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Abstract
Background Dates contain various minerals that are essential for good health. The major RNA interference (RNAi) 
gene families play a vital role in plant growth and development by controlling the expression of protein-coding genes 
against different biotic and abiotic stresses. However, these gene families for date palm are not yet studied. Therefore, 
this study has explored major RNAi genes and their characteristics in date palm.

Results We have identified 4 PdDCLs, 7 PdAGOs, and 3 PdRDRs as RNAi proteins from the date palm genome by 
using AtRNAi genes as query sequences in BLASTp search. Domain analysis of predicted RNAi genes has revealed the 
Helicase_C, Dicer_dimer, PAZ, RNase III, and Piwi domains that are associated with the gene silencing mechanisms. 
Most PdRNAi proteins have been found in the nucleus and cytosol associated with the gene silencing actions. The 
gene ontology (GO) enrichment analysis has revealed some important GO terms including RNA interference, dsRNA 
fragmentation, and ribonuclease_III activity that are related to the protein-coding gene silencing mechanisms. Gene 
regulatory network (GRN) analysis has identified PAZ and SNF2 as the transcriptional regulators of PdRNAi genes. Top-
ranked 10 microRNAs including Pda-miR156b, Pda-miR396a, Pda-miR166a, Pda-miR167d, and Pda-miR529a have been 
identified as the key post-transcriptional regulators of PdRNAi genes that are associated with different biotic/abiotic 
stresses. The cis-acting regulatory element analysis of PdRNAi genes has detected some vital cis-acting elements 
including ABRE, MBS, MYB, MYC, Box-4, G-box, I-box, and STRE that are linked with different abiotic stresses.

Conclusion The results of this study might be valuable resources for the improvement of different characteristics in 
date palm by further studies in wet-lab.
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Introduction
RNA interference (RNAi) is a common mechanism in 
which numerous forms of RNA molecules affect the 
expression of protein-coding genes at the transcriptional 
or post-transcriptional levels that influences different 
characteristics of plant including development, growth, 
stress responses, and antimicrobial defense [1]. This 
mechanism occurs in three pathways known as micro-
RNA (miRNA), endogenous small interfering RNA 
(siRNA), and PIWI-interacting RNA (piRNA) biogenesis 
[2]. It is used as a tool for controlling gene expression 
and investigating gene function on a whole-genome scale 
[3–8]. The major RNAi genes are known as argonaute 
(AGO), RNA-dependent RNA polymerase (RDR), and 
Dicer-like (DCL) genes/proteins [9]. The RNAi mecha-
nism is initiated by partially double-stranded stem-loop 
RNA or double-stranded RNA (dsRNA), which is cleaved 
into 21-24-nt short RNA (sRNA) duplexes by DCL [10]. 
Dicer endonucleases is a central component in the bio-
genesis of sRNA molecules [11]. AGO is an essential 
part of the RNA-induced silencing complex (RISC) [12] 
and RDR plays a key role in synthesizing dsRNAs from 
an RNA template [13]. The number of RNAi genes in 
the DCL, AGO, and RDR families in plants varies by 
species variations, such as 20 genes in Arabidopsis [14] 
and cucumber [15], 51 genes in Brassica species [16], 
28 genes in maize [17] and tomato [18], 32 genes in rice 
[19], 19 genes in barley [20], 38 genes in foxtail millet 
[21], 22 genes in grapevine [22] and pepper [23], 25 genes 
in sweet orange [9], 36 genes in sugarcane [24], and 31 
genes in tea [25] have been identified [26].

RNAi genes perform different biological activities in 
plants by controlling microbial (RNA and DNA viruses, 
viroids, insects, and, more recently, fungal diseases) 
stresses, expression of protein coding genes and chro-
matin condensation into heterochromatin [27–36]. Most 
plants contain four DCLs, with DCL1 causing microRNA 
synthesis and DCL2, DCL3, and DCL4 essential for 22-, 
24-, and 21-nucleotide small interfering RNA (siRNA) 
biogenesis, respectively [37]. The DCL2 and DCL4 have 
roles in the creation of transacting siRNA, while DCL2 is 
primarily responsible for the generation of various-sized 
secondary siRNAs [38]. The integrated actions of DCL2, 
DCL3, and DCL4 play a vital role in disease response and 
protection [39]. The AGO1 is sensitive to virus attacks, 
confirming the concept that in plants, PTGS represents 
a defense system against viruses [40]. The AGO2 gene is 
activated in response to the presence of turnip crinkle 
virus (TCV) and cucumber mosaic virus (CMV) [41]. The 
RDR6 plays a significant role in RNA silencing processes 
[42] and all RDRs have an impact on plant development 
and stress responses [43]. The exogenously injected 
VICE12-dsRNA targets the VICE12 gene of apple scab 
fungus to inhibit its growth and conidial spore formation 

via the RNAi mechanism [44]. The transgenic tomato 
plant has been developed by applying the RNAi mecha-
nism using exogenously injected CopE/TLR6-dsRNAs, 
resulting in a greater mortality rate for western flower 
thrips (WFT) than wild-type tomato plants when fed to 
WFT [45].

