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Abstract 

Background Non-additive genetic effects are often ignored in livestock genetic evaluations. However, fitting them 
in the models could improve the accuracy of genomic breeding values. Furthermore, non-additive genetic effects 
contribute to heterosis, which could be optimized through mating designs. Traits related to fitness and adaptation, 
such as heat tolerance, tend to be more influenced by non-additive genetic effects. In this context, the primary objec-
tives of this study were to estimate variance components and assess the predictive performance of genomic predic-
tion of breeding values based on alternative models and two independent datasets, including performance records 
from a purebred pig population and heat tolerance indicators recorded in crossbred lactating sows.

Results Including non-additive genetic effects when modelling performance traits in purebred pigs had no effect 
on the residual variance estimates for most of the traits, but lower additive genetic variances were observed, espe-
cially when additive-by-additive epistasis was included in the models. Furthermore, including non-additive genetic 
effects did not improve the prediction accuracy of genomic breeding values, but there was animal re-ranking 
across the models. For the heat tolerance indicators recorded in a crossbred population, most traits had small non-
additive genetic variance with large standard error estimates. Nevertheless, panting score and hair density pre-
sented substantial additive-by-additive epistatic variance. Panting score had an epistatic variance estimate of 0.1379, 
which accounted for 82.22% of the total genetic variance. For hair density, the epistatic variance estimates ranged 
from 0.1745 to 0.1845, which represent 64.95–69.59% of the total genetic variance.

Conclusions Including non-additive genetic effects in the models did not improve the accuracy of genomic breed-
ing values for performance traits in purebred pigs, but there was substantial re-ranking of selection candidates 
depending on the model fitted. Except for panting score and hair density, low non-additive genetic variance esti-
mates were observed for heat tolerance indicators in crossbred pigs.
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Background
 Phenotypes are the result of the individual genotypic 
value, environmental deviation, and interactions between 
genotype and the environment. The genotypic values can 
be divided in additive (breeding values) and non-additive 
genetic effects due to interactions between alleles at the 
same locus (dominance) and two or more loci (epistasis) 
[1]. Non-additive genetic effects are often ignored in live-
stock genetic evaluations due to the greater importance 
of additive effects for breeding value estimation, and 
the fact that breeding animals pass alleles and not geno-
types to their offspring [2–5]. Furthermore, non-addi-
tive genetic effects can be confounded with non-genetic 
effects, such as maternal and permanent environmen-
tal effects, and the analyses incorporating non-additive 
genetic effects are often more complex and computation-
ally demanding [4–6].

Although breeders are mainly interested in the esti-
mates of breeding values, fitting non-additive genetic 
effects in the genomic prediction models can increase 
the accuracy of the breeding values [7–9]. Furthermore, 
fitting non-additive genetic effects in the models can 
yield more accurate predictions of future performance 
and better mating plans to maximize offspring perfor-
mance by exploring the combination of additive and non-
additive genetic effects [2]. The increasing availability of 
large-scale genomic datasets has enabled the study of 
the non-additive actions of genes in numerous complex 
traits, including the evaluation of non-additive genetic 
effects in genomic prediction of breeding values (e.g., [2, 
9, 10]), genome-wide association studies (e.g., [11–13]), 
and the development of new methods for the estimation 
and applications of non-additive genetic effects in breed-
ing programs [6, 9, 14–16]. It is also important to note 
that accounting for inbreeding in variance component 
estimation and genomic prediction ensures unbiased 
variance components, minimizes bias issues in the esti-
mates, accounts for directional dominance, and prevents 
inflation of dominance variance estimates [17–19].

Non-additive genetic effects are expected to have a 
greater impact in crossbred performance as compared to 
purebred populations, mainly due to heterosis [20–22]. 
As pig production is based on crossbreeding schemes, it 
is important to evaluate the magnitude of non-additive 
effects for different traits measured on purebred and 
crossbred populations, as well as evaluate the impact of 
these effects on the predictive ability of genomic breed-
ing values. In general, adaptation and fitness traits tend 
to be more influenced by non-additive genetic effects 
(e.g., [17, 22–24]). In this context, heat tolerance indica-
tors are key fitness traits to be included in swine breeding 
programs for improving pig health, welfare, and produc-
tion [25, 26]. Breeding for improved heat tolerance is 

becoming more important due to the increase in global 
temperatures that directly impact swine health, perfor-
mance, and welfare [27, 28]. Although estimates of addi-
tive genetic variance and heritability have been reported 
for heat stress traits in pigs (e.g., [29–31]), the impact of 
non-additive effects on direct indicators of heat tolerance 
in crossbred pigs is still unknown.

Non-additive genetic effects can be of different magni-
tude in purebred and crossbred populations [20–22], as 
well for across traits with different genetic architecture. 
Therefore, there is a need to evaluate the impact of non-
additive genetic effects into genomic prediction models 
for a diverse set of traits, including production, fitness, 
and adaptation, within both purebred and crossbred pop-
ulations. In this context, the primary objectives of this 
study were to estimate additive and non-additive genetic 
variance components for different trait groups (i.e., pro-
duction, fitness, and adaptation traits) in independent 
purebred and crossbred populations. In addition, the 
impact of non-additive effects in the accuracy of genomic 
prediction of purebred animals was evaluated.

Results
The results obtained are presented separately for each of 
the two datasets evaluated.

Dataset 1: purebred pig population
Variance components and heritability estimates
Variance components and heritabilities were estimated 
for five traits representing phenotypes routinely collected 
from birth to breeding in a single nucleus pig line popula-
tion [32]. Table 1 presents the estimates of variance com-
ponents and Table  2 shows the estimates of heritability 
and non-additive genetic variance ratios for all five traits 
in the purebred pig population. All the fitted models 
converged for all traits, with the exception of the model 
including all non-additive genetic effects evaluated and 
inbreeding depression (MAIDE3) that did not converge 
for one of the traits (T3). When inbreeding was included 
as a covariate in the models, a small decrease in the addi-
tive genetic variance was observed (Table 1). For most of 
the traits, lower residual and additive genetic variance 
estimates were observed when incorporating non-addi-
tive genetic effects in the analyses.

Low dominance variance components were esti-
mated, ranging from 0 to 0.0576 for T1, T2, T3, and 
T4, and ranging from 138.0280 to 171.8660 for T5. 
Notably, the dominance variance ratios across all traits 
were found to be small, accompanied by relatively large 
standard errors. T5 had the highest dominance vari-
ance ratio, which ranged from 0.0397 to 0.0437, while 
for the other traits it ranged from 0 to 0.0206. How-
ever, the estimates of additive-by-additive epistatic 
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Table 1 Variance component estimates based on models including or not inbreeding and non-additive genetic effects

