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Abstract

Background: In haplotype-based candidate gene studies a problem is that the genotype data are

unphased, which results in haplotype ambiguity. The  measure [1] quantifies haplotype

predictability from genotype data. It is computed for each individual haplotype, and for a measure

of global relative efficiency a minimum  value is suggested. Alternatively, we developed methods

directly based on the information content of haplotype frequency estimates to obtain global relative

efficiency measures:  and  based on A- and D-optimality, respectively. All three methods

are designed for single populations; they can be applied in cases only, controls only or the whole
data. Therefore they are not necessarily optimal for haplotype testing in case-control studies.

Results: A new global relative efficiency measure  was derived to maximize power of a simple

test statistic that compares haplotype frequencies in cases and controls. Application to real data

showed that our proposed method  gave a clear and summarizing measure for the case-control

study conducted. Additionally this measure might be used for selection of individuals, who have the
highest potential for improving power by resolving phase ambiguity.

Conclusion: Instead of using relative efficiency measure for cases only, controls only or their
combined data, we link uncertainty measure to case-control studies directly. Hence, our global
efficiency measure might be useful to assess whether data are informative or have enough power
for estimation of a specific haplotype risk.

Background
When assessing the relationship between haplotypes and
a disease outcome, a problem is that haplotypes are not
directly observed. The genotype data are unphased, which
results in haplotype ambiguity. This missing phase infor-
mation causes reduction of the power in haplotype case-

control studies, and the results may be misleading. Our
interest is in two types of analyses; namely global test sta-
tistics to compare haplotype frequency distributions
between cases and controls, and testing effects of individ-
ual haplotypes [2]. An optimal measure to quantify the
amount of available information is needed for better
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understanding of the results obtained. Our main aim
therefore is to develop a global relative efficiency measure
that is directly based on the test statistic of a case-control
study.

In the planning stage of case-control association studies,
haplotype-tagging SNPs are often selected to have maxi-
mal power based on the pilot study of the target popula-
tion or using information drawn from the International
HapMap (http://www.hapmap.org). For this purpose,

Stram et al. [1] proposed  that quantifies predictability

of the individual haplotype from genotype data. For a
measure of global efficiency it was suggested to take the

minimum  value. Alternatively, Uh et al. [3] developed

multivariate methods directly based on the information
content of haplotype frequency estimates. The global rel-

ative efficiency measures,  and , were defined as the

ratio of observed information relative to the complete
data information based on A- and D-optimality [4,5],
respectively. Nicolae [6] also proposed an A-optimality

based measure in a broader framework. The  measure

reflects the average information of the parameters, and

 value simply relates to one diagonal element of the

observed information matrix [3]. In contrast, the 

measure takes possible correlations between the parame-

ters into consideration. These three measures ( , 

and ) can be used for choosing tagSNPs to maximize

information content on haplotypes and to maximize the
power of the planned study. In the context of case-control
studies these three measures, which are designed for sin-
gle populations, are not readily applicable for case-control
association studies. Therefore we propose a new measure,

, which is optimal for assessing global relative effi-

ciency of case-control studies using haplotypes.

O'Hely and Slatkin [7] have addressed a similar issue and
provided a ratio R based on non-centrality parameters
using likelihood ratio statistics. Their methods are based
on non-centrality parameters, hence closely related to the
issue of sample size in a case-control study. In general,
enlarging sample sizes improves the power of the study.
However, we argue that increasing the number of cases
and controls with the same corresponding LD structure
has little influence on relative efficiency with respect to
phase uncertainty; i.e., resolution of haplotype phase does
not depend on the sample size. Here our new relative effi-

ciency measure  can be of great assistance to check

whether data are informative enough for haplotype case-
control studies and the results are correctly interpreted.
For low values of a relative efficiency measure the haplo-
type-based inferences should be interpreted with caution
even when sample sizes are large.