The date palm trees are ancient Asian and African trees 
that are farmed for their delicious, edible and medicinal 
value [46]. One of the most nutritious fruits in the Mid-
dle East and North Africa is the date fruit [47]. There are 
more than 100 million date palm trees in the world [48]. 
It is well-known for its significant nutrients, dietary fiber, 
natural antioxidants and sources of rich bioactive com-
pounds that are useful in the treatment of neurological 
diseases and cancer [49]. Moreover, date fruits are source 
of carbohydrates, alkaloids, fatty acids (palmitic, linoleic, 
lauric, and stearic acid), vitamins, carotenoids, flavo-
noids, polyphenolic compounds, and tannins, as well as 
other nutrients such as calcium, magnesium, potassium, 
and phosphorus [50]. Date palm harvest in the world has 
risen from 4.60 to 8.52  million tons from 1994 to 2018 
(FAO. 2020). Date palm pollen is high in bioactive sub-
stances with phytochemical and nutritional properties, 
which could boost anti-infertility capabilities [51]. Date 
fruit flesh, peel, and pits have anti-mutagenic, hepatopro-
tective, anti-inflammatory, anti-diabetic, anti-bacterial, 
anti-viral, anti-fungal, anti-tumor, nephroprotective, 
heart disease protective, and anti-cancer characteristics 
[26]. Worldwide, up to 50% newly planted date palm trees 
and fruits are lossing due to the pathogenic infections 
and other environmental stresses [52–54]. To improve 
this situation, RNAi genes may play a vital role according 
to the literature review. However, so far, there has been 
no information regarding these major RNAi gene families 
in the economically important date palm. Therefore, this 
study aimed to gather extensive information on the major 
RNAi gene families (DCL, AGO, and RDR ) that may con-
tribute to the growth and development of date palm.

Materials and methods
The data source and descriptions
To explore PdRNAi proteins (DCL, AGO, and RDR) from 
the date palm (Phoenix dactylifera) genome, we have 
considered its genome/proteome sequences from the 
National Center for Biotechnology Information (NCBI) 
database [55, 56] with GenBank accession number: 
GCA_009389715.1 (NCBI taxonomy ID: 42,345, BioSa-
mple: SAMN05011615, weblink: https://www.ncbi.nlm.
nih.gov/genome/?term=Phoenix+dactylifera). This data-
set has been utilized in comparative genomics study to 
identify male (Y) and female (X) chromosomes in date 
palm [57]. It has also been utilized in transcriptomics and 
genome-wide association studies [58, 59]. In this study, 
this genome dataset has been utilized to explore PdRNAi 

https://www.ncbi.nlm.nih.gov/genome/?term=Phoenix+dactylifera
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proteins by BLASTP search with the query sequences 
of A. thaliana RNAi (AtRNAi) proteins. Total 17 of 20 
AtRNAi proteins (4 AtDCL, 10 AtAGO, and 3 AtRDR) 
sequence has been downloaded from the Arabidopsis 
Information Resource (TAIR) database that has been 
developed by P. Lamesch et al. (https://www.arabidopsis.
org/) [60].

Integrated bioinformatics analyses
The integrated bioinformatics studies include BLASTP 
search, multiple sequence alignment (MSA), phyloge-
netic tree modeling, functional domain analysis, exon-
intron structure of predicted PdRNAi of date palm, 
subcellular location, GO analysis, TFs analysis, CAREs 
analysis and miRNA analysis.

Identification of PdRNAi proteins
Exploring PdRNAi proteins by BLASTP serach
The date palm genome from the NCBI database has 
been analyzed using the basic local alignment search 
algorithm for proteins (BLASTP) [61] to explore PdR-
NAi genes. The protein sequences of RNAi genes have 
been retrieved using query coverage (≥ 50%) and E-val-
ues (0.00) [9, 62]. However, only the top-scorer aligned 
sequences have been considered as the sequences of PdR-
NAi genes. The genomic length, protein ID, CDS length, 
and encoded protein length of PdRNAi genes have been 
retrieved from the NCBI database. The molecular weight, 
pI, and GRAVY of PdRNAi protein sequences have been 
calculated using ExPASy [63].

Phylogenetic tree construction among PdRNAi and AtRNAi 
proteins to fix the names of PdRNAi proteins
The MSAs of the expected PdRNAi protein sequences 
have been constructed using the Clustal-W [64] method 
and the MEGAX [65] package. By performing phylo-
genetic tree analysis on the PdRNAi genes using the 
Neighbor-joining technique [66], 1,000 bootstrap repeti-
tions [67] have been utilized to confirm the evolutionary 
connection. The evolutionary distances have been deter-
mined using the equal input technique [68].

Charaterization of PdRNAi
Conserved domains and motifs analysis of PdRNAi proteins 
with respect to AtRNAi proteins
Pfam has been used to search conserved domains in pro-
tein sequences [69]. The TBtools (a Toolkit for Biologists 
integrating various biological data-handling tools) has 
been used to display the Pfam’s result [70]. The conserved 
domains have been retrieved from the Pfam database to 
examine the PdRNAi proteins functional domains. We 
have investigated the conserved motifs in all of the antici-
pated PdDCL, PdAGO, and PdRDR proteins using the 
Multiple Expectation Maximization for Motif Elicitation 

(MEME) webtool [71]. The TBtools have been used to 
display the motif ’s result [70].

PdRNAi genes structures with respect to AtRNAi genes
We have been used the Gene Structure Display Server 
(GSDS 2.0) to determine the gene structure of the antici-
pated PdRNAi genes [72]. The structure of the targeted 
genes of date palm has been compared with the A. thali-
ana gene structure through the exon-intron composition.

Sub-cellular localizations of PdRNAi proteins with respect 
to AtRNAi proteins
The subcellular location of reported PdRNAi proteins 
in the cell has been investigated by subcellular location 
analysis. The web tool WoLF PSORT has been used to 
predict the subcellular location of the targeted proteins 
[73]. We have been used the TBtools program to display 
the result [70].

Functional enrichment analysis of PdRNAi proteins
The Gene Ontology (GO) analysis has been carried out 
using an online database PlantTFDB to confirm the par-
ticipation of PdRNAi proteins in biological processes 
(BPs) and molecular functions (MFs) terms [74]. The 
p-values has been calculated using Fisher’s exact test with 
Benjamini-Hochberg adjustments. We have considered a 
GO term with a p-value < 0.05 as statistically significant.

