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Abstract
Background: Cockerham genetic models are commonly used in quantitative trait loci (QTL)
analysis with a special feature of partitioning genotypic variances into various genetic variance
components, while the F genetic models are widely used in genetic association studies. Over years,
there have been some confusion about the relationship between these two type of models. A link
between the additive, dominance and epistatic effects in an F model and the additive, dominance
and epistatic variance components in a Cockerham model has not been well established, especially
when there are multiple QTL in presence of epistasis and linkage disequilibrium (LD).

Results: In this paper, we further explore the differences and links between the F and Cockerham
models. First, we show that the Cockerham type models are allelic based models with a special
modification to correct a confounding problem. Several important moment functions, which are
useful for partition of variance components in Cockerham models, are also derived. Next, we
discuss properties of the F models in partition of genotypic variances. Its difference from that of
the Cockerham models is addressed. Finally, for a two-locus biallelic QTL model with epistasis and
LD between the loci, we present detailed formulas for calculation of the genetic variance
components in terms of the additive, dominant and epistatic effects in an F model. A new way of
linking the Cockerham and F model parameters through their coding variables of genotypes is also
proposed, which is especially useful when reduced F models are applied.

Conclusion: The Cockerham type models are allele-based models with a focus on partition of
genotypic variances into various genetic variance components, which are contributed by allelic
effects and their interactions. By contrast, the F regression models are genotype-based models
focusing on modeling and testing of within-locus genotypic effects and locus-by-locus genotypic
interactions. When there is no need to distinguish the paternal and maternal allelic effects, these
two types of models are transferable. Transformation between an F model's parameters and its
corresponding Cockerham model's parameters can be established through a relationship between
their coding variables of genotypes. Genetic variance components in terms of the additive,
dominance and epistatic genetic effects in an F model can then be calculated by translating
formulas derived for the Cockerham models.
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Background
Genetic models provide a basis for analyzing genetic
properties in study populations. For quantitative traits,
one type of models that has long been used in experimen-
tal designed populations for analysis of quantitative trait
loci (QTL) is the so-called Fisherian or Cockerham model
with a focus on partition of genotypic variances into addi-
tive, dominance and epistatic genetic variance compo-
nents, and their model parameters are often called average
allelic effects. Another popular model which has been
widely used in many genetic association studies is referred
to as the F model whose parameters are often defined as
the additive, dominance and epistatic effects [1-4]. Over
years, there have been some confusion about the relation-
ship between these two types of models [5-7]. The rela-
tionship between the additive, dominance and epistatic
effects and the genetic additive, dominance and epistatic
variance components has not been well established, espe-
cially when multiple QTL are involved in presence of
epistasis and linkage disequilibrium (LD). To shed some
light on this issue, in this paper we further explore the dif-
ferences and links between these two types of models.

In genetic studies, a partition of genotypic variance into
additive, dominance and epistatic variance components
provides us a basis to better understand the genetic inher-
itance properties of a quantitative trait from a parental
population to their progeny population. For example, the
additive variance is the chief cause of resemblance
between relatives. The genetic variance components also
play a crucial role in studies of heritability, covariance
between relatives, and variance components analysis.
Fisher [8] proposed a least square regression model for
modeling QTL by partitioning genotypic variance into
additive, and dominance variance components, where an
additive variance describes the variation contributed by
an average substitution effect of a specific allele transmit-
ted from a parent to offspring, and where a dominance
variance is a portion of the genotypic variance due to
interaction of the two alleles from both parents. Cock-
erham [9,10] extended the Fisher's model to multiple loci
with redefined additive, dominance and epistatic effects
of QTL based on statistical orthogonal contrasts. Kemp-
throne [11,12] further generalized the model to multiple
alleles. More recently, Mao et al. [13] extended the two-
locus biallelic Cockerham model to allow Hardy-Wein-
berg and linkage disequilibria, and they introduced 35
allelic effect parameters to describe various allelic effects
and their interactions. Zeng et al. [7] introduced a general
multi-locus-two-allele (G2A) model to represent the
Cockerham model in a multiple regression model setting,
and compared several models for analyzing QTL effects
and epistasis. Wang and Zeng [14] further extended the
approach to multiple alleles and derived formulas for

computing variance components in presence of epistasis
and LD.

The F model focuses on direct modeling of genotypic val-
ues and testing for genotypic association of QTL with
quantitative traits. There have been discussions on classi-
fication of various penetrance modes of diseases based on
the F model and genotypic values [15]. In terms of its
modeling scheme, as we will see later in this paper, the F
model is genotype-based by treating genotypes as differ-
ent levels of the locus factors. Álvarez-Castro and Carlborg
[16] also proposed a unified model to incorporate both
genotypic and allelic effects into one framework. Mean-
while, there have been continuous efforts on modeling
QTL effects and epistasis based on their biological func-
tions [5,6,17]. More recently, several articles have
addressed the issue of F models on partition of genotypic
variances [7,18,19]. Under the assumption of linkage
equilibrium, Tiwari and Elston [19] considered a two-
locus biallelic F model and derived formulas for comput-
ing genetic variance components in terms of the additive,
dominant and epistatic genetic effects. Yang [18] dis-
cussed the impact of zygotic association on partition of
genotypic variance in F models. Zeng et al. [7] compared
the difference in definition of model parameters between
the F and Cockerham models. It was pointed out that
these two types of models are different ways of modeling
the genotypic values and the two models' parameters are
transferable from one to the other through their relation-
ship with the genotypic values under certain circum-
stances.