Trait Modela
̂σ 2
a

̂
σ 2

d
σ 2
aa

̂
σ 2

ad
̂
σ 2

dd
̂σ 2
e

T1 MA 0.0477 ± 0.0214 - - - - 1.4103 ± 0.0418

MAI 0.0463 ± 0.0214 - - - - 1.4117 ± 0.0418

MAE 0.0190 ± 0.0229 - 0.1864 ± 0.0942 - - 1.2540 ± 0.0871

MAIE 0.0169 ± 0.0229 - 0.1880 ± 0.0945 - - 1.2545 ± 0.0871

MAD 0.0477 ± 0.0214 8.92 ×  10−8 ± 0.0000 - - - 1.4103 ± 0.0418

MAID 0.0463 ± 0.0214 8.93 ×  10−8 ± 0.0000 - - - 1.4117 ± 0.0418

MADE1 0.0190 ± 0.0229 8.42 ×  10−8 ± 0.0000 0.1864 ± 0.0956 - - 1.2542 ± 0.0890

MAIDE1 0.0169 ± 0.0229 9.89 ×  10−8 ± 0.0000 0.1880 ± 0.0959 - - 1.2547 ± 0.0890

MADE2 0.0190 ± 0.0229 9.10 ×  10−8 ± 0.0000 0.1864 ± 0.0942 9.96 ×  10−7 ± 0.0000 - 1.2542 ± 0.0870

MAIDE2 0.0169 ± 0.0229 9.11 ×  10−8 ± 0.0000 0.1880 ± 0.0945 1.03 ×  10−6 ± 0.0000 - 1.2547 ± 0.0870

MADE3 0.0190 ± 0.0232 8.54 ×  10−8 ± 0.0000 0.1864 ± 0.1030 4.67 ×  10−7 ± 0.0000 1.16 ×  10−6 ± 0.0000 1.2542 ± 0.2248

MAIDE3 0.0169 ± 0.0232 8.45 ×  10−8 ± 0.0000 0.1880 ± 0.1033 4.33 ×  10−7 ± 0.0000 1.22 ×  10−6 ± 0.0000 1.2547 ± 0.2249

T2 MA 0.2945 ± 0.0339 - - - - 0.7975 ± 0.0277

MAI 0.2946 ± 0.0340 - - - - 0.7978 ± 0.0277

MAE 0.2276 ± 0.0355 - 0.2643 ± 0.0766 - - 0.5943 ± 0.0617

MAIE 0.2263 ± 0.0356 - 0.2665 ± 0.0768 - - 0.5934 ± 0.0618

MAD 0.2927 ± 0.0339 0.0221 ± 0.0240 - - - 0.7766 ± 0.0350

MAID 0.2926 ± 0.0340 0.0224 ± 0.0238 - - - 0.7767 ± 0.0350

MADE1 0.2266 ± 0.0354 0.0201 ± 0.0237 0.2625 ± 0.0768 - - 0.5768 ± 0.0639

MAIDE1 0.2250 ± 0.0355 0.0209 ± 0.0238 0.2651 ± 0.0768 - - 0.5750 ± 0.0640

MADE2 0.2267 ± 0.0354 0.0201 ± 0.0237 0.2625 ± 0.0768 9.23 ×  10−7 ± 0.0000 - 0.5768 ± 0.0639

MAIDE2 0.2250 ± 0.0355 0.0209 ± 0.0238 0.2651 ± 0.0768 9.20 ×  10−7 ± 0.0000 - 0.5750 ± 0.0640

MADE3 0.2267 ± 0.0354 0.0201 ± 0.0237 0.2625 ± 0.0768 9.23 ×  10−7 ± 0.0000 1.20 ×  10−6 ± 0.0000 0.5768 ± 0.0639

MAIDE3 0.2250 ± 0.0355 0.0209 ± 0.0238 0.2651 ± 0.0768 9.20 ×  10−7 ± 0.0000 1.20 ×  10−6 ± 0.0000 0.5750 ± 0.0640

T3 MA 0.1881 ± 0.0257 - - - - 0.7151 ± 0.0227

MAI 0.1869 ± 0.0256 - - - - 0.7158 ± 0.0227

MAE 0.1049 ± 0.0239 - 0.3895 ± 0.0625 - - 0.4094 ± 0.0494

MAIE 0.1033 ± 0.0238 - 0.3901 ± 0.0625 - - 0.4097 ± 0.0494

MAD 0.1857 ± 0.0257 0.0186 ± 0.0207 - - - 0.6982 ± 0.0291

MAID 0.1845 ± 0.0256 0.0194 ± 0.0209 - - - 0.6982 ± 0.0292

MADE1 0.1048 ± 0.0239 1.10 ×  10−7 ± 0.0000 0.3891 ± 0.0632 - - 0.4090 ± 0.0506

MAIDE1 0.1032 ± 0.0238 1.43 ×  10−7 ± 0.0000 0.3897 ± 0.0632 - - 0.4093 ± 0.0506

MADE2 0.1133 ± 0.0243 2.61 ×  10−7 ± 0.0000 0.2550 ± 0.0704 0.4553 ± 0.1227 - 0.0802 ± 0.0991

MAIDE2 0.1118 ± 0.0243 3.08 ×  10−7 ± 0.0000 0.2561 ± 0.0705 0.4536 ± 0.1229 - 0.0818 ± 0.0986

MADE3 0.1139 ± 0.0242 1.89 ×  10−7 ± 0.0000 0.2656 ± 0.0695 0.0841 ± 0.2002 0.4381 ± 0.1849 1.19 ×  10−4 ± 0.0000

MAIDE3b - - - - - -

T4 MA 1.7199 ± 0.1708 - - - - 3.4330 ± 0.1147

MAI 1.7206 ± 0.1710 - - - - 3.4340 ± 0.1148

MAE 1.5743 ± 0.1846 - 0.4672 ± 0.2938 - - 3.0851 ± 0.2441

MAIE 1.5738 ± 0.1845 - 0.4727 ± 0.2936 - - 3.0819 ± 0.2444

MAD 1.7172 ± 0.1710 0.0576 ± 0.0847 - - - 3.3777 ± 0.1378

MAID 1.7178 ± 0.1711 0.0585 ± 0.0848 - - - 3.3779 ± 0.1379

MADE1 1.5794 ± 0.1849 0.0351 ± 0.0835 0.4445 ± 0.2983 - - 3.0682 ± 0.2476

MAIDE1 1.5790 ± 0.1851 0.0355 ± 0.0826 0.4494 ± 0.2976 - - 3.0649 ± 0.2480

MADE2 1.5794 ± 8.5400 0.0351 ± 0.4200 0.4445 ± 0.2983 3.10 ×  10−7 ± 0.0000 - 3.0681 ± 0.2476

MAIDE2 1.5790 ± 0.1851 0.0355 ± 0.0826 0.4494 ± 0.2976 3.10 ×  10−7 ± 0.0000 - 3.0649 ± 0.2480

MADE3 1.5794 ± 0.1849 0.0351 ± 0.0835 0.4445 ± 0.2983 4.91 ×  10−7 ± 0.0000 6.38 ×  10−6 ± 0.0000 3.0681 ± 0.2476

MAIDE3 1.5790 ± 0.1851 0.0355 ± 0.0826 0.4494 ± 0.2976 4.90 ×  10−7 ± 0.0000 6.37 ×  10−6 ± 0.0000 3.0649 ± 0.2480
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variance were notably higher than the dominance vari-
ance estimates. These ratios were approximately 0.12 
for T1, 0.24 for T2, 0.28 to 0.43 for T3, 0.09 for T4, and 
0.13 to 0.15 for T5, indicating a more substantial con-
tribution of additive-by-additive epistasis to the vari-
ance components for these traits.

In general, there was a greater decrease in the addi-
tive genetic variance when additive-by-additive epista-
sis was included in the models (MAE, MAIE, MADE1, 
MAIDE1, MADE2, MAIDE2, MADE3, MAIDE3). 
However, for T1 the additive genetic variance esti-
mates also presented larger standard errors (Table  1), 
indicating that the inclusion of epistasis in the model 
decreased precision of the additive genetic variance 
estimates for T1. As a consequence of the decrease in 
the additive genetic variance, a reduction in the her-
itability estimates ( h2a ) were observed when additive-
by-additive epistasis was fitted in the models (Table 2). 
Nevertheless, the variance components for additive-
by-dominance and dominance-by-dominance epistasis 
were small and their variance ratios ( h2ad and h2dd ) were 
close to zero for almost all traits, except T3.

Predictive ability of genomic breeding values
 Figure 1 presents the average bias, dispersion, and accu-
racy values obtained for the genomic breeding values 
for all five traits. As expected, greater accuracies were 
obtained for traits with higher h2a . Fitting inbreeding and/
or dominance in the models did not impact the accuracy 
of breeding values compared to those obtained based on 
the MA model (Fig. 1). Models including epistasis (MAE, 
MAIE, MADE1, MAIDE1, MADE2, MAIDE2, MADE3, 
and MAIDE3) presented on average a relative decrease 
in accuracy of 31.58%, 13.97%, 3.50%, 0.82%, and 1.34% 
for T1, T2, T3, T4, and T5, respectively, when compared 
to MA (Fig. 1). The observed bias was close to zero and 
the dispersion estimates were close to one for all traits 
and models (Fig. 1), indicating that the inclusion of non-
additive genetic effects in the model did not influence the 
dispersion of breeding values.

In this section, all models incorporating non-additive 
genetic effects were compared to the additive animal 
model. To assess the impact of including non-additive 
genetic effects in the model on animals’ selection, we cal-
culated the change in an animals’ ranking in comparison 

̂σ 2
a  : additive genetic variance estimate
̂
σ 2

d  : dominance variance estimate
̂σ 2
aa : additive-by-additive epistatic variance estimate
̂
σ 2

ad : additive-by-dominance epistatic variance estimate
̂
σ 2

dd : dominance-by-dominance epistatic variance estimate
̂σ 2
e  : residual variance estimate

a MA: y = Xβ+ Za+ ǫ ; MAI: y = Xβ+ fb+ Za+ ǫ ; MAE: y = Xβ+ Za+ Zeaa + ǫ ; MAIE: y = Xβ+ fb+ Za+ Zeaa + ǫ ; MAD: y = Xβ+ Za+ Zd+ ǫ ; 
MAID: y = Xβ+ fb+ Za+ Zd+ ǫ ; MADE1: y = Xβ+ Za+ Zd+ Zeaa + ǫ ; MAIDE1: y = Xβ+ fb+ Za+ Zd+ Zeaa + ǫ ; MADE2: 
y = Xβ+ Za+ Zd+ Zeaa + Zead + ǫ ; MAIDE2: y = Xβ+ fb+ Za+ Zd+ Zeaa + Zead + ǫ ; MADE3: y = Xβ+ Za+ Zd+ Zeaa + Zead + Zedd + ǫ ; 
MAIDE3:y = Xβ+ fb+ Za+ Zd+ Zeaa + Zead + Zedd + ǫ
b Model MAIDE3 did not converge for T3.

Table 1 (continued)

Trait Modela
̂σ 2
a

̂
σ 2

d
σ 2
aa

̂
σ 2

ad
̂
σ 2

dd
̂σ 2
e

T5 MA 1,310.6200 ± 122.0317 - - - - 2,190.1200 ± 74.7226

MAI 1,313.0200 ± 122.1414 - - - - 2,186.8400 ± 74.6617

MAE 1,146.0400 ± 129.7894 - 539.2420 ± 202.7226 - - 1,786.3800 ± 163.5879

MAIE 1,149.1100 ± 129.8429 - 535.6400 ± 202.8939 1,786.0400 ± 163.7067

MAD 1,303.6700 ± 121.8383 171.8660 ± 65.5977 - - - 2,022.8200 ± 90.7908

MAID 1,305.2600 ± 121.8730 158.4950 ± 65.4938 - - - 2,033.7900 ± 90.9973

MADE1 1,168.3800 ± 130.5453 151.9660 ± 64.9427 451.3190 ± 205.1450 - - 1,703.5000 ± 167.0098

MAIDE1 1,167.8900 ± 130.4905 138.0280 ± 64.4991 457.6490 ± 205.2238 - - 1,710.3400 ± 167.0254

MADE2 1,168.3800 ± 130.5453 151.9660 ± 64.9427 451.3180 ± 205.1445 0.0012 ± 0.0000 - 1,703.4900 ± 167.0088

MAIDE2 1,167.8900 ± 130.4905 138.0280 ± 64.4991 457.6490 ± 205.2238 0.0012 ± 0.0000 - 1,710.3400 ± 167.0254

MAIDE3 1,167.8800 ± 130.9283 138.0280 ± 65.7276 457.6430 ± 231.1328 0.0012 ± 0.0000 0.0036 ± 0.0000 1,710.3200 ± 337.3412
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Table 2 Heritability estimates based on models including or not inbreeding and non-additive genetic effects

