+His−Lys− euploid

[psi−] Ade−His−Lys− +I

25, p1, p10, p11, p12, p13 Isp+ euploid

p3 +XIV

p4 +IX

m1 Isp− +II

m2, m4, m6, m7, m8, m9, m11 +II, IX

Shown are summarized results of the aGCH analysis. For isolate names, see
Fig. 2. Isp− isolates are indicated in bold. For full data, see Additional file 3:
Figure S2 and Additional file 4: Table S2
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isolates; however, we consider this unlikely as the original
Isp− isolate has been previously shown to suppress both
his7-1 and lys2-87 [10].

Possible mechanisms for transitions between the Isp+ and
Isp− states
Our results show that Isp+ clones isolated after transient
SFP1 overexpression lose extra chromosomes. Thus,
SFP1 overexpression might elevate the frequency of
extra chromosome loss. The simplest explanation would
be that SFP1 overexpression, which is toxic for the cell,
might be even more toxic for disomic cells, allowing for
selection of euploids. However, this was not true; more-
over, SFP1 overexpression was even more toxic for Isp+

isolates (Fig. 3).
In the case of the reverse transition, Isp+ to Isp−,

selection for resistance to GuHCl may take place. [isp
−] isolates had been shown to be more resistant to
5mM GuHCl than [ISP+] ones [10]; we confirmed this
results (compare upper and lower lines at Fig. 4).
Curing of prions with GuHCl depends on Hsp104
[26] but the [ISP+] prion had been shown to be inde-
pendent of Hsp104 [10]. What happened when strains
were treated with GuHCl is unclear. We passaged an
Isp+ isolate on either YEPD or YEPD with GuHCl five
times and then compared the phenotype (Fig. 4).
GuHCl treatment led to selection for GuHCl-resistant
isolates in Isp+ with simultaneous selection for Lys+

(Isp−) clones. Thus, amplification of chromosome II
might be one of the mechanisms of adjustment to
GuHCl.

Mechanisms for nonsense suppression associated with
chromosome II disomy
As we show, chromosome II ploidy state correlates with
the efficiency of suppressor phenotype, i.e., growth on
histidine or lysine dropout media. This phenotype might
be associated with marker nonsense mutations his7-1
and lys2-87 used to assess nonsense suppressor efficiency,
as both genes are located on chromosome II. We chose
one of these marker genes, his7-1, and checked whether
introduction of an additional copy of this allele on a

centromeric plasmid would produce a result similar to
chromosome amplification. Indeed, an additional copy of
his7-1 did elevate growth on histidine dropout medium
without affecting growth on lysine dropout medium (20
independent transformants were checked; a representative
clone is shown at Fig. 5). However, this effect was not
strong enough to mimic the Isp− phenotype (Fig. 5, com-
pare lines 2 and 3). Thus, His+ phenotype of the Isp− iso-
lates depends on the his7-1 copy number, but there might
be other contributing factors.

Discussion
In this work we show that the phenotypic difference
between the Isp+ and Isp− isolates depends on
chromosome II copy number. This finding is unex-
pected since these isolates were originally described
as different in their [ISP+] prion state [10, 11]. The
original suppressor sup35-25 isolate was not pre-
served, so we cannot directly determine whether it
was disomic or displayed marked nonsense suppression
for another reason. However, progeny of a hybrid of
sup35-25 [isp−] and SUP35 strains had shown monogenic
segregation of the suppressor phenotype [6, 10] while a
hybrid of sup35-25 [ISP+] and SUP35 strains showed devi-
ation from 2:2 segregation [10]. If this Isp− strain were di-
somic for chromosome II and the disomy contributed to
the suppressor phenotype, as we see in the strain studied
in this work, deviation from monogenic segregation would
have been observed in the former, but not in the latter
case. These data suggest that the Isp+/Isp− phenotypes
studied in this work represent phenocopies of the original
phenotypes determined by presence or absence of the
[ISP+] prion.
We have shown that transitions from Isp+ to Isp−

phenotype and vice versa are indeed associated with
changes in chromosome II copy number (Fig. 2 and
Table 1). However, the question why these transitions
happen still remains. Spontaneous appearance of Isp+

clones can be attributed to accidental loss of the extra
chromosome in cell divisions facilitated by the fact that
Isp+ clones grow slightly faster than Isp− ones [10].
However, it is unclear why overexpression of SFP1

Fig. 3 SFP1 overexpression is slightly more toxic for an Isp+ isolate (p1) than for a Isp− one (m1). Shown are five-fold serial dilution starting with
equal number of cells after 3 (indicated) or 6 days of incubation. Vector, pRS426. ↑↑ SFP1, pRS426-SFP1