When conducted studies appear to be not informative

enough for haplotype analysis (low values of ), one

might want to resolve the haplotype phase. In principle, it
is possible to resolve phase uncertainty either by labora-
tory work which is still costly, or by additional genotyping
of family members. However, is it worth while to make
these efforts? Regarding cost-effectiveness, a forward selec-

tion procedure based on the  measure is proposed for

pinpointing the individuals (cases or controls) who are
most responsible for the loss of information due to hap-
lotype uncertainty. These same individuals have the high-
est potential to increase the power of the case-control
study by resolving haplotype phase.

We briefly describe our methods for single populations
and proceed to derive methods for case-control data sets.
We illustrate our methods with the Interleukin-1 Gene
Cluster Data. All computational work has been done
using the programming language R [8]. An R program is
available at http://www.msbi.nl/uh.

Results
Application to the Interleukin-1 Gene Cluster Data

The data consist of a random sample of 886 subjects (ages
55-65 years) from a population-based cohort, the Rotter-
dam study [9,10]. Two polymorphisms within Inter-

leukin-1 Gene (IL1) and one within the IL-1 receptor
(IL1RN) were chosen for haplotype association with the
occurrence of radiographic osteoarthritis (ROA) in the
hip, knee and hand. After removing missing data, ROA
data consist of 714 unrelated subjects: 61 cases and 653
controls for hip ROA. In Table 1 for the whole population,
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Table 1: Haplotype frequency estimates of hipROA data

Haplotype Total Cases Controls

1 111 0.36 0.25 0.37
2 112 0.08 0.15 0.07
3 121 0.16 0.27 0.15
4 122 0.16 0.18 0.16
5 211 0.20 0.12 0.21
6 212 0.02 0.03 0.02
7 221 0.02 0.01 0.03
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cases and controls, the haplotype frequency estimates are
given which were obtained by THESIAS [11]. This soft-
ware uses stochastic expectation maximization (EM) algo-
rithm. Pairwise Linkage Disequilibrium (LD) in controls
was observed for the first two SNPs (D' = 0.71 and r2 =
0.09) and for the second and third SNPs (D' = 0.44 and r2

= 0.13). The relatively low values of r2 indicated that none
of the markers can be considered redundant in an associ-
ation study. Meulenbelt et al [10] found (suggestive) pos-
itive association of two haplotypes 112 and 121 with hip
ROA (p112 = 0.0008 and p121 = 0.0002). The corresponding

values of Stram's [1] were 77.4% and 85.6%, which

are less than the recommended 90% [1]. The range of the

 values per haplotype was from 57% to 92%. Note that

these  values indicate relative efficiency only per hap-

lotype for the whole data. Hence, this measure might not
be adequate to assess the global efficiency for haplotype
testing in case-control studies.

Since our example data set was extremely unbalanced - 61
cases versus 653 controls and the set of cases may be too
small to cover the haplotype structure completely, we gen-
erated the more balanced data set of 500 cases and 500
controls based on the real data set. To investigate the per-
formance of global efficiency measures, 1,000 data sets
were generated.

Global relative efficiency of the data

In Table 2 the four relative efficiency measures - min( ),

, , and  - are given in cases only, controls only,

and in the case-control study setting using the real hip

ROA data. While the minimum [1] was 77.9% in cases

and 59.3% in controls, for the specific case-control study

our power-related measure  = 82.3%. Bearing in mind

that we are mostly interested in assessing the effect of a
subset of two haplotypes 112 and 121, and that these two
haplotypes were found significantly associated with hip

ROA, we computed the corresponding . The inform-

ativeness increased to 92.6%.

Since the high values of  and  in controls might

reflect imbalance of data - case-control ratio was about 1/
10, we generated 500 cases and 500 controls based on the
real data. The 95% confidence intervals based on 1,000

simulations were:   (58.4, 65.5),   (85.4, 89.5),

  (71.4, 76.8),   (83.0, 87.4) and   (91.7,

94.8).