In this paper, we further explore the differences and links
between the F and Cockerham models in terms of their
modeling schemes and on partition of the genotypic vari-
ance. First, we clarify that the Cockerham type models are
in fact allele-based models with a special modification to
correct a collinearity problem. Formulas of several
moment functions for a two-locus biallelic Cockerham
model are also derived, which are useful for deriving for-
mulas in calculation of the genetic variance components.
Next, we explore the difference and properties of these
two types of models in partition of genotypic variances.
We show that the traditional F models are basically gen-
otype-based models in which the additive and dominance
effects could be confounded with each other in partition
of genotypic variances. This fact usually does not affect
association tests in the standard regression analysis. But it
can make the partition of genotypic variances intricate,
especially when locus-by-locus interactions are involved.
We also introduce a mean-corrected F model, which can
provide a partially orthogonal partition of the genotypic
variance between loci under zygotic equilibria, although
its within-locus variances may still not be orthogonal due
to the possible confounding between its coding variables
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of genotypes. We discuss pros and cons of the F and
Cockerham models in association analysis and in parti-
tion of the genotypic variances.

The second part of this paper concentrates on calculation
of the genetic variance components in terms of the addi-
tive, dominance and epistatic genetic effects in an F
model. Tiwari and Elston [19] derived formulas for com-
puting genetic variance components in terms of the addi-
tive, dominant and epistatic genetic effects for a two-locus
biallelic F model under the assumption of linkage equi-
librium. More recently, Zeng et al. [7] proposed a way of
linking the two sets of model parameters through their
relationship with the genotypic values when fully param-
eterized models are applied. Since formulas for partition
of the genotypic variance into additive, dominance and
epistatic variances have been well established for Cock-
erham models [9,14], we can then calculate the genetic
variance components by translating the partition formu-
las of the variance components derived from their equiv-
alent Cockerham models. As examples, for a one-locus F
model with Hardy-Weinberg disequilibrium and a two-
locus F model with both epistasis and LD, we present
detailed formulas for computing various genetic variance
components in terms of the additive, dominant and epi-
static effects together with allele frequencies and LD meas-
ures. We also propose an alternative way of transforming
the additive, dominance and epistatic effects in an F
model into the average allelic effects in its corresponding
Cockerham model through the coding variables of geno-
types used in these two models, which is especially useful
when reduced F models are applied. Moreover, Some
practical issues relating to using of reduced F or Cock-
erham models are addressed.

Results
Genetic models
In the analysis of quantitative trait, the observed pheno-
types can usually be expressed through the following
model

where Y is the phenotypic value, G is the genotypic value,
E is the environmental deviation, and G × E is the genetic
by environmental interaction. Adjustment for environ-
mental deviation and genetic by environmental interac-
tion can usually be achieved by incorporating suitable
environmental covariates into the model. Therefore, in
the rest of the paper, we omit E and G × E from the model
and focus on modeling and analysis of the genotypic val-
ues.

Quantitative trait loci (QTL) refer to genes that contribute
to variation of a quantitative trait. In a study population,

given specific genotypes g at the QTL under consideration,
the genotypic value G(g) = E(G|g) is defined as the mean
of individuals with genotypes g in the study population.
In practice, the genotypic value G of an individual is
unknown and needs to be estimated. Let Pg be the geno-
typic distribution of the QTL in the study population, a
regression model can be expressed as

where the genotypic value G(g) is fixed given a specific
genotype g. Since the QTL usually has a finite number of
genotypes, G(g) itself can be treated as a discrete random
variable that takes certain quantitative values with its dis-
tribution specified by Pg. Therefore,

With a large enough random sample from a study popu-
lation, the genotype data from the sample would follow
approximately the same genotypic distribution as PG. The
classical analysis of variance (ANOVA) or regression anal-
ysis is a typical tool for analysis of VG and test for possible
association of genotypes at the QTL with the phenotypic
trait. Now, a fundamental question is how to model the
genotypic values G(g) given the QTL genotypes.

In human genome, an individual always carries two alle-
les at a QTL - one from the father and the other from the
mother. It is possible that a disease is caused by a mutant
allele inherited from one of the parents. To understand
such inheritance properties from parents to their off-
spring, a natural way is to treat paternal and maternal alle-
les as two different factors and assess their allelic effects.
Given that, let us first consider a single QTL case with two
alleles A, a at the locus. For each individual, we can define
the following indicator variables to describe the transmis-
sion of alleles from parents to the individual.

Then we can write down a simple regression model as

where g = (a, a') with a, a' being the paternal and maternal
allele, respectively. In practice, however, this model is not
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very useful because we usually cannot distinguish the
paternal and maternal alleles from the observed genotype
data; i.e., the so-called phase problem. But suppose that
the paternal and maternal alleles have the same effects,
which is a reasonable assumption in most of the genetic
studies, then the above model can be simplified as

where w'(g), v'(g) are defined as

In this model, based on the genotypic values, we have '
= GAa - Gaa, ' = (GAA + Gaa) - 2GAa, and the reference point
(or baseline) ' = Gaa is the genotypic value of genotype
aa.

