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Abstract
Objectives The endosymbiosis with Symbiodiniaceae is key to the ecological success of reef-building corals. 
However, climate change is threatening to destabilize this symbiosis on a global scale. Most studies looking into the 
response of corals to heat stress and ocean acidification focus on coral colonies. As such, our knowledge of symbiotic 
interactions and stress response in other stages of the coral lifecycle remains limited. Establishing transcriptomic 
resources for coral larvae under stress can thus provide a foundation for understanding the genomic basis of 
symbiosis, and its susceptibility to climate change. Here, we present a gene expression dataset generated from larvae 
of the coral Pocillopora damicornis in response to exposure to acidification and elevated temperature conditions 
below the bleaching threshold of the symbiosis.

Data description This dataset is comprised of 16 samples (30 larvae per sample) collected from four treatments 
(Control, High pCO2, High Temperature, and Combined pCO2 and Temperature treatments). Freshly collected 
larvae were exposed to treatment conditions for five days, providing valuable insights into gene expression in this 
vulnerable stage of the lifecycle. In combination with previously published datasets, this transcriptomic resource will 
facilitate the in-depth investigation of the effects of ocean acidification and elevated temperature on coral larvae and 
its implication for symbiosis.
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Objective
The symbiotic relationship between stony corals and 
their algal endosymbionts (Symbiodiniaceae) is the cor-
nerstone underlying the productivity of coral reefs in the 
oligotrophic environment in the tropical ocean [1–4]. 
Yet, this dependence on symbiotic partners may prove 
to be the Achilles’ heel of corals in the Anthropocene [5]. 
Elevated temperature and acidification have the potential 
to perturb the symbiosis, leading to coral bleaching, mor-
tality, and eventually reef degradation [6–8].

Studies of gene expression have proven valuable for 
detecting genes and signaling pathways underlying the 
disturbance of the symbiotic relationship between the 
coral host and its endosymbionts [9–11]. For example, 
studies on Stylophora pistillata revealed that heat stress 
alters the energy metabolism of the host, thereby pro-
moting catabolic ammonium release and the destabili-
zation of symbiotic nutrient recycling [12, 13]. However, 
most of our knowledge of gene expression in corals is 
based on studies of adult coral colonies [14–17]. In com-
parison, other stages of the coral lifecycle have received 
less attention to date.

Coral larvae represent a bottleneck in the reproduc-
tion of corals and have been suggested to be susceptible 
to elevated temperatures and ocean acidification [18, 
19]. Larvae of the widespread brooding coral Pocillo-
pora damicornis have emerged as powerful model sys-
tems to study the effects of future ocean conditions on 
gene expression of symbiotic larvae [9, 11, 20, 21]. Jiang 
et al. recently suggested that the bleaching threshold of P. 
damicornis larvae harboring the symbiont Durusdinium 
trenchi was between 32 and 33℃ [21]. Hence, we aimed 
to improve our understanding of the sub-bleaching stress 
response of P. damicornis larvae by studying the effects 
of acidification and warming on host and symbiont gene 
expression. Here, we present a transcriptomic dataset 
for 16 samples of coral larvae exposed to four treatments 

combing modulated pCO2 (450 or 1,000 µatm) and tem-
perature (29 or 32℃) conditions (data file 1 [22]).

Data description
Sample collection
Detailed information on the larval collection and experi-
mental setup was previously described in [22]. In brief, P. 
damicornis larvae were collected in Sanya, Hainan Island, 
China, on September 15, 2018, and pooled together for 
the subsequent experiments. Coral larvae were exposed 
to four different treatment conditions for 5 days, i.e., 
control, high pCO2, high temperature, combined. The 
mean temperatures for each treatment were 29.25 ± 0.01 
(control, mean ± standard error, 28.90 ± 0.01 (high pCO2), 
32.24 ± 0.01 (high temperature), and 31.86 ± 0.01 °C (com-
bined). The mean pCO2 for each treatment was 465 ± 18 
(control), 1012 ± 42 (high pCO2), 437 ± 16 (high T), and 
966 ± 35 µatm (combined).

RNA extraction, library construction and transcriptome 
sequencing
On day five of the experiment, thirty larvae (n = 4 repli-
cates per treatment) were preserved in liquid nitrogen 
for RNA extraction. Total RNA of each larval sample 
was extracted using a TRIzol® Reagent RNA Isolation 
Kit (Invitrogen, Grand Island, NY, United States) fol-
lowing the manufacturer’s instructions. The concentra-
tion of total RNA was quantified using the Qubit BR 
RNA Assay Kit (Thermo Scientific), and its integrity was 
evaluated using an Agilent 2100 Bioanalyzer (Agilent 
Technologies), according to the manufacturer’s instruc-
tions. PolyA + selection and subsequent messenger RNA 
(mRNA) library preparation were done using the TruSeq 
Stranded mRNA Library Kit (Illumina), according to the 
manufacture’s instructions. All libraries were sequenced 
on the Illumina Hiseq X Ten platform to obtain paired-
end reads with a length of 150-bp.