PdRNAi gene regulatory network analysis
In this study, the associated TF families of the PdRNAi 
genes in date palm has been analyzed using PlantTF-
cat, a widely used plant transcription factor database 
[75]. The regulatory network and sub-network has been 
constructed by integrating TFs and PdRNAi genes and 
analyzed using Cytoscape 3.9.0 [76]. From the network, 
we have identified the hub genes and related major hub 
TFs of PdRNAi based on the degree of connectivity. Cis-
element analysis has been done by Plant CAREs [77] 
database. We have used the Plant miRNA ENcyclope-
dia (PmiREN) to download date palm mature_miRNA_
expression and mature_miRNA_sequence [78]. After 
that, we have used Plant sRNA target (psRNATarget) 
[79] to identify the mature_miRNA_expression and 
mature_miRNA_sequence IDs that corresponded to our 
predicted PdRNAi genes. The TBtools program has been 
used to display this data [70]. The detailed pipeline of this 
study is given in Fig. 1.

Results
Identification of PdRNAi proteins
We have identified four DCL, seven AGO, and three 
RDR proteins from the date palm genome by top-scorer 
aligned sequences (Table  1). Therefore, we have consid-
ered these 14 PdRNAi proteins for further investigation. 

https://www.arabidopsis.org/
https://www.arabidopsis.org/
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For the convenience of presentation, we have denoted 
P. dactylifera RNAi protein families as PdDCL, PdAGO, 
and PdRDR and A. thaliana RNAi protein families as 
AtDCLs, AtAGOs, and AtRDRs.

Thereafter, we performed MSAs of PdRNAi and AtR-
NAi proteins to construct the phylogenetic tree. After 
that, we have built the phylogenetic tree based on the 
aligned sequences of the PdRNAi and AtRNAi protein 

families (Fig. 2). The names of 14 PdRNAi proteins have 
been denoted as 4 PdDCLs proteins (PdDCL-1, PdDCL-
3a, PdDCL-3b, PdDCL-4), 7 PdAGOs proteins (PdAGO-
1, PdAGO-2,3, PdAGO-4,8,9, PdAGO-5, PdAGO-6, 
PdAGO-7, PdAGO-10), and 3 PdRDRs proteins (PdRDR-
1, PdRDR-2, PdRDR-6) based on the sequence similarity 
to AtRNAi proteins.

Fig. 1 The outline of this study
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The lengths of PdDCL genes are ranging from CDS 
2486 (PdDCL-3b) to 7331 (PdDCL-3a) bp and their pro-
tein lengths are ranging from 714 to 1824 amino acids 
(Table 1). The lengths of PdAGO genes are ranging from 
CDS 2980 (PdAGO-4,8,9) to 4236 (PdAGO-10) bp and 
their protein lengths are ranging from 852 to 973 amino 
acids (Table  1). The lengths of PdRDR genes are rang-
ing from CDS 4231 (PdRDR-6) to 3670 (PdRDR-2) bp 
and their protein lengths are ranging from 1117 to 1198 
amino acids (Table 1). The isoelectric point (pI) values of 
the PdDCL genes revealed that they are slightly acidic, 
with only the PdDCL-3b, which is slightly alkaline, with 
a maximum pI value of 7.8. The PdAGO genes pI values 
showed that they are alkaline. The pI values of the PdRDR 
genes demonstrated that they are nearly neutral.

The PdDCL proteins have a grand average hydropathic-
ity index (GRAVY) or peptides hydrophobicity value that 
are ranging from − 0.138 (PdDCL-4) to -0.43 (PdDCL-1). 
The GRAVY value of the PdAGO proteins are ranging 
from − 0.316 (PdAGO-6) to -0.523 (PdAGO-5), whereas 
for PdRDR proteins are from − 0.255 (PdRDR-2) to -0.309 
(PdRDR-1). We have also investigated the phylogenetic 
relationship between PdRNAi and Oryza sativa RNAi 
(OsRNAi) proteins. We have observed that PdDCLs, 
PdAGOs, and PdRDRs belong to the same clusters of 
OsDCLs, OsAGOs, and OsRDRs, respectively (Fig. S1).

Charaterization of PdRNAi proteins
Conserved domains and motifs of PdRNAi proteins with 
respect to AtRNAi proteins
In this study, we have compared the conserved domains 
of PdDCL, PdAGO, and PdRDR with the AtDCL, 
AtAGO, and AtRDR proteins. From Fig.  3, we have 
observed that both PdDCLs and AtDCLs shows almost 
similar conserved domains, including Helicase_C, Dicer_
dimer, PAZ, RNase III, DND1-DSRM, DEAD, dsrm, 
ResIII domain. Both PdAGOs and AtAGOs have nearly 
identical conserved domains, such as Piwi, ArgoN, PAZ, 
ArgoL1, ArgoL2, ArgoMid, and Gly-rich_Ago1 domains. 
The Gly-rich_Ago1 domain has been found in PdAGO-1 
and AtAGO-1. We have found that the PdRDRs and 
AtRDRs have almost the same conserved domains, 
including RNA-dependent RNA polymerase (RdRP) 
domain (Fig.  3). We have selected 10 significant motifs 
for PdRNAi and AtRNAi proteins by using MEME-suite 
analysis. Most of the PdDCL and AtDCL proteins have 
shown almost similar motif distributions. The annotated 
conserved motifs 1, 3, 4, 5, and 7 represents Ribonucle-
ase 3 domain, motif 2 represents the Helicase-C domain, 
motif 6 represents the DEAD domain, motif 8 represents 
the Dicer dimer domain, and motif 10 represents the PAZ 
domain, of the predicted PdDCL proteins (Fig. S3A).

The annotated conserved motifs 1, 2, 3, 4, 6, 7, and 8 
represent the Piwi domain, motif 5 represent the ArgoL1 
domain, motif 10 represent the ArgoL2 domain and 
motif 9 represent the PAZ domain of predicted PdAGO 
proteins. The annotated conserved motifs 1–10 repre-
sent the RdRP domain of projected PdRDR proteins. 