Typically, the genetic additive variance VA is defined as a
variation contributed by allelic effects alone, and the
genetic dominance variance VD is the variation contrib-
uted by interaction of the paternal and maternal alleles.
Under the assumption of Hardy-Weinberg equilibrium
(HWE), it is well known that the genotypic variance has
an orthogonal partition VG = VA + VD in which the genetic
dominance variance VD becomes the deviation of the
genetic variance attributable to the locus from the additive
variance [4,20]. A first look at model (2) might lead us to
believe that under HWE we would have an orthogonal
partition of the genotypic variance VG = VA + VD with VA =
V ('w'(g)) and VD = V ('v'(g)). However, this is not true
because the interaction term 'v'(g) in model (2) is corre-
lated with the additive term 'w'(g) due to a positive cor-
relation between zM (or zF) and v' = zM zF. In fact, although
the two indicator variables zM and zF are assumed to be
independent under HWE, we have covariances Cov(zM, zM
zF) = Cov(zF, zM zF) = V (zF)E(zM) = p2(1 - p), where p = pA
is the frequency of allele A. Therefore, the covariance
between the two coding variables w' and v' is Cov(w', v') =
Cov(zM + zF, zM zF) = 2p2(1 - p), which means w' and v' are
almost always positively correlated as long as the fre-
quency of allele A not being zero. Even more general,
from the definition of w' and v' above, we can show that
Cov(w', v') = 2(1 - p)PAA, regardless of whether there is
HWE or not. Thus, model (2) provides a partition of the
genotypic variance as

with a portion of it contributed by correlation between
the effects ' and '. This problem, caused by using two
correlated explanatory variables w', v' in a multiple regres-
sion model, is often referred to as a confounding problem,

or statistically, a multicollinearity problem, which tends
to make and partition of variance components and the
interpretation of the regression coefficients intricate, and
in extreme cases leads to large standard errors for the least
square estimates. To overcome this multicollinearity
problem on partition of genetic variances, one strategy is
to make mean corrections on those genotype coding vari-
ables [7,14]. If we introduce two mean-corrected index
variables defined by xM = zM - p and xF = zF - p, then we can
build a modified version of model (2) as in the following

where w(g), v(g) are defined by

It should be pointed out that the index variable v as
defined above is slightly different by (-2) folds from the
one we defined in [14] in order to keep the definition of 
consistent with the G2A model introduced in Zeng et al.
[7], of which the standard F2 model is a special case.

Model (3) is actually a regression form of the Cockerham
model in one QTL case [7]. Under HWE, the indicator var-
iables zM and zF are independent, as well as the index var-
iables xM and xF. Thus we have now

, which leads to our famil-
iar orthogonal partition of the genotypic variance VG = VA

+ VD with VA = 2V (w) = 22pq and VD = 2V (v) = 42p2q2,
where q = 1 - p. Under Hardy-Weinberg disequilibrium,
we can represent genotype frequencies as PAA = p2 + pqf, PAa

= 2pq - 2pqf and Paa = q2 + pqf, where f is a measure of
departure from HWE. Then the genotypic variance VG = VA

+ VD + 2Cov(A, D) with

Back to the previous model (2), it is easy to see that the
coding variables w', v' in model (2) and the index varia-
bles w, v in model (3) have relationships w' = w + 2p and

. Note that w' is still the one that speci-

fies the additive effect except with a constant shift,
whereas v' includes a portion of w, which is the reason
why model (2) cannot provide orthogonal partition of
genotypic variance under HWE. The positive correlation
between the two coding variables w' and v' in model (2)
can also complicates the interpretation of regression
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parameters ', '. Using the method proposed in the next
section, we can show that the parameters in models (2)
and (3) have relationships ' =  + 2p and ' = -2. Thus,
the additive effect ' in model (2) is actually a combina-
tion of the average allelic effect  and dominance effect 
in the Cockerham model (3). On model (2) in partition
of genotypic variance, we have under HWE

where V (w) = 2pq. Note that VA = 2V (w) = 2pq 2. So, the
positive correlation between the two coding variables w'
and v' leads to an increased share of V ('v') other than VD,
which is partly contributed by a portion of the additive
variance. By using the mean-corrected index variables w
and v, the Cockerham model allows us to separate the
confounding effects of the two variables w' and v' at least
under HWE in partition of genotypic variance VG. As a
result, the dominance variance VD in the Cockerham
model (3) is the additional variation contributed by inter-
action of the paternal and maternal alleles, in addition to
the additive variance.