Selection of informative individuals

Suppose phase ambiguity of haplotypes in our data set
can be resolved by additional laboratory work or genotyp-
ing family members, the question arises which individual
should be selected first. In Table 3, we grouped individu-
als with identical genotypes. The characters of the group
identifiers denote the genotype at the SNPs, where 1 and
2 stand for homozygote 1/1 and 2/2, and H denotes a het-
erozygote. The individuals of this genotypic group 1HH
can have compatible haplotypes of 111, 112, 121 and
122. When there is no phase ambiguity - for example due
to Linkage Disequilibrium (LD), the number of compati-
ble haplotypes will be two. The order of the group identi-
fications are determined by the sum of the diagonal
elements - the column "loss per genotype" - of the loss
matrix i in (3). Note that this method is comparable to A-

optimality measure, and it is used for relative efficiency
measure in [12]. The highest labels (1HH in cases and
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Table 2: Global relative efficiency. 

nr of individuals per group (%) Case-control study (%)
Total ambiguous %

min( )

hipROA
control 653 212 32.5 59.3 86.4 89.8 82.3 92.6
case 61 22 36.1 77.9 81.4 78.5

Simulated data1

control 500 174 34.8 63.7 85.4 79.8 83.2 93.3
case 500 181 36.2 53.9 88.6 77.3

For each group min( ),  and  values were given, and for a the case-control study  value was computed in terms of power of the 

global statistic T in (8). The subscript 2,3 indicates the relative efficiency of the haplotypes 112 and 121. 1Results from one simulated sample.
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H1H in controls) denote the group with highest loss,
therefore potentially highest for information gain. The
values of the last row - the row "loss per haplotype" -
information loss per haplotype. These values relate to

Strams's  in the following manner: for example for

haplotype 111,  ~ 1 - 3.00/17.52. the haplotype 121

has the largest information loss. Within 121 the individu-
als contributing the largest loss are the type 1HH. Select-
ing (or resolving) one individual in this group will change
the table, and we repeat the procedure. Whether we
should select cases first cannot be determined using Table
3.

Rh
2

R111
2

Table 3: Selection strategy for the subset based on information without taking into account correlations between haplotype frequency 
estimates.

hipROA data genotype nr of individuals 111 112 121 122 211 212 221 loss per 
genotype

total loss

Cases
n = 61

1HH 10 0.25 0.25 0.25 0.25 0 0 0 1.00

HHH 7 0 0.03 0.18 0.19 0.19 0.1
8

0.03 0.79

H1H 2 0.19 0.19 0 0 0.19 0.1
9

0 0.77

HH1 3 0.04 0 0.040 0 0.04 0 0.040 0.16
no ambiguity 39

loss per 
haplotype

3.00 3.07 3.85 3.83 1.85 1.6
2

0.31 17.52

Controls
n = 653

H1H 28 0.21 0.21 0 0 0.21 0.2
1

0 0.83

HH1 46 0.18 0 0.18 0 0.18 0 0.18 0.72
1HH 91 0.12 0.12 0.12 0.12 0 0 0 0.49
HHH 47 0 0.04 0.06 0.10 0.10 0.0

6
0.04 0.40

no ambiguity 441
loss per 

haplotype
25.29 19.09 22.23 15.760 18.59 8.5

2
10.34 119.81

Simulated data genotype nr of individuals 111 112 121 122 211 212 221 loss per 
genotype

