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Abstract 

Objective Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important grain produced in the world. Inter‑
est for cultivating sorghum is increasing all over the world in the context of climate change, due to its low input 
and water requirements. Like other cultivated cereals, sorghum has significant nutritional value thanks to its protein, 
carbohydrate and dietary fiber content, these latter mainly consisting of cell wall polysaccharides. This work describes 
for the first time a transcriptomic analysis dedicated to identify the genes involved in the biosynthesis and remodel‑
ling of cell walls both in the endosperm and outer layers of sorghum grain during its development. Further analysis 
of these transcriptomic data will improve our understanding of cell wall assembly, which is a key component of grain 
quality.

Data description This research delineates the steps of our analysis, starting with the cultivation conditions 
and the grain harvest at different stages of development, followed by the laser microdissection applied to sepa‑
rate the endosperm from the outer layers. It also describes the procedures implemented to generate RNA libraries 
and to obtain a normalized and filtered table of transcript counts, and finally determine the number of putative cell 
wall‑related genes already listed in literature.
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Objective
Sorghum (Sorghum bicolor [L.] Moench) is a "C4" 
cereal whose interest in agricultural practice lies mainly 
in its resistance to drought and high temperatures [1]. 

In addition, the attraction of sorghum grain for human 
consumption is growing, due to its gluten free and its 
richness in health promoting macro and micro-nutri-
ents [2]. Cell walls are an important variable in nutri-
tional quality of grains as a dietary fiber intake. They 
are mainly composed of polysaccharides, whose com-
position may differ greatly between endosperm and 
outer layers. Our objective is to gain a better under-
standing of cell wall polysaccharide deposition dur-
ing grain filling. For this, we monitored whole gene 
expression both in endosperm and outer layers dur-
ing grain development to identify those who could 
be involved in cell wall biosynthesis and remodelling. 
While several works focused on the composition of the 
cell walls of dry mature grains [3–6], little research has 
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concentrated on the development of sorghum grains 
[7, 8]. The transcriptome of developing grains focus-
ing on cell wall genes has been established for cereals 
such as barley [9], wheat [10] or rice [11]. In developing 
sorghum grains, transcriptomic analyses have focused 
mainly on starch, dhurrin and tannins [1, 12–14]. Tran-
scriptomic analyses specifically targeting the cell wall 
gene set have been carried out mostly on sorghum stem 
[15, 16]. Our transcriptomic results will be combined 
with analyses of polysaccharide contents to reach a 
comprehensive view of cell wall assembly during sor-
ghum grain development.

Data description
In this study, MACIA, a sorghum cultivar with white 
grain without tannin, was used. The plants were sown 
and grown in greenhouses at CIRAD Montpellier in 
2022 according to the conditions described in Table  1 
[17]. The grains were harvested in triplicate at 7, 13 
and 30 days after flowering (DAF), covering the begin-
ning of development until near maturity, frozen in liq-
uid nitrogen and stored at -80°C before microdissection 
step. All the following experiments were carried out 
under RNAse-free conditions. Grains were embedded 
as blocks in O.C.T (VWR® Q Path® O.C.T. Compound 
Mounting Medium, PA, USA) using liquid nitrogen to 
harden the medium [18]. From these blocks, sections of 
18 µm were cut using a Cryostat microtome (MICROM 
HM 520, Leica, IL, USA) before to be adhered to frame 
slides (steel frame, PET-membrane 1.4 μm; RNAse-
free.4 μm; RNAse-free, Leica, Germany). The sections 
were fixed on the slide by immersion in a 50 mL tube 
of iced pure ethanol for 30s. Then, they were immersed 
for 4 min in a 50 mL tube of iced 70% ethanol to remove 
O.C.T. Finally, the sections were dried at 40°C for 10 
min [19]. Once the slides had dried, outer layers and 
endosperms were separated by laser microdissection 
using a Leica LMD7000 laser (Laser parameters: Power 
50, Speed 6, Aperture 14, Pulse Frequency 1260, Speci-
men Balance 12) as previously described [20]. Samples 
were collected in 50 µL tubes (RNAse-free) contain-
ing cell lysis buffer (Nucleospin RNA, mini kit for RNA 