The Cockerham model (3) can easily be extended to mul-
tiple loci. For example, consider two loci A and B with
alleles A, a and B, b, respectively. We can define indicator
variables:

and

for the two loci separately. By further introducing

 and

, where p1 = PA, p2 = PB, and assuming that
paternal and maternal gametes (alleles and haplotypes)
have the same genetic frequencies and effects, we obtain
the following two-locus (G2A) Cockerham model [14]

where

Based on these mean-corrected index variables, this Cock-
erham model allows us to easily incorporate some allelic
related properties, such as HWE or linkage equilibrium
information, into the variance partition analysis [14]. For
instance, since the means of the x's variables are scaled to
zero in the population, it is easy to see that all the compo-
nents in model (4) are independent with each other under
Hardy-Weinberg and linkage equilibria, which leads to
orthogonal partition of variance components. In addi-
tion, those mean-corrected variables x's defined above
have some nice properties that can facilitate derivation of
formulas for various variance and covariance compo-
nents. For example, for two loci A and B under HWE but
with LD between them, we can show through some deri-
vation that for any integers m, n > 0

where q1 = 1 - p1, q2 = 1 - p2 and D = PAB - p1 p2. These
moment functions are quite useful in deriving formulas
for partition of the genotypic variance into various allelic
based variance components for the above G2A Cock-

erham model. Besides, under gametic equilibrium, ,
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As pointed out in [7], the above relationship holds regard-
less of whether there is a linkage equilibrium or disequi-
librium in the study population.

In genetic association studies, we are often interested in
examining association of genotypes at certain genetic
markers or QTLs with a disease phenotype. In this case, a
standard approach is to fit a regression model with geno-
types at each locus being treated as different levels of the
locus factor. This leads to another popular type of models
that have been widely used in genetic association studies;
i.e., the so-called F models. Still, let us first consider the
simple case of one locus with two alleles A, a. In this case,
we have three possible genotypes AA, Aa and aa, and cor-
respondingly three possible genotypic values GAA, GAa and
Gaa. The single locus F model is then given by [3,4]

where a, d are often called the additive, dominance effects
of alleles A, a, respectively. In terms of the genotypic val-
ues, the additive and dominance effects are defined as

, , . This

model is referred to as an F model simply because the ref-
erence point m in the model is the mean of two homozy-
gote genotypic values which corresponds to the mean in
an F population [1,2].

The above model can also be written in a regression
model form as

where w* (g), v* (g) are two coding functions of genotypes
g which are defined as

Since m, a and d in this model simply provides a re-param-
eterization of the original three genotypic values GAA, GAa
and Gaa, we can refer a, d as genotypic effects of the QTL
with m as a reference baseline.

Statistically, in order to see whether the QTL genotypes is
associated with a disease phenotype, we need to test for

whether GAA = GAa = Gaa or, equivalently, a null hypothesis
of H0: a = d = 0 versus its alternative Ha: a or d  0. The
standard regression approach can usually provide unbi-
ased estimates of the model parameters and appropriate
test for H0 regardless of possible correlation between w*
(g), v* (g), although it may give large standard errors for
the least square estimates of parameters when this correla-
tion is very strong.

Now, let us look at the performance of model (5) on par-
tition of genotypic variances. As w* and v* are two coding
variables for the three genotypes at the same locus, they
are inherently correlated. In fact, let PAA, PAa, Paa be the
genotype frequencies, we can show that Cov(w*, v*) =
PAa(Paa - PAA)  0 as long as Paa  PAA. They also have rela-
tionships with the index coding variables w', v' in model
(2) and the index variables w, v in model (3) as w* = w' -
1 = w + 2p - 1, v* = w' - 2v' = (1 - p)w + v + (2p - p2).

Therefore, we have under HWE

In terms of the model parameters, we can show that a = 
- (1 - 2p) and d = . In summary, we have the following
conclusions.

• Model (5) usually provides a different partition of
the genotypic variance VG than the one from the Cock-
erham model (3).

• When Paa = PAA, model (5) can give an orthogonal
partition of the genotypic variance VG = V (aw*) + V
(dv*), which is different from VG = VA + VD in the Cock-
erham model (3) under the assumption of HWE

unless .

• The potential correlation between w* and v* often
leads to an increased share of V (dv*) other than VD,
which is partly contributed by a portion of the additive
variance.

• The dominance effect d is the same as the allelic
interaction  in the Cockerham model. As a result, VD
= 0 if d = 0.

• The additive effect a = 0 is equivalent to  = (1 - 2p)
for the allelic effects in the Cockerham model. So, a =
0 does not necessarily imply VA = 0.
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Note also that making mean-corrections on the two cod-
ing variables w* and v* of genotypes does not help to sep-
arate their confounding in this case because dv* in model
(5) is not an interaction term.

Extension of the F model (5) to multiple QTL is straight-
forward. Still consider two loci A and B with alleles A, a

and B, b, respectively. We can introduce variables  (g),

 (g), i = 1,2, using the same '1 - 0 - (-1)' and '0 - 1 - 0'
coding for QTL genotypes at each locus. Then a two-locus
F model with epistasis included yields

Model (6) is also a fully parameterized model for the 9
genotypic values GAB. As shown in Zeng et al. [7], this two-
locus F model can be written in a matrix form as