Trait Modela
h2a h2d h2aa h2ad h2dd

T1 MA 0.0327 ± 0.0146 - - - -

MAI 0.0318 ± 0.0146 - - - -

MAE 0.0130 ± 0.0157 - 0.1277 ± 0.0642 - -

MAIE 0.0116 ± 0.0157 - 0.1288 ± 0.0642 - -

MAD 0.0327 ± 0.0147 6.12 ×  10−08 ± 0.0232 - - -

MAID 0.0318 ± 0.0147 6.12 ×  10−08 ± 0.0232 - - -

MADE1 0.0130 ± 0.0157 5.77 ×  10−08 ± 0.0000 0.1277 ± 0.0642 - -

MAIDE1 0.0116 ± 0.0157 6.77 ×  10−08 ± 0.0241 0.1288 ± 0.0652 - -

MADE2 0.0130 ± 0.0160 6.23 ×  10−08 ± 0.0247 0.1277 ± 0.0743 6.82 ×  10−07 ± 0.1535 -

MAIDE2 0.0116 ± 0.0160 6.23 ×  10−08 ± 0.0247 0.1288 ± 0.0743 6.82 ×  10−07 ± 0.1536 -

MADE3 0.0130 ± 0.0160 5.85 ×  10−08 ± 0.0249 0.1277 ± 0.0743 3.20 ×  10−07 ± 0.2644 7.96 ×  10−07 ± 0.2910

MAIDE3 0.0116 ± 0.0160 5.79 ×  10−08 ± 0.0248 0.1288 ± 0.0743 2.97 ×  10−07 ± 0.2646 8.35 ×  10−07 ± 0.2913

T2 MA 0.2697 ± 0.0263 - - - -

MAI 0.2696 ± 0.0264 - - - -

MAE 0.2095 ± 0.0300 - 0.2433 ± 0.0698 - -

MAIE 0.2083 ± 0.0301 - 0.2453 ± 0.0700 - -

MAD 0.2680 ± 0.0265 0.0205 ± 0.0219 - - -

MAID 0.2680 ± 0.0265 0.0205 ± 0.0219 - - -

MADE1 0.2087 ± 0.0299 0.0185 ± 0.0217 0.2417 ± 0.0700 - -

MAIDE1 0.2071 ± 0.0301 0.0193 ± 0.0219 0.2441 ± 0.0701 - -

MADE2 0.2086 ± 0.0301 0.0185 ± 0.0222 0.2417 ± 0.0775 8.50 ×  10−07 ± 0.1390 -

MAIDE2 0.2071 ± 0.0302 0.0193 ± 0.0223 0.2441 ± 0.0776 8.47 ×  10−07 ± 0.1391 -

MADE3 0.2086 ± 0.0301 0.0185 ± 0.0224 0.2417 ± 0.0775 8.50 ×  10−07 ± 0.2355 1.10 ×  10−06 ± 0.2698

MAIDE3 0.2071 ± 0.0302 0.0193 ± 0.0225 0.2441 ± 0.0776 8.47 ×  10−07 ± 0.2357 1.10 ×  10−06 ± 0.2703

T3 MA 0.2083 ± 0.0253 - - - -

MAI 0.2071 ± 0.0253 - - - -

MAE 0.1161 ± 0.0255 - 0.4309 ± 0.0663 - -

MAIE 0.1144 ± 0.0254 - 0.4319 ± 0.0663 - -

MAD 0.2058 ± 0.0254 0.0206 ± 0.0230 - - -

MAID 0.2045 ± 0.0253 0.0215 ± 0.0231 - - -

MADE1 0.1161 ± 0.0255 1.22 ×  10−07 ± 0.0210 0.4309 ± 0.0669 - -

MAIDE1 0.1144 ± 0.0254 1.59 ×  10−07 ± 0.0211 0.4319 ± 0.0669 - -

MADE2 0.1254 ± 0.0258 2.89 ×  10−08 ± 0.0222 0.2821 ± 0.0769 0.5037 ± 0.1373 -

MAIDE2 0.1238 ± 0.0257 3.41 ×  10−08 ± 0.0222 0.2835 ± 0.0769 0.5022 ± 0.1375 -

MADE3 0.1263 ± 0.0257 2.10 ×  10−10 ± 0.0216 0.2946 ± 0.0759 0.0932 ± 0.2235 0.4859 ± 0.2068

MAIDE3b - - - - -

T4 MA 0.3338 ± 0.0263 - - - -

MAI 0.3338 ± 0.0263 - - - -

MAE 0.3071 ± 0.0304 - 0.0911 ± 0.0574 - -

MAIE 0.3069 ± 0.0304 - 0.0922 ± 0.0575 - -

MAD 0.3333 ± 0.0263 0.0112 ± 0.0164 - - -

MAID 0.3333 ± 0.0263 0.0114 ± 0.0164 - - -

MADE1 0.3080 ± 0.0304 0.0068 ± 0.0161 0.0867 ± 0.0581 - -

MAIDE1 0.3079 ± 0.0304 0.0069 ± 0.0162 0.0876 ± 0.0582 - -

MADE2 0.3080 ± 0.0306 0.0068 ± 0.0165 0.0867 ± 0.0656 6.06 ×  10−08 ± 0.1172 -

MAIDE2 0.3079 ± 0.0306 0.0069 ± 0.0165 0.0876 ± 0.0657 6.05 ×  10−08 ± 0.1173 -

MADE3 0.3080 ± 0.0306 0.0068 ± 0.0166 0.0867 ± 0.0656 9.57 ×  10−07 ± 0.1856 1.24 ×  10−06 ± 0.2251

MAIDE3 0.3079 ± 0.0306 0.0069 ± 0.0166 0.0876 ± 0.0657 9.56 ×  10−07 ± 0.1860 1.24 ×  10−06 ± 0.2256
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to the additive model (MA) based on Spearman’s rank 
correlation, as shown in Table 3. The percentage of com-
monly selected individuals when selecting the top 1%, 
5%, 10%, and 20% based on different genomic prediction 
models were compared to the selected individuals based 
on MA. Table  4 shows the percentage of coincidence 
of the top 1%, 5%, 10%, and 20% best animals between 
the MA and the models including non-additive genetic 
effects. The models including epistasis effect presented 
the lowest percentage of coincidence of the top animals 
in comparison to the MA model. This percentage varied 
from 68.57% for trait T3 to 97.59% for T4. Although there 
was little change in the Spearman correlations across 
models (Table 3), the percentage of coincidence between 
the best animals according to MA were higher for mod-
els including inbreeding and/or dominance (MAI, MAD, 
and MAID). However, the percentage of coincidence 
decreased for models including epistasis (MAE, MAIE, 
MADE1, MAIDE1, MADE2, MAIDE2, MADE3, and 
MAIDE3), as shown in Table 4.

The values of Akaike Information Criterion (AIC) 
(Table S1) suggested that the inclusion of epistasis in 
the prediction models for T2, T3, and T5 improved the 
predictive performance of the models. Although, the 

Likelihood Ratio Test (LRT; Table S2) for the models 
fitted for the purebred pig population showed that the 
inclusion of epistasis was significant for the traits T2, T3 
and T5, and incorporating dominance effect was also sig-
nificant for T5.

Dataset 2: crossbred pig population
Variance components and heritability estimates
We also estimated variance components and herit-
abilities for heat tolerance indicators in a crossbred 
(Large White x Landrace) population. Table 5 presents 
variance component estimates and Table  6 presents 
the estimates of heritability and non-additive genetic 
variance ratios for traits related to heat stress response 
in lactating sows for models including or not non-
additive genetic effects. All heat stress related traits 
have substantial additive genetic variability (Table  5) 
with heritability estimates ranging from 0.0231 to 
0.2639 (Table  6). However, all traits had small non-
additive genetic variance with large standard error 
estimates, except panting score (PS) and hair density 
(HD) (Table 5). PS presented a h2aa estimate of 0.1342, 
which corresponds to 82.22% of the total genetic vari-
ance for both models including epistasis (MAIEpe and 

h2a : additive heritability or narrow-sense heritability

h2d : dominance variance ratio

h2aa : epistatic additive-by-additive variance ratio

h2ad : epistatic additive-by-dominance variance ratio

h2dd : epistatic dominance-by-dominance variance ratio
a MA: y = Xβ+ Za+ ǫ ; MAI: y = Xβ+ fb+ Za+ ǫ ; MAE: y = Xβ+ Za+ Zeaa + ǫ ; MAIE: y = Xβ+ fb+ Za+ Zeaa + ǫ ; MAD: y = Xβ+ Za+ Zd+ ǫ ; 
MAID: y = Xβ+ fb+ Za+ Zd+ ǫ ; MADE1: y = Xβ+ Za+ Zd+ Zeaa + ǫ ; MAIDE1: y = Xβ+ fb+ Za+ Zd+ Zeaa + ǫ ; MADE2: 
y = Xβ+ Za+ Zd+ Zeaa + Zead + ǫ ; MAIDE2: y = Xβ+ fb+ Za+ Zd+ Zeaa + Zead + ǫ ; MADE3: y = Xβ+ Za+ Zd+ Zeaa + Zead + Zedd + ǫ ; 
MAIDE3:y = Xβ+ fb+ Za+ Zd+ Zeaa + Zead + Zedd + ǫ
b Model MAIDE3 did not converge for T3.

Table 2 (continued)

Trait Modela
h2a h2d h2aa h2ad h2dd

T5 MA 0.3744 ± 0.0264 - - - -

MAI 0.3752 ± 0.0264 - - - -

MAE 0.3301 ± 0.0309 - 0.1553 ± 0.0584 - -

MAIE 0.3311 ± 0.0310 - 0.1543 ± 0.0585 - -

MAD 0.3727 ± 0.0265 0.0491 ± 0.0187 - - -

MAID 0.3732 ± 0.0265 0.0453 ± 0.0187 - - -

MADE1 0.3362 ± 0.0309 0.0437 ± 0.0186 0.1299 ± 0.0590 - -

MAIDE1 0.3362 ± 0.0309 0.0397 ± 0.0186 0.1317 ± 0.0591 - -

MADE2 0.3362 ± 0.0310 0.0437 ± 0.0190 0.1299 ± 0.0666 3.36 ×  10−07 ± 0.1166 -

MAIDE2 0.3362 ± 0.0311 0.0397 ± 0.0189 0.1317 ± 0.0667 3.55 ×  10−07 ± 0.1166 -

MADE3 0.3362 ± 0.0311 0.0437 ± 0.0190 0.1299 ± 0.0666 3.33 ×  10−07 ± 0.1860 1.02 ×  10−06 ± 0.2256

MAIDE3 0.3362 ± 0.0311 0.0397 ± 0.0190 0.1317 ± 0.0667 3.58 ×  10−07 ± 0.1862 1.02 ×  10−06 ± 0.2151
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Fig. 1 Bias, dispersion, and accuracy estimates of genomic breeding values obtained using the Linear Regression method
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MAIDEpe). HD presented h2aa estimates of 0.4232 and 
0.4493 for MAIE and MAIDE models, respectively. 
The proportion of the total genetic variance explained 
by additive-by-additive epistasis for HD ranged from 
64.95 to 69.59% for the MAIE and MAIDE models, 
respectively (Table 6).