total loss

Cases
n = 500

1HH 83 0.25 0.25 0.25 0.25 0 0 0 1.00

HHH 40 0 0.03 0.11 0.13 0.13 0.1
1

0.03 0.55

H1H 26 0.11 0.11 0 0 0.11 0.1
1

0 0.15

HH1 32 0.04 0 0.04 0 0.04 0 0.04 0.15
no ambiguity 319

loss per 
haplotype

24.80 24.94 26.26 26.07 9.36 7.1
7

2.52
121.12

Controls
n = 500

H1H 25 0.23 0.23 0 0 0.23 0.2
3

0 0.93

HH1 36 0.21 0 0.21 0 0.21 0 0.21 0.83
HHH 43 0 0.05 0.06 0.11 0.11 0.0

6
0.05 0.44

1HH 70 0 0.11 0.11 0.11 0.11 0 0 0.42
no ambiguity 326

loss per 
haplotype

20.68 15.23 17.65 11.89 17.86 8.6
1

9.55 101.47

The group identifiers denote the genotype at the SNPs, where 1 and 2 stand for homozygote 1/1 and 2/2, and H denotes a heterozygote. The order 
of the group identifications are determined by the sum of the diagonal elements - the column "loss per genotype" - of the loss matrix i in (3). 
Individuals with higher loss will results in higher information gain, when their ambiguity could be resolved. The values of the last row, "loss per 
haplotype", show information loss per haplotype. The simulated data set is the same sample data set as in Table 2.
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Figure 1 shows the forward stepwise selection of individ-

uals using  measure, specifically developed for case-

control studies. The groups in the y-labels are ordered as
in Table 3: the upper part 1HH, HHH, H1H, HH1 repre-
sents the selection order for cases, and the lower part
selection order H1H, HH1, 1HH, HHH for controls using

the real data. The points represent the selection by . At

first, 10 case individuals with the type 1HH are chosen.
Instead then selecting the HHH individuals who are the
second in Table 3, a jump is made to HH1 individuals,
and it indicates correlation between parameters. Hence,
Figure 1 illustrates the discrepancies in using two different
criteria. Especially the jumps between the groups, and
cases and controls are caused by using different methods.
In the real data, resolving case individuals increase infor-
mation content dramatically. For comparison, results
using the same simulated data set of 500 cases and con-
trols based on real data as in Table 2 are given.

Discussion
For case-control association studies using haplotypes it is
of great importance to evaluate the data set whether it is
appropriate to conduct haplotype-based analysis. This
step enables us to interpret the results correctly. Therefore,

we developed a global relative efficiency measure, ,

which was directly based on the test statistic of a case-con-
trol study. For testing a subset of haplotypes, s, we pro-

posed .

It has been noted that the extent of LD can be different
between the case and control groups in a candidate region
[13]. Our study also showed that the uncertainty of data
clearly depends on the specific structure of data used. The

 values were comparable using a unbalanced data set

(the HipROA data) as well as using balanced simulated
data sets which supposedly have the same structure as the
real data. When the data are not informative enough to

conduct haplotype-based analyses, say   90%, tow

options can be considered. One is to select individuals
who have the highest potential to increase the power by
resolving haplotypes, as discussed in the results section.
The second is to make haplotype blocks [14] smaller until

a pres-set  value is reached, whose limit would be the

block containing a single SNP.

We did not address here which methods could be used to
enlarge the efficiency of the study. It may be argued that
the phase resolution by laboratory work is too costly.
However, simply genotyping more individuals does not
help in resolving phase ambiguity, assuming that addi-
tional cases and controls were selected from comparable
populations as in the original data. For late-onset diseases
it would not be possible to obtain samples of parents.
However, in the planning stage of some studies, expected
(remaining) information loss after genotyping parents
could be calculated to make a balanced decision. In the
same way, adding familial information from the sibling
pairs could be an option. Putter et al. [12] showed that
adding a sib increases information by 1/2 compared to
adding parents, and adding the second sib by (1/2)2, the
third sib by (1/2)3 etc. That is, we need 4 or 5 sibs to
obtain 90% of information by adding parents. Our meth-
ods are based on the assumption of Hardy-Weinberg equi-
librium (HWE) in sample haplotype frequencies, in
addition to a multiplicative model. Therefore, our relative
efficiency measure would be influenced by the departure
from HWE. As our T-statistic can be considered as a multi-
allelic test, which is known to have inflated type 1 error
rates when HWE is not satisfied [15,16]. Satten and
Epstein [17] showed that the both prospective and retro-
spective approaches with a multiplicative model is robust
to the HWE assumption in the target population. In the
same paper, they also showed that the retrospective
approach, which we used in our statistic, is superior to the
prospective one. When the departure from HWE cannot
be ignored, for example caused by inbreeding and popu-

lation stratification, a variant of  based on retrospec-

tive likelihood can be developed using a fixation index.