The Author(s) BMC Genetics 2016, 17(Suppl 3):152 Page 187 of 191



elevates the frequency of extra chromosome loss. In-
creased level of Sfp1p might modulate expression of
some target gene regulating chromosome maintenance
or Sfp1p itself might interact with such regulator.
Chromosome loss can happen due to unrepaired double
strand breaks or defects in chromosome segregation.
SFP1 overexpression affects cell cycle, most probably
causing cells to pause in G2 [27], so we can speculate
that cells overexpressing SFP1 could either have more
double strand breaks or be defective for double strand
break repair or spindle assembly.
The reverse transition, from Isp+ to Isp−, might be as-

sociated with selection for GuHCl resistance. It is worth
emphasizing that while 5 mM GuHCl inhibits growth of
yeast cells (Fig. 4, compare left and middle panels),
growth of Isp+ isolates is inhibited by 5 mM GuHCl
more than the growth of Isp− isolates [10], and we con-
firm this result (Fig. 4). GuHCl resistance might be
caused by increased level of Hal3p (Sis2p) reported earl-
ier [28] or also by some gene located on chromosome II.
Emergence of aneuploid clones in response to a stressful
condition is similar to other reported cases such as
chromosome III amplification in response to heat stress
or chromosome V amplification as an adaptation to high
pH [17] as well as chromosome XIII disomy making gal7
strains galactose tolerant [29]. Interestingly, chromosome
II disomy has been already described in some laboratory
strains as a compensatory mechanism. It was shown to
arise in response to polyQ toxicity due to the Sup45 pro-
tein [30] or to provide viability for strains deleted for the
hta1-htb1 locus due to the increasing dosage of the HTA2
and HTB2 genes [31]. As only some of the clones growing
well on GuHCl-containing media are Lys+ and further
prove to be disomic for chromosome II, we suggest that
there are multiple ways to adjust to high GuHCl concen-
trations toxic for the cell, one of them being chromosome
II disomy associated with the Isp− phenotype.

We show that chromosome II copy number (monosomy/
disomy) perfectly correlates with the Isp+/Isp− phenotype
of the particular isolate, suggesting that it is the reason for
the difference in growth on histidine or lysine dropout
media. The simplest explanation of the mechanism would
be increased dosage of the his7-1 or lys2-87 mRNA, re-
spectively. We checked this hypothesis and showed that
introduction of an additional copy of his7-1 indeed leads to
His+ phenotype of an Isp+ isolate. We can speculate that
the same mechanism takes place in the case of lys2-87.
However, as an Isp+ isolate with two copies of his7-1 still
produces slightly less His+ clones than an Isp− isolate
(Fig. 5); this might be caused either by the missense muta-
tion in the plasmid-borne his7-1 copy or by influence of
some other gene(s) located on chromosome II or regulated
by chromosome II genes. Among such candidate genes
could be several tRNA genes or the sup45-400 allele, as
introduction of wild-type SUP45 to Isp+ strains has been
shown to mimic the Isp− phenotype [13]. To the extent of
our knowledge, this is the second reported case of nonsense
suppressor phenotype modulated by aneuploidy, the first
being chromosome VIII disomy elevating translation ter-
mination efficiency due to SPB1 duplication [16].
Finally, there is a question why many of the isolates

checked in this work contain additional chromosomes.
Our data do not allow us to estimate the frequency of
chromosome gain, but still the proportion of aneuploid
isolates in our analysis, the variability of karyotypes and
non-integer coverage data suggest significant genome
plasticity. The 25-25-2V-P3982 strain possesses missense
mutations in SUP35 and SUP45. These genes have been
linked to chromosome stability [32], but as we also
found additional chromosome I in a SUP35 SUP45 strain
([psi−]), we consider sup35-25 or sup45-400 an unlikely
cause of the genome instability. In an attempt to find
other genes which could be connected to genome in-
stability in 25-25-2V-P3982, we compared the list of 46

Fig. 4 The Lys+ phenotype is co-selected with resistance to GuHCl. An Isp+ (p1) isolate was passaged on either YEPD (upper line) or YEPD with
5mM GuHCl (middle line) five times; an Isp− isolate (m1) passaged on YEPD (lower line) is shown for comparison. Shown are five-fold serial dilutions
starting with equal number of cells after 6 or 12 (indicated) days of incubation

Fig. 5 An additional copy of his7-1 improves growth of an Isp+ isolate (p3) on histidine dropout medium. Shown are five-fold serial dilutions for
representative clones starting from equal number of cells, after 14 days of incubation. Vector, pRS316. his7-1, pRS316-his7-1
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genes with premature stop codons found in the genome
of this strain [33] to the curated list of 692 chromosome
instability genes [32]. Intersection of these lists returned
three genes, ADE1, MNL1 and CNN1. The ade1-14 allele
has been used as a marker of nonsense suppression in
multiple works [26] without reports on genome instability,
and in addition, it is partially suppressed in the strain used;
thus, we consider ade1-14 an unlikely contributor to the
observed chromosome instability. MNL1, encoding a pro-
tein residing in the endoplasmic reticulum and acting in
glycoprotein degradation [34], was detected to influence
genome stability in A-like faker screen [35], but the mech-
anism behind this effect is unclear. The third gene, CNN1,
encodes a kinetochore component; deletion of this gene
had been associated with chromosome segregation defects
in several works [35, 36]. CNN1 contains a premature stop
codon in 25-25-2V-P3982 but not in other related strains
of the Peterhof genetic collection [33] and might contrib-
ute to the observed chromosome instability.