As observed for the purebred population (Dataset 
1), the inclusion of non-additive genetic effects in the 
model did not affect the residual variance estimates for 
most of the traits, except for HD (Table  5). However, 
for HD and PS there was also a decrease in the addi-
tive genetic variance estimates (Table 5) when epistasis 
was included in the model. When both dominance and 
epistasis were included in the repeatability model (for 
all heat stress-related traits, except HD), there was a 
decrease in the permanent environmental variance esti-
mate for most of the traits.

Model comparison for the crossbred pig dataset
For the crossbred population, the models also pre-
sented similar values of Akaike Information Criterion 
(AIC) (Table S3). LRT (Table S4) for the models fitted 
for the crossbred pig population showed that fitting 
epistasis in the models had a significant effect only for 
PS. The models for the other traits did not have better 
goodness of fit when dominance and/or epistasis were 
fitted.

Table 3 Spearman’s rank correlation between the additive 
genetic model (MA) and other models considering non-additive 
genetic effects

a MA: y = Xβ+ Za+ ǫ ; MAI: y = Xβ+ fb+ Za+ ǫ ; MAE: 
y = Xβ+ Za+ Zeaa + ǫ ; MAIE: y = Xβ+ fb+ Za+ Zeaa + ǫ ; 
MAD: y = Xβ+ Za+ Zd+ ǫ ; MAID: y = Xβ+ fb+ Za+ Zd+ ǫ ; 
MADE1: y = Xβ+ Za+ Zd+ Zeaa + ǫ ; MAIDE1: 
y = Xβ+ fb+ Za+ Zd+ Zeaa + ǫ ; MADE2: 
y = Xβ+ Za+ Zd+ Zeaa + Zead + ǫ ; MAIDE2: 
y = Xβ+ fb+ Za+ Zd+ Zeaa + Zead + ǫ ; MADE3: 
y = Xβ+ Za+ Zd+ Zeaa + Zead + Zedd + ǫ ; 
MAIDE3:y = Xβ+ fb+ Za+ Zd+ Zeaa + Zead + Zedd + ǫ
b The model MAIDE3 did not converge for T3

Modela T1 T2 T3 T4 T5

MAI 0.9990 1.000 0.9996 1.0000 0.9993

MAE 0.9844 0.9952 0.9645 0.9989 0.9968

MAIE 0.9856 0.9952 0.9630 0.9989 0.996

MAD 1.0000 0.9999 0.9998 0.9999 0.9985

MAID 0.9990 0.9999 0.9995 0.9999 0.9985

MADE1 0.9844 0.9951 0.9644 0.9989 0.9966

MAIDE1 0.9856 0.9950 0.9630 0.9989 0.9964

MADE2 0.9844 0.9951 0.9692 0.9989 0.9966

MAIDE2 0.9856 0.9950 0.9678 0.9989 0.9964

MADE3 0.9844 0.9951 0.9716 0.9989 0.9966

MAIDE3b 0.9856 0.9950 - 0.9989 0.9964

Table 4 Percentage of commonly selected animals between 
the additive model and models including non-additive genetic 
effects

Trait Modela 1% 5% 10% 20%

T1 MAI 97.14% 96.02% 96.88% 97.73%

MAE 82.86% 86.93% 88.10% 89.09%

MAIE 82.86% 86.36% 87.54% 89.38%

MAD 100.00% 100.00% 100.00% 100.00%

MAID 97.14% 96.02% 96.88% 97.73%

MADE1 82.86% 86.36% 88.10% 89.09%

MAIDE1 82.86% 86.36% 87.25% 89.38%

MADE2 82.86% 86.36% 88.10% 89.09%

MAIDE2 82.86% 86.36% 87.25% 89.38%

MADE3 82.86% 86.36% 88.10% 89.09%

MAIDE3 82.86% 86.36% 87.25% 89.38%

T2 MAI 100.00% 100.00% 100.00% 100.00%

MAE 77.14% 92.05% 91.78% 94.05%

MAIE 77.14% 91.48% 91.78% 94.33%

MAD 97.14% 98.86% 98.58% 99.15%

MAID 97.14% 98.30% 98.30% 99.15%

MADE1 80.00% 92.05% 91.50% 94.05%

MAIDE1 77.14% 92.05% 91.50% 94.05%

MADE2 80.00% 92.05% 91.50% 94.05%

MAIDE2 77.14% 92.05% 91.50% 94.05%

MADE3 80.00% 92.05% 91.50% 94.05%

MAIDE3 77.14% 92.05% 91.50% 94.05%

T3 MAI 94.29% 97.73% 98.30% 98.30%

MAE 71.43% 76.14% 79.32% 84.56%

MAIE 71.43% 77.27% 78.47% 84.70%

MAD 94.29% 99.43% 98.87% 99.15%

MAID 94.29% 97.73% 97.73% 98.16%

MADE1 71.43% 76.14% 79.32% 84.56%

MAIDE1 71.43% 77.27% 78.47% 84.70%

MADE2 71.43% 76.70% 81.59% 86.54%

MAIDE2 71.43% 78.41% 80.45% 86.40%

MADE3 68.57% 77.84% 81.87% 87.11%

MAIDE3b - - - -

T4 MAI 100.00% 100.00% 99.72% 99.72%

MAE 94.29% 97.73% 96.60% 97.45%

MAIE 94.29% 97.73% 96.60% 97.59%

MAD 100.00% 98.86% 99.43% 99.43%

MAID 100.00% 98.86% 99.15% 99.58%

MADE1 97.14% 97.73% 96.60% 97.45%

MAIDE1 97.14% 97.73% 96.60% 97.59%

MADE2 97.14% 97.73% 96.60% 97.45%

MAIDE2 97.14% 97.73% 96.60% 97.59%

MADE3 97.14% 97.73% 96.60% 97.45%

MAIDE3 97.14% 97.73% 96.60% 97.59%
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Discussion
We aimed to estimate variance components and evalu-
ate the predictive ability of genomic models including 
non-additive genetic effects for different traits in pure-
bred and crossbred populations. In general, we observed 
small estimates for dominance variance and the inclusion 
of additive-by-additive epistasis in the model reduced 
the estimates of additive genetic variance. The inclusion 
of non-additive genetic effects in models for genomic 
prediction resulted in changes in animals’ ranking and 
in the groups of animals to be selected. Since two differ-
ent independent populations were used in this study, the 
Discussion section was structured into two subsections to 
discuss the findings for each population separately.

Dataset 1: purebred pig population
One way to account for inbreeding depression in 
genomic prediction is by fitting the inbreeding coefficient 
as a covariate in the model. The benefit of doing so is that 
unbiased variance components may be obtained because 
the variance component estimates may be inflated when 
inbreeding or heterozygosity are not fitted within the 
models [17–19]. According to Bolormaa et  al. [4] and 
Xiang et  al. [19], inbreeding or heterozygosity are fit-
ted within the models to account for directional domi-
nance (i.e., a higher percentage of positive than negative 

dominance effects), otherwise, the variance components 
for the dominance effects will be biased. Vitezica et  al. 
[17] also reported that in the absence of inbreeding 
within the models, the estimates for dominance variance 
were inflated for litter size in a purebred pig line. In the 
present study, there was a slight decrease in the additive 
genetic variance when the models adjusted for inbreed-
ing depression, suggesting that not fitting inbreeding in 
the model might generate overestimated additive genetic 
variances.

The heritability estimates obtained from the models 
including only the additive and dominance genetic effects 
(MAD) corroborate with the estimates reported in pre-
vious studies using the same public dataset [32]. The 
studies reported dominance variance aiming to propose 
different methods for obtaining additive and dominance 
genetic variance components [33–35]. The dominance 
variance ratio estimates for T3 reported by Da et al. [33] 
and Liu et  al. [35] were greater than estimated in this 
study (0.07 vs. 0.02), and the dominance variance ratio 
estimated for T5 was smaller than that one reported by 
Nishio and Satoh [34] (0.045 vs. 0.063). Da et al. [36] pro-
posed multifactorial methods with SNP and haplotypes 
to calculate the genomic relationship matrix and fitted 
the epistasis effects up to third-order in the genomic pre-
diction models. When comparing the estimates from the 
most complete models, in general, Da et al. [36] reported 
similar heritability (0.02 vs. 0.01, 0.22 vs. 0.21, 0.13 vs. 
0.12, 0.33 vs. 0.31, 0.36 vs. 0.34 for T1, T2, T3, T4, and 
T5, respectively) and lower additive-by-additive epistatic 
variance ratio estimates (0.04 vs. 0.13, 0.18 vs. 0.24, 0.28 
vs. 0.29, 0.02 vs. 0.09, 0.05 vs. 0.13 for T1, T2, T3, T4, 
and T5, respectively). The differences between estimates 
reported by each study using the same dataset might be 
due to different methods and/or parametrization consid-
ered to obtain the genomic relationship matrices in each 
study.