Gene expression analysis
Sequences were quality trimmed and reads were split 
and aligned to the gene sequences of P. damicornis 
and D. trenchii respectively. This yielded 12–16.5 and 
1.9–4.3  million mapped read pairs per sample for the 
host and Symbiodiniaceae (data file 1 [22]), respec-
tively. Differential gene expression analysis revealed that 
high pCO2 alone had no significant effects on host gene 
expression (P < 0.05; Data file 1 [22]). In contrast, high 
temperature caused pronounced changes in host gene 
expression with 211 (16 upregulated vs. 195 downregu-
lated) differentially expressed genes compared to con-
trol conditions (P < 0.05; Data file 1 [22]). Gene ontology 
(GO) enrichment analyses revealed that these changes in 
gene expression translated into 62 enriched GO terms 
under high temperature conditions (P < 0.05; Data file 1 

Table 1 Overview of data files/data sets
Label Name of data file/

data set
File types 
(file 
extension)

Data repository and 
identifier (DOI or acces-
sion number)

Data 
file 1

Sun_et 
al_GeneExpressionData

MS Excel 
file (.xlsx)

Figshare (https://
doi.org/10.6084/
m9.figshare.24474484.
v4) [22]

Data 
file 2

Sun_et 
al_DetailedMethods

MS Word 
file (.docx)

Figshare (https://
doi.org/10.6084/
m9.figshare.24474484.
v45) [22]

Data 
set 1

Transcriptomic dataset 
for larval P. damicornis

FASTQ files 
(.fastq)

NCBI Sequence Read 
Archive (https://
identifiers.org/
bioproject:PRJNA976470) 
[23]

https://doi.org/10.6084/m9.figshare.24474484.v4
https://doi.org/10.6084/m9.figshare.24474484.v4
https://doi.org/10.6084/m9.figshare.24474484.v4
https://doi.org/10.6084/m9.figshare.24474484.v4
https://doi.org/10.6084/m9.figshare.24474484.v4
https://doi.org/10.6084/m9.figshare.24474484.v4
https://doi.org/10.6084/m9.figshare.24474484.v4
https://doi.org/10.6084/m9.figshare.24474484.v4
https://identifiers.org/bioproject:PRJNA976470
https://identifiers.org/bioproject:PRJNA976470
https://identifiers.org/bioproject:PRJNA976470
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[22]), including several processes related to development 
(e.g., lipoprotein metabolic process, protein autoprocess-
ing, growth hormone receptor signaling pathway, cytoly-
sis, regulation of growth, and negative regulation of cell 
population pathway). Similarly, combined high pCO2 
and temperature treatment caused differential expres-
sion of 439 (274 upregulated vs. 165 downregulated) 
host genes (P < 0.05; Data file 1 [22]). GO enrichment 
analysis further identified 15 significantly enriched GO 
terms under combined treatment conditions (P < 0.05; 
Data file 1 [22]), including several processed related to 
innate immunity (e.g., negative regulation of NF-kappa 
B transcription factor activity, innate immune response, 
regulation of apoptotic process). Symbionts showed 8 (5 
upregulated vs. 3 downregulated) differentially expressed 
genes in response to high pCO2 conditions (P < 0.05; Data 
file 1 [22]). GO enrichment analysis further identified 18 
enriched GO terms under high pCO2 conditions (P < 0.05; 
Data file 1 [22]), including several processes related to 
catabolism (e.g., cellulose catabolic process, protein cata-
bolic process, polysaccharide catabolic process). High 
temperature conditions caused differential expression 
of 40 (18 upregulated vs. 22 downregulated) algal sym-
biont genes (P < 0.05; Data file 1 [22]). GO enrichment 
analysis further identified 51 enriched GO terms under 
high temperature conditions (P < 0.05; Data file 1 [22]), 
including several processes related to cellular transport 
(e.g., proton tranmembrane transport, transmembrane 
transport, ammonium transmembrane transport). Lastly, 
combined high pCO2 and temperature conditions caused 
differential expression of 14 (8 upregulated vs. 6 down-
regulated) algal symbiont genes (P < 0.05; Data file 1 [22]). 
GO enrichment analysis identified 28 enriched GO terms 
under combined treatment conditions (P < 0.05; Data file 
1 [22]), including several processes related to cellular 
nitrogen metabolism (e.g., glutamine metabolic process, 
L-alanine catabolic process, cellular nitrogen compound 
metabolic process).

Limitations
P. damicornis larvae usually settle around 7 days after 
their release. As such, the experimental time frame did 
not permit a gradual acclimation of larvae to the treat-
ment conditions. Identified transcriptomic response may 
thus include acute stress response arising from a lack of 
acclimation by the larvae.
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