Table 1 Basic information of predicted DCL, AGO, and RDR protein families of P. dactylifera (Pd)
Se-
rial

Protein name Protein ID Chromosomal location CDS
(bp)

No of Ex./Int. Protein
Len (aa) M.W. (D) pI GRAVY

DCL
1 PdDCL-1 XP_008783544.2 chr5; NC_052396.1 (7541438.7558386) 6275 19:18 1932 217043.2 6 -0.43
2 PdDCL-3a XP_038975056.1 chrUn; NW_024067910.1 (148343.226673) 7331 28:29 1824 206421.7 6.3 -0.3
3 PdDCL-3b XP_038975924.1 chrUn; NW_024068062.1 (66741.145337) 2486 26:25 714 184023.2 7.8 -0.157
4 PdDCL-4 XP_008793257.2 chr9; NW_008246593.1 (751820.772764 5281 25:24 1510 169709.8 6.3 -0.138
AGO
1 PdAGO-1 XP_026666285.1 chrUn; NW_024067681.1 (656667.671825) 3725 23:22 1109 117304.5 9.4 -0.44
2 PdAGO-2,3 XP_026665120.2 chr16; NC_052407.1 (10638701.10642469) 3242 3:2 970 108819.8 9.2 -0.462
3 PdAGO-4,8,9 XP_008805343.1 chr1; NC_052392.1 (27566908.27575426) 2980 25:24 852 102903.6 8.9 -0.407
4 PdAGO-5 XP_038990444.1 chr16; NC_052407.1 (380550.387158) 3425 22:21 991 110499.3 9.3 -0.523
5 PdAGO-6 XP_026664236.2 chr1; NC_052392.1 (23234962.23244557) 3283 24:23 906 101653.8 9.3 -0.316
6 PdAGO-7 XP_008787212.2 chr6; NC_052397.1 (14183313.14187911) 3894 4:3 1013 114837.4 9.3 -0.419
7 PdAGO-10 XP_038987839.1 chr11; NC_052402.1 (23479152.23494653) 4236 26:25 973 109504.7 9.3 -0.426
RDR
1 PdRDR-1 XP_008812977.2 chrUn; NW_024067889.1 (372284.383973) 3954 6:5 1131 129394.4 8.3 -0.309
2 PdRDR-2 XP_008780950.1 chr1; NC_052392.1 (20350773.20361462) 3670 4:3 1117 126903.6 7 -0.255
3 PdRDR-6 XP_008778879.2 chr2; NC_052393.1 (23599135.23610932) 4231 3:2 1198 135654.2 6.3 -0.287
N.B:The protein names, protein ID, chromosomal location, CDS length, protein length (aa) have been collected from NCBI database. The molecular weight, isoelectric 
point (pI), and grand average of hydropathicity (GRAVY) values have been collected from the ExPASy. Molecular weights (M. W.) have been measured in Daltons (D) 
and “aa” means amino acid
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The MEME studies of conserved motifs in the PdDCL, 
PdAGO, and PdRDR protein families have revealed com-
parable functional diversity in date palms. We have also 
compared the domains and motifs of PdRNAi proteins 
with OsRNAi proteins. We have perceived that PdDCLs, 
PdAGOs, and PdRDRs show similar domain and motif 
patterns according to OsDCLs, OsAGOs, and OsRDRs, 
respectively (Fig. S2 and S3B).

PdRNAi genes structures with respect to AtRNAi genes
The exon-intron structures of PdRNAi genes have been 
analyzed with respect to the AtRNAi genes to investigate 
the similarities of exon-intron between them. We have 
observed that the exon-intron structures of PdDCLs, 
PdAGOs, and PdRDRs are almost identical with the AtD-
CLs, AtAGOs, and AtRDRs (Fig.  4). According to the 
gene structure analysis, the PdDCLs have 19–28 exons, 
PdAGOs have 22–26 exons and PdRDRs have 3–6 exons, 
which has been nearly identical to AtDCLs AtAGOs and 
AtRDRs, respectively. The gene PdAGO-7 has three and 
PdAGO-2,3 gene has four exons. We have also compared 

the similarities of exon-intron patterns between PdRNAi 
and OsRNAi genes and found their similarities like AtR-
NAi genes (Fig. S4).

Sub-cellular localizations of PdRNAi proteins with respect 
to AtRNAi proteins
Subcellular localization investigations has been carried 
out to learn more about the PdRNAi proteins cellular 
presence. The majority of PdRNAi, as well as AtRNAi 
proteins, have found in the nucleus, chloroplast, and 
cytosol, according to sub-cellular localization study 
(Fig. 5). Some of our PdRNAi proteins have also found in 
cell vacuoles, cytoskeletal and mitochondria (Fig.  5). In 
addition, We have also compared the sub-cellular loca-
tions between PdRNAi and OsRNAi proteins and noticed 
their similarities like AtRNAi proteins (Fig. S5).

are found in several biological components. In this 
analysis, nucl– nucleus, cyto– cytosol, chlo– chloro-
plast, vacu– vacuole, cysk– Cytoskeletal, mito– mito-
chondria, E.R.– Endoplasmic Reticulum, plas– plastid, 
pero– peroxisome.

Fig. 2 The combined phylogenetic tree. In this tree, the PdRNAi (PdDCLs, PdAGOs, and PdRDRs) and the model plant AtRNAi (AtDCLs, AtAGOs, AtRDRs) 
proteins have been represented by blue and red, respectively. Here DCLs, AGOs, and RDRs families have been represented by orange, purple, and green 
circles, respectively
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Biological processes and molecular functions of PdRNAi 
proteins
The GO enrichment analysis has been performed to see 
how predicted PdRNAi proteins are connected with BPs 
and MFs. The study have identified several important 

BPs and MFs those are associated with gene silencing 
processes (Table  2). For example, 9 (PdDCL-1, PdDCL-
3b, PdDCL-4, PdAGO-2,3, PdAGO-4,8,9, PdAGO-7, 
PdAGO-10, PdRDR-1, PdRDR-6) of 14 PdRNAi pro-
teins have been engaged with BP term response to 