, where  = (m, a1, d1, a2, d2, aa,

ad, da, dd)T, and

When we fit the above model under a regression model
framework, the expected mean of the least square esti-

mates (LSE)  of  will be given by

where WAB = diag(P22, P21, P20, P12, P11, P10, P02, P01, P00)
is of full rank with Pij being the frequency of genotypes
corresponding to Gij, i, j = 0, 1, 2. So, the LSE provide

unbiased estimates of , regardless of

whether there are Hardy-Weinberg or linkage disequi-
libria in the genotypic distribution Pg. However, as
pointed out in Zeng et al. [7], the additive effect a1 can no
longer be interpreted as a half of the difference between
the homozygote genotypic values G2 = E(G|AA) and G0 =
E(G|aa) at locus A in the presence of interaction effects,
and so does the dominance effect d1 as the difference
between the heterozygote genotypic value G1 = E(G|aa)

and the mean of the homozygote genotypic values G2, G0.
In addition, its partition of genotypic variance VG is com-

plex because not only the within-locus terms aj  and dj

 are correlated for j = 1, 2, but the within-locus terms {aj

, dj } and the locus-by-locus interactions

 could also be
correlated. As a result, even when the genotypes at loci A
and B are independent (i.e., the so-called zygotic equilib-
rium between loci A and B [18]), the variance component

V (aj  + dj ), j = 1, 2, cannot simply be interpreted as

a variation contributed by locus j in the presence of inter-
actions.

If we consider using the mean-corrected variables j = 

- E ( ) and j =  - E ( ) to replace  and  for j =

1,2 in the F model (6), this leads to the following model,

where

As in the one locus case, the mean-corrected variables j

and j are very likely correlated within each locus j = 1, 2.
But it could help to reduce the complexity of variance par-
tition in certain circumstances. For example, under zygotic
equilibrium between loci A and B, {1, 1} are independ-
ent of {2, 2}, and {j, j, j = 1, 2} are uncorrelated with
interactions {1 2, 1 2, 1 2, 12} as well. As a result,

the within locus effects ( ), j = 1,2, and the

locus-by-locus interactions (aa' 1 2 + ad' 1 2 + da' 1 2

+ dd' 1 2) as a whole are orthogonal to each other,
although the interaction terms {aa' 1 2, ad' 1 2, da' 1

2, dd' 12} among themselves may still be correlated.
Thus,

In general, for more than two loci under zygotic equi-
libria, we will have
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In this case, V (aj  + dj ) is the variation contributed

by genotypes locus j, while V

( ) represents the

variation contributed by genotypic interactions between
loci j and k. We will refer to model (7) as a mean-corrected
F model. It is interesting to see that, in an F2 population,
this mean-corrected F model is reduced to the classical F2

model as its special case. The same situation happens for
the Cockerham model (4) as well.

We can also model multiple QTL by extending model (2)
to multiple loci. For example, an allele-based two-locus
biallelic model is given by

where ,  are coding variables defined in the same

way as the ones in model (2) for the two loci separately. It
is a model similar to the F model (6) except that the cod-
ing variables of genotypes are defined in different ways.
From the definition of these coding variables, it is also

easy to see that  and

. We can show that the

parameters in models (8) and (6) have the following rela-
tionship

Without locus-by-locus allelic interactions, we have aj =

 and  for j = 1, 2. In the presence of locus-by-

locus allelic interactions, aj = dj = 0 is not equivalent to

. As alleles represents the more basic levels of

genetic factors than genotypes, the allele-based models

are inherently more general and can be utilized to exam-
ine specific allelic effects and their interactions. When
phase information is available, we could also use separate
indicator variables of alleles to specify the paternal and
maternal origins of alleles, which could be very useful in
situations where the paternal or maternal genes may have
different allelic effects and their interactions are of interest
(e.g., genetic imprinting). On the other hand, the coeffi-
cients in a F model are more closely associated with
homozygosity and heterozygosity at the loci [2].

In regard to the modeling schemes, we can see that a
major difference between the F and Cockerham models
lies in whether we treat genotypes or alleles as levels of the
locus factors. The traditional F models treat genotypes as
levels of the locus factors with genotypic effects at each
locus and locus-by-locus genotypic interactions being of
major interest. The Cockerham models are defined by
treating alleles as levels of the locus factors with a focus on
partition of genotypic variances into various genetic vari-
ance components, and by using a mean-correction on
coding variables of alleles it can effectively reduce the con-
founding between allelic effects and their interactions in
partition of the genotypic variance. Both types of models
can actually have two different versions - one is defined
directly on coding of genotypes (or allele types), and the
other on using mean-corrected index variables to reduce
confounding between the main effects and their interac-
tions. The former ones, either genotype-based or allele-
based, have their coding variables defined on genotypes
or alleles directly regardless of the genotypic or allelic dis-
tributions. The latter ones are based on some mean-cor-
rected index variables, which depend not only on the
genotypes or allele types but also on frequencies of these
genotypes or alleles. To distinguish model parameters in
these different models and meanwhile stay consistent
with current terminology, in the rest of this paper we will
simply refer to the additive, dominance and epistatic

effects  in a traditional F model as the genotypic

effects; the parameters in a mean-corrected F model as the
average genotypic effects with their corresponding variance
components as genotypic variance components; the parame-
ters in an allele-based model (e.g., model (2) or (8))
which is defined based on the coding variables of allele
types as the allelic effects; and parameters in the traditional
(mean-corrected) Cockerham model as the average allelic
effects with their corresponding variance components as
allelic variance components.