Conclusions

1. In our experimental system, amplification of
chromosome II confers nonsense suppressor
phenotype and guanidine hydrochloride resistance at
the cost of overall decreased viability in rich
medium.

2. SFP1 might represent a novel regulator of
chromosome stability, as SFP1 overexpression
elevates frequency of the additional chromosome
loss in our system.

3. Prolonged treatment with guanidine hydrochloride
leads to selection of resistant isolates, some of which
are disomic for chromosome II.

Methods
Strains and cultivation
P-2V-P3982 (clone [PSI+]) (MATα ade1-14 his7-1 lys2-
87 ura3Δ0 thr4-B15 leu2-B2 [PSI+]) was derived from
2V-P3982 [10] with transient SUP35 overexpression
(Kirill V. Volkov, unpublished data). Clone 25 ascends to
the 25-2V-P3982 strain (MATα ade1-14 his7-1 lys2-87
ura3Δ0 thr4-B15 leu2-B2 sup35-25 sup45-400) described
earlier [10]. 2-P-2V-P3982 (clone [psi−]) is derived from
P-2V-P3982 with passaging on YEPD medium with
5mM guanidine hydrochloride three times. 25-25-2V-
P3982 (MATa ade1-14 his7-1 lys2-87 ura3Δ0 thr4-B15
leu2-B2 sup35-25 sup45-400) was described earlier [11, 13,
33]; generation of isolates is summarized in Fig. 2. Either
PSL2 [37] or p1 genomic DNA was used as euploid control
in aCGH experiments.
Standard yeast media [38, 39] with modifications were

used. Guanidine hydrochloride (Sigma G-3272-100G)
was added to a final concentration of 5 mM. Yeast

strains were cultivated at 26 °C, E. coli cells were cultivated
at 37 °C.
Yeast transformation was carried out according to the

standard protocol [40] with modifications.

Plasmids
Cloning was carried out according to standard protocols
[41, 42]. To obtain pRS316-his7-1, his7-1 with flanking
regions was PCR amplified from genomic DNA of p3 with
primers HIS7_F_HindIII_ (GTAACAAGCTTTCTTTCCT
CTACCACTGCCAA) and HIS7_R_HindIII_ (ACCATAA
GCTTTGGTACAATTTCTCCAAGCTG) and ligated into
RS316 [43] at HindIII sites. In addition to a nonsense muta-
tion A299T leading to premature stop codon at position 77
[44], it contains a PCR-induced substitution T947C leading
to a missense mutation L316P. pRS426-SFP1, a pRS426
[45] derivative containing SFP1 under the control of its
own promoter, was described earlier [11]. pRS316 [43] and
pRS426 [45] were also used as control vectors.

DNA extraction and analysis
DNA extraction for whole genome sequencing, library
preparation and data analysis methods was described
earlier [33]. DNA extraction for PCR was performed as
described in [38]. DNA extraction for aCGH, labeling
and hybridization were performed as described in [46]
except that yeast strains were grown at 22 °C for four
days. Custom 8x15k design (AMID 028943) Aligent arrays
were used; the slides were scanned and then analyzed with
GenePix Pro 6.0 software. In each case, phenotype of the
clones used for nucleic acid extraction was checked at the
moment of extraction with spotting on selective media.

Data analysis and availability
Microarray data analysis was performed in R [47] with
limma [48]; ggplot2 [49] was used for plotting. Bowtie2
[50] was used for short read alignment. Mapping coverage
was plotted with Qualimap [51]. aCGH data were analysed
with CGH-Miner Excel add-in [52]. Details of next gener-
ation sequencing data analysis and expression microarray
data analysis are provided in [24, 33], respectively.

Additional files

Additional file 1: Figure S1. Expression values for all the genes
disomic strains relative to wild-type control from [25] compared to
expression values of the Isp− isolate (m2) relative to an Isp+ one (p2),
sorted by chromosome. Analysis as in Fig. 1. (PNG 611 kb)

Additional file 2: Table S1. Expression values for all genes in an Isp−

isolate (m2) relative to an Isp+ one (p2) and mean coverage in approximately
1kb-long windows for an Isp− isolate (m2) relative to an Isp+ one (p3). Genes/
windows are sorted by chromosomal position. Genes or windows located on
duplicated chromosomes are in bold. (XLS 1215 kb)

Additional file 3: Figure S2. Graphical summary of aCGH results for
each isolate tested. (a) Schematic represenation of the results combined
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with the information on relationship of the strains (see Fig. 2). aCGH,
microarray-based comparative genomic hybridization. WGS, whole
genome sequencing. (b) Summarized data for each isolate. Horizontal
lines represent chromosomes; red signifies amplified regions while
green signifies deleted regions. Clones or strains used as experimental and
control samples are indicated on the top of each page. (PDF 3621 kb)

Additional file 4: Table S2. Raw aCGH data for each isolate tested.
(XLS 3589 kb)
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