Fig. 3 The conserved domains of AtRNAi and the PdRNAi proteins. Different color represents different conserved domains. Here Piwi indicates Piwi 
domain, ArgoN indicates N-terminal domain, PAZ indicates PAZ domain, ArgoL2 indicates Argonaute linker 2 domain, ArgoL1 indicates Argonaute linker 
1 domain, ArgoMid indicates Mid domain of argonaute, Gly-rich_Ago1 indicates Glycine-rich region of Argonaut, RNase III indicates Ribonuclease III 
domain, Dicer_dimer indicates Dicer dimerization domain, Helicase_C indicates Helicase conserved C-terminal domain, dsrm indicates Double-stranded 
RNA binding motif, DEAD indicates DEAD/DEAH box helicase domain, RdRP indicates RNA dependent RNA polymerase, RRM_1 RNA recognition motif 1
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virus (GO:0009615; p-value: 1.8E-21), eight (PdDCL-1, 
PdDCL-3b, PdDCL-4, PdAGO-4,8,9, PdAGO-7, PdRDR-
1, PdRDR-2, PdRDR-6) of 14 PdRNAi proteins have been 
found to be involved in the BP terms as production of 
siRNA (GO:0030422; p-value: 6.5E-21), RNA interference 
(GO:0016246; p-value: 1.4E-20), dsRNA fragmentation 
(GO:0031050; p-value: 3.1E-19). Our study also found 
that, 4 (PdDCL-1, PdDCL-3b, PdAGO-4,8,9, PdRDR-2) 

of 14 PdRNAi proteins have been found to be involved 
in the CC terms as nuclear lumen (GO:0031981; p-value: 
0.00019), intracellular organelle lumen (GO:0070013; 
p-value: 0.00025), organelle lumen (GO:0043233; p-value: 
0.00025), membrane-enclosed lumen (GO:0031974; 
p-value: 0.00026). Three (PdRDR-1, PdRDR-2, PdRDR-6) 
of 14 PdRNAi proteins have been found to be involved 
in the molecular function term RNA-directed RNA 

Fig. 4 Structure of AtRNAi and the predicted PdRNAi genes
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polymerase activity (GO:0003968; p-value: 2E-08). Three 
(PdDCL-1, PdDCL-3b, PdDCL-4) of 14 PdRNAi proteins 
have been found to be involved in the molecular func-
tions terms as ribonuclease III activity (GO:0004525; 
p-value: 3.1E-08), double-stranded RNA-specific ribo-
nuclease activity (GO:0032296; p-value: 3.1E-08). Two 
(PdAGO-2,3, PdAGO-4,8,9) of 14 PdRNAi proteins have 
been found to be involved in the MF term siRNA binding 
(GO:0035197; p-value: 2.2E-06). We have also compared 
the GOs of PdRNAi with AtRNAi and OsRNAi proteins 
and perceived their similarities (Table 2).

PdRNAi gene regulatory network analysis
Trans-regulatory factors of PdRNAi genes
At first, we have identified transcription factors (TFs) 
with respect to AtRNAi, PdRNAi, and OsRNAi genes by 
using PlantTFcat web-tool. Then we have submitted AtR-
NAi, PdRNAi, and OsRNAi genes and associated TFs in 

Cytoscape to construct the network between them. We 
have found two (PAZ, SNF2) TFs in AtRNAi, PdRNAi, 
and OsRNAi genes (Fig. 6). The PAZ TF has been found 
to associated with (PdDCL-1, PdAGO-7, PdAGO-10, 
PdDCL-4, PdDCL-3a, PdDCL-3b, PdAGO-1, PdAGO-2,3, 
PdAGO-4,8,9, PdAGO-5, PdAGO-6, AtDCL-1, AtAGO-
6, AtAGO-7, AtAGO-8, AtAGO-9, AtAGO-10, AtDCL-
2, AtDCL-3, AtDCL-4, AtAGO-1, AtAGO-2, AtAGO-3, 
AtAGO-4, AtAGO-5, OsAGO1a, OsMEL1, OsAGO13, 
SHL4, OsPNH1, OsAGO17, OsAGO12, OsAGO11, 
OsAGO18, OsAGO15, OsAGO1b, OsDCL1a, OsDCL2a, 
OsDCL2b, OsDCL3a, OsDCL3b, SHO1, OsAGO1c, 
OsAGO1d, OsAGO2, OsAGO3, OsAGO4a, OsAGO4b, 
OsAGO4) AtRNAi, PdRNAi, and OsRNAi genes. The 
SNF2 associated with AtDCL-1, AtDCL-2, PdDCL-1, 
PdDCL-3a, and PdDCL-3b genes (Fig. 6).

Fig. 5 Sub-cellular localization analysis of AtRNAi and PdRNAi proteins. Protein percentages
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Cis-regulatory factors of PdRNAi genes
The cis-acting regulatory elements (CAREs) study has 
been performed to investigate how those regulators con-
trolled PdRNAi genes. According to our findings, the 
regulatory regions of PdRNAi genes have contained light-
responsive (LR), hormone-responsive (HR), and stress-
responsive (SR) related motifs (Fig.  7). The LR motifs 
including 3-AF1 binding site, ACE (ACGT-containing 
element), AE-box (activation element), Box 4 (involved in 
light responsiveness), G-box (CACGTG motif ), GATA-
motif, GT1-motif (GGTTAA,  G G T A A T T,  G G T A A A T, 
GTTAC, TACAGT, and GGTAAA), I-box ( A G A T A T G 
A T A A A A), LAMP-element, Sp1 (specificity protein 1), 
TCT-motif (polypyrimidine initiator), and TCCC-motif 
have been found in PdRNAi genes (Fig.  7). The signifi-
cant number of I-box LR motif has found in the expected 
PdRNAi genes. The cis-acting regulatory elements ABRE 
(involved in the abscisic acid responsiveness), O2-site 
(involved in zein metabolism regulation), P-box (gib-
berellin-responsive element), TCA-element (involved in 
salicylic acid responsiveness), and TGA-element (auxin-
responsive element) has found in the promoter regions 
of PdRNAi genes, that are involved in the regulation of 

hormones (HR). Some of our PdRNAi genes are regu-
lated by the cis-acting elements, including TC-rich 
repeats (involved in defense and stress responsiveness, 
MBS (MYB binding site involved in drought-inducibility), 
MYB (involved in drought-inducibility, LTR (involved 
in low-temperature responsiveness as stress-responsive 
(SR). We have also compared the cis-elements between 
PdRNAi and OsRNAi genes and observed their similari-
ties like AtRNAi genes (Fig. S6).