The method to obtain the relationship matrices applied 
in this study, proposed by Vitezica et  al. [6], is a flexible 
approach that can also be applied for populations that 
are not in Hardy-Weinberg equilibrium. However, it 
assumes linkage equilibrium between the genetic mark-
ers to ensure orthogonality between variance compo-
nents. The non-orthogonality is clearly observed when 
there are significant changes in the variance estimates and 
when new variance components are introduced into the 
model [6]. In this study, the non-orthogonality between 
the variance components was noticeable when epistasis, 
especially additive-by-additive, was added to the model. 
This source of non-orthogonality might be due to linkage 
disequilibrium (LD) between the markers since this first 
dataset is from a nucleus purebred pig line, which is under  
intense selection pressure for various traits. Vitezica et al. [6]  

Table 4 (continued)

Trait Modela 1% 5% 10% 20%

T5 MAI 100.00% 96.02% 96.32% 98.16%

MAE 88.57% 95.45% 95.18% 96.03%

MAIE 88.57% 94.32% 94.05% 95.61%

MAD 94.29% 96.59% 96.88% 97.45%

MAID 94.29% 96.59% 96.32% 97.45%

MADE1 91.43% 94.32% 95.75% 96.03%

MAIDE1 88.57% 95.45% 94.62% 95.61%

MADE2 91.43% 94.32% 95.75% 96.03%

MAIDE2 88.57% 95.45% 94.62% 95.61%

MADE3 91.43% 94.32% 95.75% 96.03%

MAIDE3 88.57% 95.45% 94.62% 95.61%

a MA: y = Xβ+ Za+ ǫ ; MAI: y = Xβ+ fb+ Za+ ǫ ; MAE: 
y = Xβ+ Za+ Zeaa + ǫ ; MAIE: y = Xβ+ fb+ Za+ Zeaa + ǫ ; 
MAD: y = Xβ+ Za+ Zd+ ǫ ; MAID: y = Xβ+ fb+ Za+ Zd+ ǫ ; 
MADE1: y = Xβ+ Za+ Zd+ Zeaa + ǫ ; MAIDE1: 
y = Xβ+ fb+ Za+ Zd+ Zeaa + ǫ ; MADE2: 
y = Xβ+ Za+ Zd+ Zeaa + Zead + ǫ ; MAIDE2: 
y = Xβ+ fb+ Za+ Zd+ Zeaa + Zead + ǫ ; MADE3: 
y = Xβ+ Za+ Zd+ Zeaa + Zead + Zedd + ǫ ; 
MAIDE3:y = Xβ+ fb+ Za+ Zd+ Zeaa + Zead + Zedd + ǫ
b Model MAIDE3 did not converge for T3.
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Table 5 Variance components for traits related to heat tolerance based on models fitting non-additive genetic effects

̂σ 2
a  : additive genetic variance estimate
̂
σ 2

d  : dominance variance estimate
̂σ 2
aa : additive-by-additive epistatic variance estimate
̂σ 2
pe : permanent environmental variance estimate
̂σ 2
e  : residual variance estimate

a TVall: all measures (every 10 min) of vaginal temperatures during four days (°C);  TV4days: four-time measures of vaginal temperatures during four days (°C);  TES: ear skin 
temperature;  TSS: shoulder skin temperature;  TRS: rump skin temperature;  TTS: tail skin temperature; RR: respiration rate; PS: panting score; HD: hair density.
b MAIpe: y = Xβ+ fb+ Za+ Zpe+ ǫ ; MAIEpe: y = Xβ+ fb+ Za+ Zpe+ Zeaa + ǫ ; MAIDpe: y = Xβ+ fb+ Za+ Zpe+ Zd+ ǫ ; MAIDEpe: 
y = Xβ+ fb+ Za+ Zd+ Zeaa + Zpe+ ǫ ; MAI: y = Xβ+ fb+ Za+ ǫ ; MAIE: y = Xβ+ fb+ Za+ Zeaa + ǫ ; MAID: y = Xβ+ fb+ Za+ Zd+ ǫ ; 
MAIDE1:y = Xβ+ fb+ Za+ Zd+ Zeaa + ǫ

Traita Modelb
̂σ 2
a

̂
σ 2

d
̂σ 2
aa

̂σ 2
pe

̂σ 2
e

TVall MAIpe 0.0626 ± 0.0107 - - 0.1274 ± 0.0081 0.3047 ± 0.0005

MAIDpe 0.0618 ± 0.0111 0.0050 ± 0.0140 - 0.1237 ± 0.0128 0.3047 ± 0.0005

MAIDEpe 0.0616 ± 0.0121 0.0047 ± 0.0144 0.0031 ± 0.0340 0.1213 ± 0.0294 0.3047 ± 0.0005

MAIEpe 0.0618 ± 0.0120 0.0050 ± 0.0336 0.1231 ± 0.0290 0.3047 ± 0.0005

TV4days MAIpe 0.0653 ± 0.0113 - - 0.1266 ± 0.0086 0.1378 ± 0.0014

MAIDpe 0.0642 ± 0.0116 0.0068 ± 0.0145 - 0.1216 ± 0.0132 0.1378 ± 0.0014

MAIDEpe 0.0642 ± 0.0116 0.0068 ± 0.0145 3.48 ×  10−9 ± 0.00000 0.1216 ± 0.0132 0.1378 ± 0.0014

MAIEpe 0.0653 ± 0.0113 - 3.48 ×  10−9 ± 0.00000 0.1266 ± 0.0086 0.1378 ± 0.0014

TES MAIpe 0.0316 ± 0.0069 - - 0.0507 ± 0.0059 0.7287 ± 0.0074

MAIDpe 0.0316 ± 0.0069 1.84 ×  10−8 ± 0.00000 - 0.0507 ± 0.0059 0.7287 ± 0.0074

MAIDEpe 0.0316 ± 0.0069 1.84 ×  10−8 ± 0.00000 1.84 ×  10−8 ± 0.00000 0.0507 ± 0.00589 0.7287 ± 0.0074

MAIEpe 0.0316 ± 0.0069 - 1.84 ×  10−8 ± 0.00000 0.0507 ± 0.00589 0.7287 ± 0.0074

TSS MAIpe 0.0445 ± 0.0100 - - 0.1176 ± 0.0090 0.6119 ± 0.0062

MAIDpe 0.0437 ± 0.0104 0.0045 ± 0.0165 - 0.1145 ± 0.0145 0.6119 ± 0.0062

MAIDEpe 0.0437 ± 0.0104 0.0045 ± 0.0165 1.54 ×  10−7 ± 0.00000 0.1145 ± 0.0145 0.6119 ± 0.0062

MAIEpe 0.0445 ± 0.0100 - 1.54 ×  10−7 ± 0.00000 0.1176 ± 0.0090 0.6119 ± 0.0062

TRS MAIpe 0.0276 ± 0.0063 - - 0.0739 ± 0.0056 0.3577 ± 0.0036

MAIDpe 0.0276 ± 0.0063 9.05 ×  10−9 ± 0.00000 - 0.0739 ± 0.0056 0.3577 ± 0.0036

MAIDEpe 0.0276 ± 0.0063 9.05 ×  10−9 ± 0.00000 9.05 ×  10−9 ± 0.00000 0.0739 ± 0.0056 0.3577 ± 0.0036

MAIEpe 0.0276 ± 0.0063 - 9.05 ×  10−9 ± 0.00000 0.0739 ± 0.0056 0.3577 ± 0.0036

TTS MAIpe 0.0283 ± 0.0067 - - 0.0730 ± 0.0060 0.4525 ± 0.0046

MAIDpe 0.0278 ± 0.0070 0.0021 ± 0.0096 - 0.0716 ± 0.0089 0.4525 ± 0.0046

MAIDEpe 0.0278 ± 0.0070 0.0021 ± 0.0096 1.14 ×  10−8 ± 0.00000 0.0716 ± 0.00889 0.4525 ± 0.0046

MAIEpe 0.0283 ± 0.0067 - 1.14 ×  10−8 ± 0.00000 0.0730 ± 0.0060 0.4525 ± 0.0046

RR MAIpe 34.7580 ± 7.0790 - - 70.3639 ± 5.9429 442.7150 ± 4.4814

MAIDpe 34.7580 ± 7.0790 1.11 ×  10−5 ± 0.00000 - 70.3639 ± 5.9429 442.7150 ± 4.4814

MAIDEpe 34.7580 ± 7.0790 1.11 ×  10−5 ± 0.00000 1.11 ×  10−5 ± 0.00000 70.3639 ± 5.9429 442.7150 ± 4.4814

MAIEpe 34.7580 ± 7.0790 - 1.11 ×  10−5 ± 0.00000 70.3639 ± 5.9429 442.7150 ± 4.4814

PS MAIpe 0.0551 ± 0.0185 - - 0.1297 ± 0.0195 0.8463 ± 0.0191

MAIDpe 0.0542 ± 0.0194 0.0044 ± 0.0291 - 0.1267 ± 0.0282 0.8463 ± 0.0191

MAIDEpe 0.0298 ± 0.0204 2.14 ×  10−8 ± 0.00000 0.1379 ± 0.0711 0.0137 ± 0.0623 0.8463 ± 0.0191

MAIEpe 0.0298 ± 0.0204 - 0.1379 ± 0.0711 0.0137 ± 0.0623 0.8463 ± 0.0191

HD MAI 0.1088 ± 0.0247 - - - 0.3052 ± 0.0206

MAID 0.1040 ± 0.0256 0.0289 ± 0.0366 - - 0.2854 ± 0.0324

MAIDE1 0.0795 ± 0.0278 0.0147 ± 0.0367 0.1745 ± 0.1015 - 0.1437 ± 0.0876

MAIE 0.0806 ± 0.0275 - 0.1845 ± 0.0997 - 0.1455 ± 0.0876
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also reported high additive-by-additive variance and a sum 
of non-additive variances greater than the additive  
variance for a simulated high LD scenario due to strong 

selection. The additive, dominance, and epistasis effects 
are assumed independent of each other under the linkage 
equilibrium assumption [37, 38]. However, the presence 