Conclusion
To assess the relative efficiency for haplotype testing in a
case-control study, we developed methods based on the T-
statistic as described in the Methods section. This measure
indicates how much information is contained compared
to the fully phased data for haplotype analysis in case-
control studies. We also showed how this measure can be
used for optimal selection of individuals who contribute
most to information gain by resolving phase ambiguity.

By applying to the real data, we obtained the global rela-

tive efficiency  = 82.3% for haplotype analysis. Focus-

ing on only two haplotype that are found significantly

associated with disease, we obtained  = 92:6%.
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Forward stepwise selection of informative individuals and the corresponding increase in  using real and simulated dataFigure 1

Forward stepwise selection of informative individuals and the corresponding increase in  using real and sim-

ulated data. To gain information efficiently forward stepwise selection of the most informative individuals is employed for 
maximizing the power of global test T, for the real hipROA data (upper panels: n(case) = 61 and n(control) = 653) and a com-

parable simulated data (lower panels: n(case) = n(control) = 500). (i) The left panels: The points represent the selection by . 

The groups in the y-labels are ordered as in Table 3: the upper part 1HH, HHH, H1H, HH1 represents the selection order for 
cases, and the lower part selection order H1H, HH1, 1HH, HHH for controls using the real data. Consequently, the jumps 
between the groups, and cases and controls are caused by using different methods. (ii) The right panels show the increase in 

 by resolving phase uncertainty.
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Methods
Quantification of global relative efficiency in a sample

Suppose we have a sample of n unrelated individuals from
a population. From each individual we observe m multi-
locus SNP-genotypes. Under Hardy-Weinberg equilib-
rium (HWE), the distribution of haplotypes is assumed to
be multinomial, and the joint distribution of the paired
haplotypes is equal to the product of the two marginal dis-
tributions. Here HWE assumption is required for haplo-
type distribution - and not for single SNPs - in the

corresponding population. The haplotype will be

described by a k( 2m) dimensional vector h with its ele-

ments 0 or 1, and Pr(hj = 1) = j denotes the frequency of

haplotype j = 1,..., k, with . Note that each

subject has two such haplotypes. We use the natural para-

metrization in  that is "symmetric" in the haplotypes
[3,12]:

 jj

k ==∑ 1
1
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Note that the parameter vector  is not completely identi-
fiable. We first derive all the formulas as if there is no con-
straint on , and when necessary we transform them to
the appropriate parameter space.

If there is no uncertainty, any (ordered) haplotype pair
(h1, h2) of one individual may be described with a k-vector

Hj =  + , where Hj  {0, 1, 2}, so-called haplo-

type dosage. Then, per subject, the log-likelihood l(), the

score function U() and the Fisher information I() are:

where

The total information based on n individuals is Icomp =
2nC. The covariance matrix is given by

where (·-) denotes the Moore-Penrose generalized inverse
[18].

In case of phase ambiguity, the haplotypes can be thought
as (unphased) genotypes plus phase information. Hence,
the complete data H can be partitioned as H = (G, Z),
where G denotes the observed (incomplete) genotype
data and Z the missing phase information. As Louis [19]
observed the observed information can be expressed as IG
= IH - IH|G. The loss, i = IH|G;i, caused by missing phase
information for one individual i is then

where fH|G is the corresponding density. And, the observed
information is given by

The corresponding covariance matrix of  is given by

The last expression is obtained by Taylor approximation

given that  is small, and it shows that loss

of information will cause increase in the covariance of
estimates. When we have no ambiguities in the data, i

equals to zero, and the covariance becomes simply C/(2n)
in (1).