miRNA of PdRNAi genes
The purpose of the miRNA investigation is to see how 
miRNA regulates the expression of PdRNAi genes. 
We have detected eight key miRNAs, including Pda-
miR156b, Pda-miR157b, Pda-miR159a, Pda-miR166a, 
Pda-miR167d, Pda-miR395c, Pda-miR396a, Pda-
miR529a, Pda-miR482, Pda-miR2118 using PdRNAi 
genes (Figs. S7A, B). Six of the 14 PdRNAi genes have 
been regulated by the Pda-miR529a. Four of the 14 PdR-
NAi genes have been regulated by the Pda-miR396a. 
The PdDCL-1 has been regulated by Pda-miR166a, Pda-
miR167d, Pda-miR396a, Pda-miR482, Pda-miR2118. 
The PdDCL-4 has been regulated by Pda-miR156b, 

Table 2 GO enrichment analysis results with the AtRNAi, predicted PdRNAi and OsRNAi proteins
GO.ID Term GO-terms Enriched RNAi proteins
GO:0009615 response to virus BP PdAGO-2,3, PdDCL-3b, PdDCL-1, PdDCL-4, PdAGO-7, PdRDR-1, PdAGO-4,8,9, PdRDR-6, PdAGO-10

AtRDR-1, AtAGO-2, AtAGO-3, AtAGO-1, AtAGO-7, AtAGO-4, AtAGO-5, AtAGO-6, AtDCL-2, AtDCL-3, 
AtRDR-6, AtDCL-4, AtAGO-9, AtAGO-10
SHL2, OsAGO1a, OsRDR1, OsDCL1a, SHL4, OsDCL2a, OsMEL1, OsAGO4b, SHO1, OsAGO2, OsPNH1, 
OsDCL3b

GO:0030422 production of 
siRNA involved in 
RNA interference

BP PdDCL-3b, PdDCL-1, PdDCL-4, PdRDR-2, PdAGO-7, PdRDR-1, PdAGO-4,8,9, PdRDR-6
AtDCL-1, AtRDR-1, AtAGO-7, AtAGO-4, AtAGO-6, AtDCL-2, AtDCL-3, AtRDR-6, AtRDR-2, AtDCL-4
SHL2, OsRDR1, OsDCL1a, SHL4, OsDCL2a, OsAGO4b, OsRDR2, SHO1, OsDCL1c, OsDCL1b, OsD-
CL2b, OsDCL3b

GO:0016246 RNA interference BP PdDCL-3b, PdDCL-1, PdDCL-4, PdRDR-2, PdAGO-7, PdRDR-1, PdAGO-4,8,9, PdRDR-6
AtDCL-1, AtRDR-1, AtAGO-7, AtAGO-4, AtAGO-6, AtDCL-2, AtDCL-3, AtRDR-6, AtRDR-2, AtDCL-4,
SHL2, OsRDR1, OsDCL1a, SHL4, OsDCL2a, OsAGO4b, OsRDR2, SHO1, OsDCL1c, OsDCL1b, OsDCL2b

GO:0031050 dsRNA 
fragmentation

BP PdDCL-3b, PdDCL-1, PdDCL-4, PdRDR-2, PdAGO-7, PdRDR-1, PdAGO-4,8,9, PdRDR-6
AtDCL-1, AtRDR-1, AtAGO-7, AtAGO-4, AtAGO-6, AtDCL-2, AtDCL-3, AtRDR-6, AtRDR-2, AtDCL-4
SHL2, OsRDR1, OsDCL1a, SHL4, OsDCL2a, OsAGO4b, OsRDR2, SHO1, OsDCL1c, OsDCL1b, OsD-
CL2b, OsDCL3b

GO:0003968 RNA-directed 
RNA polymerase 
activity

MF PdRDR-2, PdRDR-1, PdRDR-6
AtRDR-1, AtRDR-6, AtRDR-2
OsRDR3, OsRDR4, SHL2, OsRDR1, OsRDR2

GO:0004525 ribonuclease III 
activity

MF PdDCL-3b, PdDCL-1, PdDCL-4
AtDCL-1, AtDCL-2, AtDCL-3, AtDCL-4
OsDCL3a, OsDCL1a, OsDCL2a, SHO1, OsDCL1c, OsDCL1b, OsDCL2b, OsDCL3b

GO:0032296 double-stranded 
RNA-specific ribo-
nuclease activity

MF PdDCL-3b, PdDCL-1, PdDCL-4
AtDCL-1, AtDCL-2, AtDCL-3, AtDCL-4
OsDCL3a, OsDCL1a, OsDCL2a, SHO1, OsDCL1c, OsDCL1b, OsDCL2b, OsDCL3b

GO:0035197 siRNA binding MF PdAGO-2,3, PdAGO-4,8,9,
AtAGO-2, AtAGO-1, AtAGO-4, AtAGO-6, AtAGO-9
OsAGO1a, OsMEL1, OsAGO4b, OsAGO2

Here, GO.ID: gene ontology ID, BP: biological processes, and MF: molecular function
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Pda-miR159a, Pda- miR395c, Pda-miR396a. All of the 
miRNAs are found to expressed in the leaves and roots. 
Both Pda-miR166a and Pda-miR2118 have a high expres-
sion score in leaves and roots. Both Pda-miR156b and 
Pda-miR159a have a medium expression score in leaf. 
In root, the expression scores of Pda-miR156b, Pda-
miR159a, Pda-miR396a, Pda-miR482 are medium. We 
have also studied the miRNAs and expressions of OsR-
NAi and AtRNAi genes to compare with PdRNAi genes. 
We have found that OsRNAi and AtRNAi have almost 

similar miRNAs and miRNA expressions according to 
PdRNAi genes (Figs. S7A, B).