Table 6 Heritability estimates and variance ratios considering models fitting non-additive genetic effects for heat tolerance indicators

h2a : additive heritability or narrow-sense heritability

h2d : dominance variance ratio

h2aa : epistatic additive-by-additive variance ratio
̂
σ 2

d /
̂σ 2
g  : ratio of the total genetic variance explained by dominance

̂σ 2
aa/

̂σ 2
g  : ratio of the total genetic variance explained by additive-by-additive epistasis

a TVall: all measures (every 10 min) of vaginal temperatures during four days (°C);  TV4days: four-time measures of vaginal temperatures during four days (°C);  TES: ear skin 
temperature;  TSS: shoulder skin temperature;  TRS: rump skin temperature;  TTS: tail skin temperature; RR: respiration rate; PS: panting score; HD: hair density.
b  MAIpe: y = Xβ+ fb+ Za+ Zpe+ ǫ ; MAIEpe: y = Xβ+ fb+ Za+ Zpe+ Zeaa + ǫ ; MAIDpe: y = Xβ+ fb+ Za+ Zpe+ Zd+ ǫ ; MAIDEpe: 
y = Xβ+ fb+ Za+ Zd+ Zeaa + Zpe+ ǫ ; MAI: y = Xβ+ fb+ Za+ ǫ ; MAIE: y = Xβ+ fb+ Za+ Zeaa + ǫ ; MAID: y = Xβ+ fb+ Za+ Zd+ ǫ ; 
MAIDE1:y = Xβ+ fb+ Za+ Zd+ Zeaa + ǫ

Traita Modelb
h2a h2d h2aa ̂

σ 2

d /
̂σ 2
g

̂σ 2
aa/

̂σ 2
g

TVall MAIpe 0.1266 ± 0.0203 - - - -

MAIDpe 0.1248 ± 0.0211 0.0102 ± 0.0285 - 0.0753 ± 0.1990 -

MAIDEpe 0.1239 ± 0.0232 0.0096 ± 0.0290 0.0062 ± 0.0670 0.0686 ± 0.2038 0.0442 ± 0.4633

MAIEpe 0.1249 ± 0.0229 - 0.0102 ± 0.0660 - 0.0754 ± 0.4577

TV4days MAIpe 0.1982 ± 0.0310 - - - -

MAIDpe 0.1944 ± 0.0323 0.0206 ± 0.0441 - 0.0959 ± 0.1898 -

MAIDEpe 0.1944 ± 0.0323 0.0206 ± 0.0441 0.0000 ± 0.0000 0.0959 ± 0.1898 0.0000 ± 0.0000

MAIEpe 0.1982 ± 0.0310 - 0.0000 ± 0.0000 - 0.0000 ± 0.0000

TES MAIpe 0.039 ± 0.0083 - - - -

MAIDpe 0.039 ± 0.0083 0.0000 ± 0.0000 0.0000 ± 0.0000 -

MAIDEpe 0.039 ± 0.0083 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

MAIEpe 0.039 ± 0.0083 - 0.0000 ± 0.0000 - 0.0000 ± 0.0000

TSS MAIpe 0.0575 ± 0.0126 - - - -

MAIDpe 0.0564 ± 0.0132 0.0058 ± 0.0211 - 0.0925 ± 0.3148 -

MAIDEpe 0.0564 ± 0.0132 0.0058 ± 0.0211 0.0000 ± 0.0000 0.0925 ± 0.3148 0.0000 ± 0.0000

MAIEpe 0.0575 ± 0.0126 - 0.0000 ± 0.0000 - 0.0000 ± 0.0000

TRS MAIpe 0.0601 ± 0.0134 - - - -

MAIDpe 0.0601 ± 0.0134 0.0000 ± 0.0000 - 0.0000 ± 0.0000

MAIDEpe 0.0601 ± 0.0134 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

MAIEpe 0.0601 ± 0.0134 - 0.0000 ± 0.0000 0.0000 ± 0.0000

TTS MAIpe 0.051 ± 0.0119 - - - -

MAIDpe 0.0501 ± 0.0124 0.0038 ± 0.0174 - 0.0708 ± 0.3052 -

MAIDEpe 0.0501 ± 0.0124 0.0038 ± 0.0174 0.0000 ± 0.0000 0.0708 ± 0.3052 0.0000 ± 0.0000

MAIEpe 0.0501 ± 0.0119 - 0.0000 ± 0.0000 - 0.0000 ± 0.0000

RR MAIpe 0.0634 ± 0.0126 - - - -

MAIDpe 0.0634 ± 0.0126 0.0000 ± 0.0000 - 0.0000 ± 0.0000 -

MAIDEpe 0.0634 ± 0.0126 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

MAIEpe 0.0634 ± 0.0126 - 0.0000 ± 0.0000 0.0000 ± 0.0000

PS MAIpe 0.0535 ± 0.0176 - - -

MAIDpe 0.0526 ± 0.0185 0.0042 ± 0.0286 - 0.0744 ± 0.4744 -

MAIDEpe 0.0290 ± 0.0198 0.0000 ± 0.0000 0.1342 ± 0.0689 0.0000 ± 0.0000 0.8222 ± 0.1527

MAIEpe 0.0290 ± 0.0198 - 0.1342 ± 0.0689 - 0.8222 ± 0.1527

HD MAI 0.2629 ± 0.0535 - - - -

MAID 0.2494 ± 0.0567 0.0662 ± 0.0869 - 0.2097 ± 0.2335 -

MAIDE1 0.1928 ± 0.0641 0.0356 ± 0.0875 0.4232 ± 0.2468 0.0546 ± 0.1338 0.6495 ± 0.2020

MAIE 0.1964 ± 0.0632 - 0.4493 ± 0.2419 - 0.6959 ± 0.1617
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of LD might affect the magnitude of dominance and 
epistasis variance due to the correlation between markers 
by introducing dependency between the genetic additive 
and non-additive values, which could lead to overestima-
tion of the non-additive genetic variance components. As 
a result, the partition between additive and non-additive 
components is more difficult when LD between markers 
is present [39]. It is worth noting that many complex traits 
are predominantly additive [40], and the additive genetic 
variance often comprises most of the total genetic vari-
ance for most traits [41]. Accurate estimation of additive 
genetic variance components can be achieved without 
assuming linkage equilibrium. Therefore, incorporating 
non-additive genetic effects into genomic prediction may 
not offer significant advantages for selection purposes. 
However, to evaluate the genetic architecture of complex 
traits, there is still a need to develop methods for accu-
rately estimating non-additive genetic variance compo-
nents without assuming linkage equilibrium, especially 
considering that many livestock populations are subjected 
to intensive selective breeding (a major cause of LD).

As summarized by Wade et  al. [42], for two bi-allelic 
loci, epistasis can be considered in different ways: (i) 
additive-by-additive, interactions between homozygotes 
at both loci; (ii) additive-by-dominance, interactions 
between homozygotes at locus A and heterozygotes at 
locus B and vice-versa; (iii) dominance-by-dominance, 
interactions between heterozygotes at both loci. The first 
dataset used in this study belongs to a purebred popula-
tion, which could be one of the reasons why the variance 
components for additive-by-dominance and dominance-
by-dominance epistasis are close to zero. Purebred popu-
lations tend to exhibit reduced heterozygosity, which can 
make it more challenging to accurately estimate additive-
by-dominance and dominance-by-dominance epistatic 
effects [43]. The results indicate that although there may 
be those types of interactions between loci in the pure-
bred population evaluated, they might be mostly cap-
tured by the additive genetic variance [41].

All models presented dispersion close to one, indicat-
ing that there is no inflation or deflation for the genomic 
estimated breeding values (GEBVs) [30]. The GEBVs also 
presented bias close to zero in all models, which is desir-
able, since biased estimates compromise the estimates of 
genetic trends and genetic gains in breeding programs 
[44]. However, the accuracy differed across traits and 
traits with higher (additive) heritability yielded greater 
accuracies, which agrees with the literature [45–47]. 
Different accuracies were estimated for each model, 
and there was a decrease in the accuracy when epista-
sis effects were incorporated in the models, which can 
be associated with the decrease in the additive genetic 

variance components for those models, since this vari-
ance component are used to compute the accuracy [44].

Although models including epistatic effects were signif-
icantly better (based on LRT parameter) for some traits 
(T2, T3, and T5), including epistasis had lower GEBV 
accuracies for traits with lower heritability (T1, T2, and 
T3). It is noticeable that models including epistatic effects 
had greater standard errors for the additive genetic vari-
ance and heritability estimates for T1, which is the trait 
with the lowest heritability. This suggests that the avail-
able data might not be sufficient to effectively distinguish 
between additive genetic and epistasis effects. Therefore, 
larger datasets may be required to obtain more accurate 
estimates of non-additive genetic effects [22], particularly 
for traits with low heritability.

Another factor influencing this inferior accuracy for 
models including epistasis may be due to the non-orthog-
onality between the components, especially between 
additive genetic effects and additive-by-additive epista-
sis. At the same time, when only additive genetic effects 
were fitted in the models, part of the additive-by-additive 
epistasis was captured by the additive genetic compo-
nent, as previously reported in other studies [3, 48]. Even 
though models including additive-by-additive epistasis 
was significantly better (based on LRT parameter) and 
this effect accounted for a relevant proportion of pheno-
typic variance for some traits in the purebred population, 
including epistasis in the model may capture part of the 
additive genetic variance [3]. The ranking of selection 
candidates also changed for models as a consequence of 
the change in variance partition due to the inclusion of 
non-additive genetic effects in the models.

In general, models including epistasis presented the larg-
est changes in ranking of the animals in comparison to the 
additive model. According to Piccoli et al. [49], the degree 
of reranking is directly associated with the accuracies of 
estimates and, at the same time, it is difficult to compare the 
reranking considering real datasets since the true breeding 
values are unknown. However, it is noticeable that epistasis 
plays an important role in genomic prediction and might 
change the selected animals when considered in a genetic 
evaluation program, which would impact genetic progress 
for the traits evaluated. There are studies investigating the 
impact of incorporating epistasis into genomic predictions 
aiming to develop methods that effectively integrate this 
effect into genomic prediction models (e.g., [50, 51]). Previ-
ous studies have shown that including all possible marker 
interactions in the prediction model does not improve the 
prediction ability [52, 53]. However, there is an improve-
ment in prediction ability when only some interactions 
between markers are included in the model, being selected 
only those interactions with greater effects [52, 53].
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Dataset 2: crossbred pig population
Since all heat stress-related traits had substantial addi-
tive genetic variability, including them in a selection 
program is feasible and can lead to genetic progress. 
Although, it should be noted that phenotypes measured 
in crossbred animals are expected to be more influ-
enced by non-additive genetic effects than in purebred 
populations [21, 22]. Small non-additive genetic vari-
ances were observed for most of the traits evaluated in 
the crossbred dataset. Additionally, the estimates for 
dominance and epistasis variances had large standard 
errors which illustrates the difficulty of obtaining good 
estimates [17] and suggesting that the dataset was not 
large enough [19].