purification, Macherey–Nagel, ref 740,955.50, Ger-
many). The tubes were then frozen in liquid nitrogen 
and stored at -80°C for storage prior to RNA extrac-
tion. Total RNA was extracted following instructions of 
the NucleoSpin RNA extraction kit (Macherey–Nagel, 
Germany). RNA quantity and quality were evaluated 
by automated electrophoresis (4200 Tapestation sys-
tem, Agilent Technologies, CA, USA). RNA libraries 
were prepared according to the Illumina protocol with 
the TruSeq RNA Library Prep Kit (Illumina, CA, USA). 
The indexed libraries were pooled in 18-plex and sub-
jected to pair-end 2 × 150 bp sequencing on an Illu-
mina HiSeq2500 (GENEWIZ, By Azenta Life Sciences, 
Germany). The raw sequence files are available on the 
short-read archive under the bioproject PRJNA1029354 
[21]. The software Cutadapt (version 3.5) [22] was 
used to eliminate low-quality sequences with a cut-off 
of 30, remaining adapters, as well as resulting reads 
shorter than 35 bases. Reads were then mapped across 
the entire sorghum Sbicolor_313_v3_2 genome using 
HISAT2 [23, 24]. Read count was then performed 
using featureCounts (from subread 2.0.1 [25]) with 
the parameters -M –fraction to count multimapping 
reads. In our study, reads were aligned to 34129 tran-
scripts among 34496 genes of the sorghum genome 
(Sbicolor_453_v3.2).

The DIANE interactive workflow was used to normal-
ize the data with the TMM method (Trimmed Mean of 
M values) and to process them [26]. Only genes with a 
sum of reads under all conditions equal or greater to 100 
were conserved, thus resulting to a final count of 20,710 
transcripts. The average number of transcripts detected 
is higher at the early stages of development, at 7 DAF and 
13 DAF, compared with the older development stage at 
30 DAF (Fig. 1, [27]).

The Principal Component Analysis (PCA) plot of the 
filtered and normalized RNA-seq data indicated that 
the biological replicates are well grouped. Components 
1 and 2 account for 43.9% of the variance. The compo-
nent 1 separates the early stages of development (7 and 
13 DAF) from the near-mature stage (30 DAF). Tis-
sues are separated from each other by component 2, 
although this is less obvious for the samples collected 
at 30DAF (Fig. 2, [28]). A list of 655 sorghum cell wall 
genes was previously constructed [15, 29]. Among 
them, 384 were detected in our filtered data from our 
different samples (Additional file 1, [30]). The quantifi-
cations of these cell wall genes, obtained for each bio-
logical stage, tissue and replicate, have been detailed 
in Additional file 1 [30]. These data will be thoroughly 
analysed and linked to future biochemical composition 
analyses.

Table 1 Greenhouse growing conditions for sorghum

Greenhouse conditions Day Night

Time 12 h 12 h

Temperature 28°C 22 °C

Sunlight Natural light complemented by artificial 
led light (700 μmol  m–2  s–1)

Moisture 55% average, up to 75% maximum
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Fig. 1 Number of transcripts expressed in each sample. 7_End: endosperm at 7 DAF (Days After Flowering); 13_End: endosperm at 13 DAF; 30_End: 
endosperm at 30 DAF; 7_OL: outer layers at 7 DAF, 13_OL: outer layers at 13 DAF, 30_OL: outer layers at 30 DAF. Data are the mean ± Standard 
deviation of three biological replicates

Fig. 2 Principal component analysis (PCA) of transcriptomic data from endosperm (End) and outer layers (OL) of sorghum grains at different 
developmental stages (7, 13 and 30 Days After Flowering (DAF)). A, B, C: representation of samples as functions of components 1 to 4. D: Number 
of transcripts explaining 50% and 90% of the different components. 7_End: endosperm at 7 DAF; 13End: endosperm at 13 DAF; 30_End: endosperm 
at 30 DAF; 7_OL: outer layers at 7 DAF, 13_OL: outer layers at 13 DAF, 30_OL: outer layers at 30 DAF
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Limitations
During laser microdissection, the aleurone layer, made 
up of differentiated cells located between the endosperm 
and the outer layers, was mainly recovered with the outer 
layers. However, endosperm fractions could be contami-
nated by some aleurone cells during dissection.

Abbreviations
CIRAD  Centre de coopération internationale en recherche agronomique
DAF  Days After Flowering
RNA  RiboNucleic Acid
PCA  Principal Component Analysis
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Additional file 1. List of the cell wall genes sorted from our transcrip‑
tomic analysis and their quantification.
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