Discussion
The major RNAi genes RDR, DCL, and AGO function 
as unique short RNAs that regulate a variety of biologi-
cal processes and pathways by silencing protein-cod-
ing genes [80, 81]. In this study, we have identified 4 
PdDCLs, 7 PdAGOs, and 3 PdRDRs as RNAi proteins 
from the date palm genome guided by AtRNAi proteins 

Fig. 6 The regulatory network among the TFs with PdRNAi, AtRNAi, And OsRNAi genes. The nodes of the network have been colored based on RNAi 
genes: AtRNAi: blue, OsRNAi: light green, and PdRNAi: orange. The node shape of the network have been based on RNAi genes: DCLs: triangle, AGOs: 
octagonal, and TFs: round
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as a query sequence in BLASTp search based on MSAs. 
Then phylogenetic tree analysis has been performed to 
investigate the similarities of PdRNAi with AtRNAi and 
OsRNAi proteins. To validate the predicted PdRNAi 
proteins computationally, we have studied their charac-
teristics and activities with respect to both AtRNAi and 
OsRNAi proteins. Here we considered OsRNAi proteins, 
since both of rice (Oryza sativa) and date palm belong to 
the same monocot commelinids clade (Fig. 2 and Fig. S1) 
[19]. In order to investigate the roles of PdRNAi proteins 
in the protein coding gene silencing, stress response and 
disease resistance, we have analyzed domains, structures, 
locations, molecular functions and regulatory factors of 
PdRNAi genes that are discussed below.

The domains and motifs of predicted PdRNAi proteins 
have displayed similar patterns compared with AtRNAi 
and OsRNAi proteins (Figs. 3 and 4 and Figs. S2, S3). All 
PdDCLs and three PdAGO proteins might be functions 
as protein coding gene silencers, since all PdDCLs and 
three PdAGOs belong to the same group of AtDCLs and 
AtAGOs (AtAGO-3, AtAGO-4, AtAGO-6, and AtAGO-
9) protein [82–88]. The PdDCL-1 protein may produce 21 
and 22nt sRNAs from small stem-loop RNA substrates, 
whereas PdDCL-2, PdDCL-3, and PdDCL-4 proteins may 
produce 22nt, 24nt, and 21nt sRNAs from large dsRNA, 
respectively [89]. The PAZ and RNase III domains in 
Dicer (PdDCLs) synthesize silencing-associated sRNAs 

from a larger dsRNA [12, 90]. The RDR (PdRDRs) syn-
thesize the majority of long dsRNAs in plants [91]. The 
PdRDR-6 protein may be required for the production of 
trans-acting siRNAs (tasiRNAs) because it cleavages the 
dsRNA. The PdDCL-4 protein may synthesize the dsRNA 
from the miRNA-cleavage end, resulting in 21-nucleotide 
siRNA duplexes formation [92–94]. More specifically, 
the identified PIWI domain contains structural simi-
larities with ribonuclease-H enzymes, which indicates 
that it may be responsible for cleaving the target mRNA 
[95]. The predicted DEAD-box and helicase domain may 
stimulate date palm to produce secondary siRNAs [96, 
97]. The anticipated PAZ and RNase III domains may 
operate as an indication, creating miRNAs with compa-
rable sizes [98]. The predicted PIWI and PAZ may rec-
ognize and cleave the target mRNA [99–101]. Most of 
the predicted PdRNAi proteins have been significantly 
enriched in the nucleus, cytosol, and chloroplast (Fig. 5 
and Fig. S5), where the first two locations are known to 
be involved with the occurrence of the RNA silencing 
mechanism [102, 103]. The GO enrichment analysis of 
PdRNAi genes has detected some vital BP and MF terms 
that are directly involved with the gene silencing mecha-
nisms and those terms are almost identical with AtRNAi 
and OsRNAi genes (Table  2). Out of 14 predicted PdR-
NAi proteins, 8 proteins are involved with the biologi-
cal process terms as production of siRNA (GO:0030422) 

Fig. 7 The cis-acting regulatory elements of AtRNAi and predicted PdRNAi genes. The deep to light green color represent the presence degree of that 
element with the corresponding genes. (A) hormone-responsive cis-elements, (B) light-responsive cis-elements, and (C) stress-responsive cis-elements

 



Page 13 of 17Naim et al. BMC Genomic Data           (2024) 25:31 

[104], RNA interference (GO:0016246) [105], and dsRNA 
fragmentation (GO:0031050) [106]. The GO:0030422 
term is associated with the 24nt hc-siRNA and 21nt 
siRNA production pathways [107]. Eukaryotic cells 
use siRNAs (GO:0030422, GO:0035197) [108–111] to 
bind and enhance the degradation of specific endog-
enous mRNAs generated by dsRNA (GO:0031050. 
GO:0032296) [112–114], to decrease protein synthesis at 
the post-transcriptional stage. The PdRDR proteins are 
involved with the molecular function term RNA-directed 
RNA polymerase activity (GO:0003968) [115], which is 
associated with RNA-mediated gene silencing in plants 
[116]. Three PdDCL proteins are involved with the terms 
of the molecular function as ribonuclease III activity 
(GO:0004525) [117–119] which specifically cleave dsR-
NAs for RNAi mechanisms in plants [90]. Two PdRNAi 
proteins are involved with the molecular function term 
siRNA binding (GO:0035197), which is essential to the 
RNAi mechanisms [111]. TFs are key regulatory fac-
tors that are involved in the activation or deactivation of 
upstream signaling pathways and bind to specific pro-
moter regions (i.e., cis-acting elements) of their target 
genes to increase or inhibit the transcriptional rate of 
those genes [120]. Our detected PAZ-Argonaute [121] 
(similar as OsRNAi) genes, a member of the PTGS family 
of TFs, may require for RNAi pathway (Fig. 6). The SNF2 
is linked with three PdRNAi genes. The SNF2 protein 
may supply ATP-driven motor components for remodel-
ing systems that may control gene silencing of PdRNAi 
genes [122]. The miRNAs function as critical regula-
tors of eukaryotic gene expression by targeting mRNAs 
for break-down or translation inhibition [123]. PdRNAi 
and OsRNAi almost similar miRNAs (Figs. S7A, B). Our 
detected miRNAs have a variety of significant activities, 
including gene silencing (miR159a, miR482) [124, 125]. 
Thus the predicted PdRNAi genes through sRNAs may 
play a vital role for the protein coding genes silencing.