Besides HD and PS having considerable epistasis esti-
mates, models including epistatic effects were signifi-
cant better (based on LRT parameter) only for PS and 
no significant dominance variance was observed for any 
trait related to heat stress in the crossbred population. 
However, HD and PS are categorical traits and, thresh-
old models [54–56] should be more suitable for geneti-
cally evaluating them. As highlighted by Alves et  al. 
[3], there might be some limitations in estimating non-
additive genetic effects for categorical traits.

Estimating non-additive genetic variances is also 
difficult, since they are often, or at least partially, 
confounded with other effects, such as common envi-
ronmental or maternal effects [4]. In this study, it is 
noticeable that, for traits related to heat stress, there 
was a confoundment between permanent environmen-
tal and non-additive genetic effects. This was observed 
through a reduction in the variance of permanent envi-
ronmental effects when non-additive genetic effects 
were included in the model. This observation, particu-
larly regarding PS, is similar to the results reported 
by Vitezica et  al. [17]. The authors also reported that 
including non-additive genetic effects in the model did 
not have a large impact on residual variances and the 
non-additive genetic effects were captured by the per-
manent environmental effects [17].

The findings from this study suggest that the gene 
actions for heat stress-related traits in this population 
are mainly additive, or at least most of the non-addi-
tive genetic effects are captured by the additive genetic 
component. Although the dataset used in this study 
came only from crossbred animals, the pure breeds 
used for crossbreeding are both considered maternal 
breeds (Large White and Landrace) and genetically 
related [57–59]. Thus, in crossings between lines or 
breeds with high genetic distance it would be expected 
higher heterosis and greater non-additive genetic vari-
ance estimates [21] in comparison to the present study.

Implications and future studies
Quantitative traits are controlled by many genes with 
additive and potentially non-additive gene actions, and 
their phenotypic expression are the result of many devel-
opmental and biochemical pathways comprised of loci 
networks that interact at the genetic and molecular lev-
els, generating the epistasis effects [60]. Thus, the mag-
nitude of the epistasis effects depends on how many 
pathways are involved in the expression of certain pheno-
types and how these pathways are connected and interact 
between them. In the other hand, the magnitude of dom-
inance effects depends on the deviations of genotypic 
values from breeding values for each locus. If the pro-
portion of positive dominance effects is greater than the 
proportion of negative dominance effects, it is referred to 
as directional dominance [1, 9]. Heterosis and inbreed-
ing depression are directly dependent on non-additive 
genetic effects [9, 17]. Although it is expected that non-
additive genetic variation would be larger in crossbred 
populations [5, 9, 22, 61], most of the traits measured 
in the crossbred population did not present substantial 
non-additive genetic variance ratios. Additionally, fit-
ting non-additive genetic effects in the models did not 
improve the prediction ability of breeding values for the 
purebred population. However, including non-additive 
genetic effects, especially additive-by-additive epistasis, 
changed the animal’s ranking and can therefore affect 
selection decisions.

Many studies have suggested that non-additive genetic 
effects are greater in traits related to fitness and adapta-
tion than in morphological traits [62–65]. Considering 
the importance of selecting more climatically resilient 
animals, it is necessary to elucidate the genetic back-
ground of traits related to heat stress, especially for 
crossbred pigs. In our study, although models including 
non-additive genetic effects were not significant (based 
on LRT parameter) for most of the traits related to heat 
stress response, these effects might play an important 
role in gene action for those traits. Thus, it would be 
important to perform studies considering a larger dataset 
including records from purebred and crossbred popula-
tions and evaluate different crossings as well.

Conclusions
Including dominance effects in genomic prediction mod-
els did not improve the predictive ability of the models 
and most traits had none to low dominance variance. In 
the purebred population, low dominance variance ratios 
were observed, potentially due to reduced heterozygosity. 
Although models including additive-by-additive epista-
sis effects in genomic prediction exhibited significantly 
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better fit for some traits, it led to lower accuracy when 
genomically predicting breeding values for traits with 
low heritability. For the evaluated populations and mod-
els, the inclusion of non-additive genetic effects did not 
improve genomic prediction accuracy. The non-orthogo-
nality between variance components, especially between 
additive and additive-by-additive epistasis, suggests the 
presence of linkage disequilibrium challenges in the par-
tition of additive and non-additive genetic effects. There-
fore, there is still a need for developing methods able to 
accurately estimate non-additive variance components 
without assuming linkage equilibrium.

Traits related to heat stress in the crossbred population 
had substantial additive genetic variability, indicating 
their suitability for inclusion in selection programs. The 
difficulty in estimating non-additive genetic effects and 
the confounding with other effects, such as permanent 
environmental effects, is a challenge to obtain accurate 
estimates. Models incorporating non-additive genetic 
effects in genomic prediction for heat stress-related traits 
did not perform better than the additive model for most 
of the traits evaluated. Future studies should use larger 
datasets when they become available, including both 
purebred and crossbred animals, to better understand the 
contribution of non-additive genetic effects, particularly 
for traits related to adaptation, welfare, and resilience.

Methods
Dataset 1: purebred pig population
Purebred dataset description
We used a public dataset [32] including pedigree, geno-
typic, and phenotypic information from a single nucleus 
pig line from Pig Improvement Company (PIC, Hender-
sonville, TN, USA). This dataset consisted of 3,534 indi-
viduals with genotypes for 52,843 SNPs and phenotypes 
for five performance traits that represent a small number 
of phenotypes that are routinely collected from birth in 
the genetic nucleus and with heritability estimates ranging 
from 0.07 to 0.62. The phenotype was either pre-corrected 
for environmental factors and rescaled by correcting 
for the overall mean (traits 3, 4, and 5) or was a rescaled, 
weighted mean of corrected progeny phenotypes (traits 
1 and 2). The data also includes a pedigree file with par-
ents and grandparents of the genotyped animals [32]. The 
descriptive statistics of the traits are presented in Table 7.

The quality control of genotype data consisted of remov-
ing SNPs with call rate lower than 0.90, minor allele fre-
quency (MAF) less than 0.01, and extreme deviation from 
Hardy-Weinberg equilibrium (p-value <  10−5). After qual-
ity control, 40,828 SNPs and 3,534 individuals remained 
for further analyses. No animals were removed during the 
quality control due their genotypes were imputed [32], 
then all animals presented higher call rate (> 0.90).

Variance components estimation
Different models including or not inbreeding and non-
additive genetic effect of dominance and epistasis were 
fitted to estimate variance components:

MA: y = Xβ+ Za + ǫ;
MAI: y = Xβ+ fb+ Za + ǫ;
MAE: y = Xβ+ Za + Zeaa + ǫ;
MAIE: y = Xβ+ fb+ Za + Zeaa + ǫ;
MAD: y = Xβ+ Za + Zd + ǫ;
MAID: y = Xβ+ fb+ Za + Zd + ǫ;
MADE1: y = Xβ+ Za + Zd + Zeaa + ǫ;
MAIDE1: y = Xβ+ fb+ Za + Zd + Zeaa + ǫ;
MADE2: y = Xβ+ Za + Zd + Zeaa + Zead + ǫ;
M A I D E 2 : 
y = Xβ+ fb+ Za + Zd + Zeaa + Zead + ǫ;
M A D E 3 : 
y = Xβ+ Za + Zd + Zeaa + Zead + Zedd + ǫ;
M A I D E 3 : 
y = Xβ+ fb+ Za + Zd + Zeaa + Zead + Zedd + ǫ;

where y is the vector of observations; β is the vector of 
fixed effects; f is the vector of inbreeding coefficient based 
on pedigree; b is the inbreeding depression; a is the vector 
of additive genetic effects with a ∼ N (0,GAσ

2
a ) , where σ 2

a  
is the additive genetic variance and GA is the genomic addi-
tive relationship matrix; d is the vector of dominance effects 
with d ∼ N (0,GDσ

2
d ) where σ 2

d is the dominance vari-
ance and GD the genomic dominance relationship matrix; 
eaa is the vector of additive-by-additive epistatic effects, 
eaa ∼ N (0,GAAσ

2
aa) , where σ 2

aa is the additive-by-additive 
epistatic variance and GAA the genomic additive-by-addi-
tive epistatic relationship matrix; ead is the vector of addi-
tive-by-dominance epistatic effects, ead ∼ N (0,GADσ

2
ad) , 

where σ 2
ad is the additive-by-dominance epistatic variance 

and GAD the genomic additive-by-dominance epistatic 
relationship matrix; edd is the vector of dominance-by-
dominance epistatic effects, edd ∼ N (0,GDDσ

2
dd) , where 

σ 2
dd is the dominance-by-dominance epistatic variance and 

GDD the genomic dominance-by-dominance relationship 

Table 7 Descriptive statistics of a public dataset from a 
purebred pig population [32]

a SD: standard deviation

Trait Number of 
observations

Mean SDa

T1 2,804 -0.0452 1.2077

T2 2,715 0.0049 1.1230

T3 3,141 0.7058 0.9607

T4 3,152 -1.0726 2.3276

T5 3,184 37.9888 60.4468



Page 15 of 18de Oliveira et al. BMC Genomic Data           (2023) 24:76  

matrix; ǫ is the vector of residuals, ǫ ∼ N (0, Iσ 2
ǫ ) , where σ 2

ǫ  
is the residual variance and I an identity matrix; X and Z are 
incidence matrices of fixed and genetic effects, respectively.