Models directly using coding variables of genotypes or
allele types are appealing in practice due to their simplic-
ity. However, statistical tests of the genotypic or allelic
effects based on p-values are highly dependent on the
regression model, the distribution assumptions and the
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available sample size. A statistically significant genetic
effect with a small p-value does not necessarily imply a
clinically important finding. Besides, there could be
inconsistency in definition of model parameters based on
a one-locus model or a two-locus model with epistasis [7].
That is, when a multi-locus model is applied with epistasis
involved, the interpretation of the additive and domi-
nance effects based on one QTL model may change. On
the other hand, using models with the mean-corrected
index variables can allow us to assess how much varia-
tions are actually contributed by certain genetic effects or
interactions, which could provide consequential informa-
tion for achieving the clinical importance. A drawback in
using these mean-corrected models is that they bring gen-
otype or allele frequencies into the design matrix for
regression, which will contribute another source of varia-
tion in fitting the model as the genotype or allele frequen-
cies need to be estimated in practice. This fact could make
it difficult to evaluate variance in estimates of the variance
components.

The traditional (mean-corrected) Cockerham model can
provide orthogonal partition of genotypic variance into
additive, dominance and epistatic variance components
under HWE and linkage equilibrium, while under zygotic
equilibrium the mean-corrected F model can give
orthogonal partition of genotypic variances between dif-
ferent loci and locus-by-locus interactions. Which of the
two mean-corrected models can provide simpler structure
in partition of the genotypic variance really depends on
the equilibrium situation in our sample. It is easy to see
that a linkage equilibrium between alleles at two QTL
under HWE can guarantee zygotic equilibrium of geno-
types at the two loci but not the vice versa. Thus, for mul-
tiple QTL under both linkage and Hardy-Weinberg
equilibria, the Cockerham model is preferred. When there
is zygotic equilibrium of genotypes between two loci but
no linkage equilibrium, a mean-corrected F model might
be preferred. In general, no one model is always preferable
to the other in partition of genotypic variances. However,
as HWE is expected to (or approximately) held in most of
the human genomic regions, QTL with zygotic equilib-
rium but no linkage equilibrium are possible but rare. In
addition, the allelic variance components are important
quantities in assessing covariance between relatives and
more closely related to the inheritance properties of quan-
titative traits. As a result, the allelic variance components
based on the Cockerham model would expected to be of
the main research interest in most of the cases for the
genetic variance components analysis.

Genotypic effects and allelic variance components
In Zeng et al. [7], it was pointed out that the additive,
dominance and epistatic effects in an F model and the
average allelic effects in a Cockerham model are simply

two different ways of re-parameterization for the geno-
typic values. They are transferable from each other
through their relationship with the genotypic values when
fully parameterized models are applied. Since partition of
genetic variance components based on Cockerham mod-
els has been well established [14,21,22], a relationship
between the genotypic effects in an F model and the aver-
age allelic effects in its corresponding Cockerham model
would allow us to compute various allelic variance com-
ponents in terms of genotypic effects by translating those
formulas on partition of genotypic variance derived from
the Cockerham models based on the average allelic
effects. In this section, we present detailed formulas for
computing the allelic variance components in terms of the
genotypic effects for the one-locus F model (5) under
Hardy-Weinberg disequilibrium and the two-locus F
model (6) with both epistasis and LD between the two
loci. We also propose an alternative way of linking these
two sets of parameters through the relationship between
the coding variables of genotypes used in F models and
the mean-corrected index variables used in the Cock-
erham models. Some practical issues relating to using of
reduced models instead of the fully parameterized models
are also addressed.

Let us start from the simple case of the single locus F
model (5) and its equivalent Cockerham model (3). As
pointed out in [7], we can build the relationship between
the two sets of model parameters through the genotypic
values. Since both models give a full parameterization of
the three genotypic values GAA, GAa and Gaa, based on the
coding functions for the three genotypes, we have

With some simply algebra, we can show that the geno-
typic effects and the average allelic effects have the follow-
ing relationship

where  is the same substitution effect of replacing allele
a by A as presented in [4] (p.114). Replacing ,  in the
formula (4) by a, d, we obtain the following partition of
VG in terms of a, d in model (5)
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Under HWE, we have f = 0. Then VA = 2pq [a + d(q - p)]2

and VD = 2(pqd)2. This is the same results that were pre-
sented in [4,20].

Similarly, for a two-QTL model (6), its genotypic effects

 = (m, a1, d1, a2, d2, aa, ad, da, dd) and the average

allelic effects EG2A·AB in its equivalent Cockerham model
have the relationship

, which

yields

Assuming HWE at loci A and B but allowing LD between
the two loci, by applying the properties of moment func-
tions we derived before, it can be shown that the variance
and covariance components in terms of average allelic
effects in the two-locus Cockerham model (4) are given
below

where A1 = 1 w1, D1 = 1 v1, A2 = 2 w2, D2 = 1 v2, A1 A2 =
()w1 w2, A1 D2 = ()w1 v2, D2 A1 = ()v1 w2 and D1 D2
= ()v1 v2. Note that the covariance components are
caused by correlation between various allelic effects and
interactions, while the interactions contribute their own
variances regardless of whether the alleles are in HWE and

LD or not. The above results are similar to what we pre-
sented in [14] for a general G2A model except that a more
detailed partition of variance components and their cov-
ariance structures are shown here. Note also that the scales
for defining the index variables v1, v2 here are slightly dif-
ferent by (-2) folds from the ones used in [14] to keep
consistent with the ones used in Zeng et al. [7]. Corre-
spondingly, those coefficients related to v's in model (4)
differ from the ones in [14] by (-2) or 4 folds depending
on how many v's are involved. Replacing the allelic effects
in the above formulas by genotypic effects using their rela-
tionship (9), we can then obtain formulas of the variance
and covariance components in terms of the genotypic
effects for partition of the genotypic variance. When there
is linkage equilibrium between loci A and B, then D = 0
and we have exactly the same result as presented in Tiwari
and Elston [19].