We found that two PdAGO genes, which belong to the 
gene groups of AtAGO-10 and AtAGO-7 genes and are 
associated with A. thaliana development, may the best 
candidates for date palm development [126, 127]. The 
PdRNAi belong to the gene groups of OsDCL-4, OsAGO-
1 (a-d), and SHL2, which may enhance the expressions of 
target genes during early floral/panicle development [19]. 
The PdAGO-5 gene, like OsMEL-1 and OsAGO-4 genes, 
might be expressed in reproductive organs and influ-
ence panicle and seed development. Similar to OsPNH-1, 
the PdAGO-10 gene may influence SAM and leaf devel-
opment [19]. The PdRDR-2, similar to OsRDR-2, may 
affect flower development [19]. The PdDCL1, PdAGO1, 
PdAGO4, and PdRDR5 genes may play essential roles in 
stress response [128]. The PdDCLs might stimulate leaf 
or stem development in date palm as the intron number 
of each of PdDCLs and OsDCLs is almost the same as 

that of AtDCLs [28, 81, 90, 129–133] (Fig. 4 and Fig. S4) 
[134]. We have also found our detected cis-regulatory ele-
ments in OsRNAi (Fig. 7 and Fig. S6). Previous research 
has found that our predicted LR-related motifs play an 
important role in the photosynthetic process of leaves [9, 
135–138]. The cis-acting regulatory elements ABRE [139, 
140], O2-site [141], P-box, TCA-element, and TGA-ele-
ment [141–143] have been discovered in the promoter 
regions of PdRNAi genes, that are involved in the regula-
tion of hormones (HR). The TCA-elements, MYC, ABRE, 
and 3-AF1 binding sites are significant cis-regulatory ele-
ments of PdRNAi genes that might be played a vital role 
against plant’s bio/abiotic stress [144]. The regulatory 
effect of MYC on miRNA expression can be either posi-
tive or negative [145, 146]. Some of our PdRNAi genes 
are regulated as stress-responsive (SR) by the cis-acting 
elements, including TC-rich repeats [147], MBS, MYB 
[148], LTR [149]. Some of PdRNAi genes are influenced 
by the cis-acting factors, including Box-4, G-box, I-box, 
GT1 motif, GATA-motif, and TCT-motif that plays an 
important role as light response (LR) of several spe-
cies [135–138, 150–154]. Because of LR-related motifs 
are important in photosynthetic mechanisms in plant 
leaves, the PdRNAi genes might be played an important 
role in improvement of date palms [155]. Our detected 
miRNAs have a variety of significant activities, including 
plant improvement (miR156b, miR157b, and miR396a) 
[156–158] and stress tolerance (miR166a, miR395e, 
miR529a) [159–161]. Thus, the predicted PdRNAi might 
be improved the quality of date palm fruits by promoting 
photosynthetic activity, a shorter flowering period, meri-
stem, leaf, seed improvement and plant enhancement 
against different biotic and abiotic stresses.

We found that all PdDCLs and three PdAGOs belong 
to the same gene groups of AtDCLs and AtAGOs, which 
have anti-pathogen activity in Arabidopsis and may pro-
tect P. dactylifera from pathogens [40, 162–166]. The 
Ribonuclease III (found in PdDCLs) can resist patho-
gens [167] and the PdRDR proteins may have antiviral 
activity [168]. Date palm antiviral [169] and antifungal 
[170] defense may rely heavily on RdRP (GO:0003968) 
activity [171]. The dsRNA-specific ribonuclease activ-
ity (GO:0032296) [172] may target several date palm 
RNA viruses [173]. Our detected miRNAs in PdRNAi 
genes may have a variety of significant activities, includ-
ing resistance to disease (miR167d, miR2118) [174, 175]. 
Thus, our predicted PdRNAi genes might be enhanced 
the date palm growth and development by regulating the 
respective protein coding genes against disease risks.

Conclusion
In this study, we have identified 4 PdDCL, 7 PdAGO, 
and 3 PdRDR genes as PdRNAi genes guided by AtRNAi 
genes through bioinformatics analysis. To gain a better 
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knowledge of PdRNAi corresponding to AtRNAi and 
OsRNAi gene families, we have investigated their phylo-
genetic relationship, domain components, genomic struc-
ture, subcellular localization, functional annotations, 
TFs, cis-elements, and miRNAs. The analysis results of 
this study have indicated that the PdAGO-5, PdAGO-7, 
and PdAGO-10 genes might be highly involved in growth 
and development, and PdDCL1, PdAGO1, PdAGO4 and 
PdRDR5 might be effective against different stresses in 
date palm. So far, this is the first study to shed light on 
the major RNAi gene families of date palms. Therefore, 
the knowledge gathered from this study might be useful 
resources to enhanced the date palm production by regu-
lating the respective protein coding genes against biotic 
and abiotic stresses. However, wet-lab experiments are 
needed to confirm that PdRNAi genes regulate date palm 
growth and development through the silencing mecha-
nism of the releted protein-coding genes under various 
stresses.
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