The genomic additive relationship matrix ( GA ) was com-
puted according to the method proposed by VanRaden 
[66]: GA =

MM′

2
∑

piqi
 , where the M matrix contains elements 

equal to ( 2− 2pi ), ( 1− 2pi ), ( −2pi ) for A1A1 , A1A2, and A2A2 
genotypes, respectively, being pi the frequency of the allele A1 
in the SNP i and qi is equal to 1− pi . The genomic dominance 
relationship matrix ( GD ) was computed according to the 
method proposed by Vitezica et al. [5]: GD =

WW′

4
∑

p2i q
2
i

 , where 
the W matrix contains elements equal to (-2q2i  ), ( 2piqi ), 
( −2p2i  ) for A1A1 , A1A2 , and A2A2 genotypes, respectively. 
The genomic epistatic relationship matrices were computed 
according to the methods proposed by Vitezica et  al. 
[6]:  GAA =

GA⊙GA
tr(GA⊙GA)/n

 , GAD =
GA⊙GD

tr(GA⊙GD)/n
 , and 

GDD =
GD⊙GD

tr(GD⊙GD)/n
 being ⊙ the Hadamard product, tr the 

matrix trace, and n the number of animals.
The analyses were performed using the ASREML soft-

ware [67]. To understand how the phenotypic variance 
was split when different non-additive genetic effects 
were included in the models, variance components were 
estimated for each model. Estimates of additive herit-
ability or narrow-sense heritability ( h2a ), dominance vari-
ance ratio ( h2d ), epistatic additive-by-additive variance 
ratio ( h2aa ), epistatic additive-by-dominance variance 
ratio ( h2ad ), and epistatic dominance-by-dominance vari-
ance ratio ( h2dd ) were computed as the ratio of estimates 
of additive genetic variance ( ̂σ 2

a  ), dominance variance 
( ̂σ 2

d  ), additive-by-additive epistatic variance ( ̂σ 2
aa ), addi-

tive-by-dominance epistatic variance ( ̂σ 2
ad ), and domi-

nance-by-dominance epistatic variance ( ̂σ 2
dd  ) to the total 

phenotypic variance ( ̂σ 2
p ).

Predictive ability Bias, dispersion, and accuracy estimates 
were obtained using the Linear Regression (LR) method 
[44]. LR method is based on the comparison of breeding 
values estimated from partial datasets with a dataset con-
taining all information (whole dataset). The whole dataset 
was composed of all animals and their observations, while 
ten partial datasets were generated by setting 10% of records 
missing to perform a 10-fold cross-validation. The predic-
tion bias was computed as:

where µwp is the bias, 
−

ûp is the GEBV mean predicted 
with partial information  (GEBVp) and 

−

ûw is the GEBV 
mean predicted with whole information  (GEBVw). The 
GEBV dispersion is the slope of the regression ( bw,p ) of 
 GEBVw ( ̂uw ) on  GEBVp ( ̂up ), and was obtained as:

µwp =

−

ûp −

−

ûw ,

The accuracy was obtained as:

where accp is the accuracy, −F  is the mean inbreeding 
coefficient based on pedigree from the animals with par-
tial information, and ̂σ 2

a  is the estimated additive genetic 
variance using the whole population.

Model comparison
The AIC [68] LRT parameters were used to compare 
the models. LRT was computed separately for the mod-
els that included or not the inbreeding coefficient as a 
covariate. This was done to specifically assess the impact 
of incorporating random non-additive genetic effects on 
the model, while isolating the influence of the inbreeding 
coefficient. The LRT statistic was calculated as:

LRT = − 2(LogL reduced model − LogL complete model),
in which  LogLreduced model and  LogLcomplete model are the 

likelihood logarithms for the reduced (i.e., from additive 
model; MA or MAI) and complete models (i.e., from the 
models including non-additive genetic effects), respec-
tively. The level of significance used was 0.05.

We also evaluated the impact of the model used on the 
ranking of the animals and the proportion of commonly 
selected individuals based on the GEBVs from different 
models. The Spearman’s rank correlation was calculated to 
evaluate the re-ranking between the GEBVs from the MA 
model, which is the most used approach for GEBV calcula-
tion, and the other evaluated models. Assuming different 
selection intensities, the top 1%, 5%, 10%, and 20% of the 
animals were ranked according to their GEBVs based on 
the MA model and compared with the animals selected 
based on the models including non-additive effects.

Dataset 2: crossbred pig population
Crossbred dataset description
To evaluate the contribution of non-additive genetic effects 
on traits related to heat stress in lactating sows, we used a 
dataset previously described by Johnson et al. [68]. In sum-
mary, a total of 1,645 multiparous lactating sows (Large 
White × Landrace) were housed in either a naturally ven-
tilated or mechanically ventilated farrowing barn. Ther-
moregulatory and anatomical traits were measured in 1,381 
sows. The traits included in this study were skin surface 
temperature from ear  (TES), shoulder  (TSS), rump  (TRS), 
and tail  (TTS); vaginal temperature considering the whole 

bw,p =
cov(ûp, ûw)

var
(
ûp

)

accp =

√
√
√
√
√

cov(ûp, ûw)
(

1−
−

F

)

̂σ 2
a
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data measured every 10 min  (TVall), and the average of the 
six records per hour corresponding to 08:00, 12:00, 16:00, 
and 20:00 h during four days  (TV4days); respiration rate 
(RR), panting score (PS; score scale from 0 to 3), and hair 
density (HD, score scale from 0 to 2) (the data collection is 
described in details by Johnson et al. [69]). All animals were 
genotyped using the PorcineSNP50K (50,703 SNPs) Bead 
Chip (Illumina, San Diego, CA, USA). Quality control of 
genotype data consisted of removing SNPs with a call rate 
lower than 0.90 and minor allele frequency (MAF) less than 
0.01. It was also removed animals with call rate lower than 
0.90. After quality control, 49,536 SNPs for 1,625 animals 
remained for further analyses. The descriptive statistics for 
the continuous traits are shown in Table 8.

Estimation of variance components for traits related to heat 
stress
As performed for Dataset 1, we also fitted different mod-
els including or not non-additive genetic effect of domi-
nance and epistasis to estimate variance components. 
However, we did not include additive-by-dominance and 
dominance-by-dominance epistasis effects to avoid over-
parametrized models, since this second dataset is small.

For the trait HD, the models MAI, MAID, MAIDE1, 
and MAIE previously mentioned were used. For skin 
temperatures, vaginal temperatures, PS, and RR repeat-
ability models were fitted:

MAIpe: y = Xβ+ fb+ Za + Zpe+ ǫ;
MAIDpe: y = Xβ+ fb+ Za + Zd + Zpe+ ǫ;
M A I D E p e : 
y = Xβ+ fb+ Za + Zd + Zeaa + Zpe+ ǫ;
MAIEpe: y = Xβ+ fb+ Za + Zeaa + Zpe+ ǫ;

where f  is the vector of genomic inbreeding coeffi-
cient; b is the inbreeding depression; pe ∼ N (0, Iσ 2

pe) 
where σ 2

pe is the permanent environmental variance 
and I  an identity matrix; all other effects and matri-
ces in the models have been previously described. The 

fixed effects for each trait were included as previously 
defined by Freitas et al. [70]. For  TVall, the fixed effects 
were the concatenation of week and day of measure-
ment; parity; concatenation of barn type and room; and 
in-barn environmental temperature as a linear covari-
ate. For  TV4days, the fixed effects were concatenation of 
week, day, and time of measurement; parity; days in 
lactation; concatenation of barn type and room; and 
in-barn environmental temperature as a linear covari-
ate. The fixed effects fitted for skin surface temperature 
 (TES,  TSS,  TRS, and  TTS) and RR were trait recorder; 
concatenation of week, day, and time of measurement; 
parity; days in lactation; concatenation of barn type 
and room; and in-barn environmental temperature as 
a linear covariate. For PS, the fixed effects were trait 
recorder; concatenation of week and day of measure-
ment; parity; days in lactation; concatenation of barn 
type and room; and in-barn environmental tempera-
ture as a linear covariate. The fixed effects fitted for HD 
were trait recorder and parity.

The variance components for dataset 2 were esti-
mated following the same methods described for data-
set 1. The analyses were also performed using ASREML 
software [67]. The estimates of additive heritability 
( h2a ), dominance variance ratio ( h2d ), and epistatic addi-
tive-by-additive variance ratio ( h2aa ) were computed, as 
described for dataset 1. The ratio of the total genetic 
variance ( ̂σ 2

g =
̂σ 2
a +

̂
σ 2
d +

̂σ 2
aa ) explained by dominance 

( ̂σ 2
d /

̂σ 2
g  ) and epistasis additive-by-additive ( ̂σ 2

aa/
̂σ 2
g  ) 

were also estimated.

Model comparison
The AIC [68] and LRT parameters were also used to 
compare the models’ adjustment. LRT was computed 
comparing the models including non-additive genetic 
effects with the additive animal model (MAIpe). The 
statistic was calculated as previously described and the 
level of significance used was 0.05.

Table 8 Descriptive statistics for continuous heat stress indicators in Landrace x Large White crossbred pig population

a TVall: all measures (every 10 min) of vaginal temperatures (°C);  TV4days: average of the six records per hour corresponding to 08:00, 12:00, 16:00, and 20:00 h during four 
days (°C);  TES: ear skin temperature (°C);  TSS: shoulder skin temperature (°C);  TRS: rump skin temperature (°C);  TTS: tail skin temperature (°C); RR: respiration rate (breaths 
per minute). Data collection protocols have been described in Johnson et al. [68].

Traita Number of animals Number of 
observations

Mean Minimum Maximum Standard 
deviation

TVall 1,381 932,708 39.74 37.08 42.35 0.76

TV4days 1,381 21,415 39.70 37.10 42.70 0.77

TES 1,381 21,411 36.70 32.50 40.70 1.07

TSS 1,381 21,414 36.50 32.30 39.80 1.08

TRS 1,381 21,414 37.20 33.60 39.90 0.92

TTS 1,381 21,413 36.90 33.20 40.00 0.95

RR 1,381 21,360 73.00 12.00 172.00 28.28
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