In genetic applications, using fully parameterized models
may not always be practical due to limited sample sizes,
multiple QTL, or a large number of alleles or genotypes
showing up at certain QTL. Including all possible geno-
typic or allelic interactions could make the genetic model
over parameterized and hard to fit with too many param-
eters involved. Collapsing certain number of alleles or
genotypes may simplify the model structure but dosing so
could meanwhile increase the risk of losing detection of
certain informative signals, as effects of true functional
alleles can be attenuated by other non-functional alleles.
By contrast, a simplified genetic model could be used to
include only lower-order terms such as additive, domi-
nance and additive by additive interactions.

Consider a simplified model from the previous two-locus
F model with only additive effects at the two loci and the
additive by additive interaction being involved. Then, the
reduced model is given by

In this case, we have
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A reduced model can be thought of as adding constraints
on the genotypic values. From

, we now have

and 1 = 2 = (1 2) = (1 2) = (1 2) = 0. Thus, when
there is HWE at loci A, B and linkage equilibrium between
loci A and B, the partition of genotypic variance is given

by , with

and .

If there is HWE at loci A, B but LD between the two loci,

we will still have the same ,  and

. Besides,

So far, we have relied on the equation

 to establish the relation-

ship between the average allelic effects EG2A·AB and the

genotypic effects . Alternatively, we can establish

the relationship between EG2A·AB and  through the

coding variables used in the F models and the index var-
iables used in the Cockerham models. It is easy to see that

the index variables ,  in the F model (6) and w1, w2

in the Cockerham model (4) have the following relation-
ship

for i = 1, 2. So, replacing w*, v* in model (10) by w, v gives

which leads to the the same results as we showed before.
If there are dominance effects involved in the reduced
model, then

It is easy to show that the relationship between the allelic
effects  and the genotypic effects b is given by

Therefore, with the relationships (11), we can easily trans-
form a F model to its equivalent Cockerham model, or
vise versa.

It must be pointed out that the above relationship
between the genotypic effects and the average allelic
effects hold only when the reduced F models specify the
genotypic values correctly. In practice, the true genotypic
values are unknown and a reduced model can only pro-
vide an approximation of the true genotypic values. In this

case, the least square estimates  from fitting a

reduced model simply gives an unbiased estimator of the
partial regression coefficients with expected mean

where WAB = diag(P22, P21, P20, P12, P11, P10, P02, P01, P00)

is the same as defined before, ( )g denotes

a generalized inverse of the matrix ( ). In

this case, the true parameters  may depend on not

only the genotypic values but also the genotypic frequen-
cies Pg with possible allelic association such as LD
involved - a fundamental difference between the statistical
models and functional models as claimed in [17]. Fur-
thermore, from the relationship

,

we can see that in general only certain linear combina-

tions of EG2A·AB can be estimated from  because

 may no longer be a non-singular square matrix.

Thus, in this situation, some allelic variance components
may not be directly estimable in terms of the genotypic
effects in a reduced F model. Alternatively, we can start
from a reduced Cockerham model and derive its corre-
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sponding reduced F model through using the relation-
ship (11) when some allelic variance components can be
reasonably ignored.

Discussion
Nowadays, the F models have been widely used in
genetic association studies to test for genotypic associa-
tion and their interactions with quantitative traits. Most of
current association studies, however, focus on reporting
p-values from statistical association tests on the additive,
dominance and epistatic effects of QTL. As we have
pointed out, an assessment of genetic variations contrib-
uted by these genetic effects to the overall genotypic vari-
ance is another important piece of information which
could be consequential for achieving the clinical signifi-
cance. Unfortunately, the calculation of either the geno-
typic or allelic variance components for F models is not
trivial, especially when QTL interactions and LD are
involved.

In this paper, we first explored the modeling schemes for
the F and Cockerham models. We showed that the F
models are basically genotype-based models by treating
genotypes as different factor levels, while the Cockerham
models are allele-based models with a special modifica-
tion to correct a collinearity problem. These two models
usually provide different partitions of genotypic vari-
ances. Due to an inherent correlation between the addi-
tive and dominance effects within a locus in F models,
variances contributed by the within-locus additive and
dominance effects are quite often confounded with each
other. Therefore, separate assessment of variations con-
tributed by the additive and dominance effects within a
locus is not very meaningful. In order to fully capture the
genotypic contribution at a locus, variations contributed
by both additive and dominance effects should be
assessed jointly.

In this paper, we also pointed that either the Cockerham
or the F model can have two different versions - one is
defined based on some coding variables for allele types or
QTL genotypes, and the other uses some mean-corrected
index variables. Using those mean-corrected index varia-
bles can help to reduce the complexity in partition of gen-
otypic variances under either linkage or zygotic equilibria.
For example, the traditional (mean-corrected) Cockerham
model can provide orthogonal partition of genotypic var-
iance into additive, dominance and epistatic variance
components under HWE and linkage equilibrium, while
under zygotic equilibrium a mean-corrected F model can
provide orthogonal partition of genotypic variances
between different loci and locus-by-locus interactions. By
introducing the mean-corrected index variables, we can
easily fit a Cockerham model or a mean-corrected F
model and compute various allelic or genotypic variance

and covariance components using the standard regression
approach. It was also noticed that the classical F2 model
used in experimental designed populations is actually a
special case of both the traditional (mean-corrected)
Cockerham model and the mean-corrected F model.

Using the mean-correction to dissect the confounding of
main effects and their interactions on partition of vari-
ances is a useful strategy that can also be applied to evalu-
ate gene by environmental interactions. Back to the
original model (1), similar to the allelic effects and their
interactions in model (2), the genetic main effect G and
the gene by environmental interactions G × E could be
correlated as well. This correlation usually does not affect
the association test of the gene by environmental interac-
tions. But it can lead to a covariance between the genetic
main effect G and the gene by environmental interactions
G × E on partition of the phenotypic variances even when
the main effects of G and E are uncorrelated, which com-
plicates evaluation of the variation contributed by G × E.
If we make mean-corrections on both G and E, then we
can obtain an orthogonal partition of the phenotypic var-
iance VY contributed by G, E and their interactions G × E
as long as G and E are uncorrelated. Without making these
mean-corrections, the variance V (G × E) itself could be an
incorrect estimate of the actual variation contributed by G
× E in addition to the genetic and environmental vari-
ances V (G) and V (E).

As allele-based models, we can easily incorporate some
allele related properties such as HWE or linkage equilib-
rium into the variance components analysis for the Cock-
erham models. In this paper, we further explored some
useful properties of the index variables and derived for-
mulas of several important moment functions for a G2A
model under LD. Similar results can be derived for more
than two loci. With three loci A, B and C, for example, we
can show that

for any integers n1, n2, n3 > 0. For more than three loci with
linkage disequilibria, the moment functions will become
more complex. But it is still computationally feasible as
long as we have information about the haplotype distri-
bution in the sampled population.

When there is no need to distinguish the paternal and
maternal gametes, the F and Cockerham models are
transferable. There are two different ways of linking the
genotypic effect parameters in a F model with the allelic
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effect parameters in its corresponding Cockerham model
- through either their relationship with the genotypic val-
ues, or the relationship between the coding variables of
genotypes used in the two types of models. By establish-
ing the relationship between the genotypic effects and
allelic effects, we can then calculate the allelic variance
components for a F model using the partition formulas
derived for its Cockerham model. Using this approach, for
a one-locus F model under Hardy-Weinberg disequilib-
rium and a two-locus G2A model with epistasis and LD,
we presented detailed formulas for partition of genetic
variances in terms of their genotypic effects. Moreover,
some practical issues related to using of reduced instead of
fully parameterized F models were also addressed.

Both the F and the Cockerham models are statistical
models, as their model parameters depend on not only
genotypic values but also the genotypic distribution in the
sampled population especially when reduced forms of the
models are used. On the other hand, several attempts have
been made to model QTL effects and epistasis based on
their biological functions. Cheverud and Routman [5]
and Cheverud [6] introduced an unweighted F model
and defined several specific epistases termed as "physio-
logical epistases". Hansen and Wagner [17] further
inspected genotype-based interactions and termed them
as "functional epistases". In our opinion, these two kinds
of models are different ways of modeling genetic effects
and their interactions, and they serve for different research
interests. The function-based models could be very useful
in analysis of the molecular functions of genes and their
pathways. In genetic mapping studies, however, they are
hindered by lack of appropriate model building tools and
the fact that the genotypic values are statistically defined
as expected means over the genotypic distribution in the
sampled population. With a great body of available
regression tools, the statistical models provide a powerful
tool for detecting at least relatively common genes with
certain magnitude of genetic effects in accommodation
with the limited sample sizes.

Conclusion
The Cockerham type models are allele-based models
whereas F regression models are genotype-based models.
When allelic effects and their interactions are of main
research interests, the Cockerham type models are recom-
mended. As genotype-based models, the F models are
most suitable for examining genotypic effects and their
interactions. Since the allelic variance components are
important quantities in assessing covariance between rel-
atives, the calculation and statistical tests of the allelic var-
iance components would be helpful for assessing how
much variations are actually contributed by the allelic
effects at each locus, and the locus-by-locus allelic interac-
tions, which could become a crucial piece of information

for assessing the clinical importance. For a Cockerham
model with the mean-corrected index variables, the allelic
variance components can be estimated directly using the
standard regression approach. For an F model, when
there is no need to distinguish the paternal and maternal
allelic effects, we can transform it into its corresponding
Cockerham model through the relationship between their
coding variables of genotypes. Allelic genetic variance
components for the F model can then be calculated by
either fitting its equivalent Cockerham model or translat-
ing formulas derived from the Cockerham model in terms
of the additive, dominance and epistatic genetic effects in
the F model. Both the F and Cockerham models provide
basis for the QTL analysis. We believe that a better under-
standing of the differences and links between these two
types of models will be helpful for genetic association
mapping studies, variance components analysis and dis-
section of the genetic architecture of quantitative traits.
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