Note that the singular Fisher information k × k matrix
(consequently the covariance matrix) can easily be trans-
formed to the (k - 1) × (k - 1) matrix I. In Lehmann [20],
it is described how an information matrix changes under
reparametrization. Let a function t define as follows:

Then the matrix J contains the first partial derivatives of
the function t,

  
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
j j

j

ll
k

= =
=∑

( )
exp( )

exp( )
.

1

1
1h j= 1

2h j=

l H

U
l

I

j j l

j

k

j

k

( ) log( exp( )),

( )
( )

( ),

(



 






= −

= ∂
∂

= −

==
∑∑  



2

2

11

H

))
( )

( ) ,= − ∂

∂
= =

2

2
2

l
U C




Var 

C C
k

k k k

= = − =
− −

− −
( ) ( ( )) ( ) ( )

( )

(

   diag   
   

   


1 1 1

1

1

1


  

 ))

.

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Cov comp compI C n( ) / ( ),
 

= ∂
∂

∂
∂

=− 
2 (1)

i

i

f h g

T
g

U

=
∂

∂

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=

E
H G

Var

H G i

H G i

| ;

| ;

ln | ( | , )
| ,

( ( ))

2 






== −E E EH G i H G i H G i| ; | ; | ;( ( ) ( ) ) ( ( ))( ( )) ,U U U Ui i
T

i i
T   

(2)

I nCobs i

i

n

= −
=
∑2

1

. (3)

̂

Cov obs i

i

n

nC

C
n

ii
n

nC

( )  = ∂
∂

−
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∂
∂

= − =∑⎛

⎝
⎜

=

−

∑ 
2

2
1 1

2

1




⎜⎜

⎞

⎠
⎟
⎟

+ =∑
−

~
( )

.
C
n

ii
n

n2
1

2 2


(4)

ii

n
nC/ ( )2

1=∑

t H H H H Hk k j

j

k

: ( , , ) ( , , , ).1 1 1

1

1 → −−

−

∑

J =

⋅
⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅
− − − ⋅ − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

1 1 1 1 1

⎥⎥
⎥
⎥
⎥
⎥

.

Page 7 of 9
(page number not for citation purposes)



BMC Genetics 2009, 10:54 http://www.biomedcentral.com/1471-2156/10/54
I can be computed as I = JTI*()J. From now on, the Fisher
information as well as covariance matrices are assumed to
be properly transformed into an appropriate parameter
space.

To assess global efficiency of data, the relative efficiency is
defined by the ratio of information content of observed
data to that of complete data. Let Iobs as in (3) and Icomp as
in (1) denote observed information and complete infor-
mation, respectively. Then based on A-optimality

where tr(I) is the trace of information matrix. To account
for possible correlations between the parameter estimates,

we propose  based on D-efficiency measure [21,22].

For k - 1 parameters, it is defined as

where |I| denotes the determinant of the matrix, and cal-
culated as a product of nonzero eigenvalues. Note that
this measure is invariant to transformation of parameters.

High values of  and  indicate that data are inform-

ative to estimate haplotype frequencies.

Next, efficiency measure regarding a subset, s, of the hap-
lotype frequency estimates is considered. Partition the k-1
parameters as follows:

Treating -s as a nuisance parameter I can be partitioned
as

where Is, s is 2 × 2 matrix with respect to s. The informa-

tion content with respect to this subset s amounts to

.

Quantification of global relative efficiency in case-control 
studies

For a case-control study, we propose a new relative effi-

ciency measure based on the power. Let  and 

denote estimates of the frequencies of haplotype j = {1,...,
k - 1} in controls and cases, respectively. The difference in

haplotype frequencies is denoted as a vector .

Then the global statistic is defined as follows:

which is 2 distributed with k - 1 degrees of freedom. For
computation of global statistic T, the complete and
observed covariance for cases and controls as in (1) and
(4) can be plugged in the denominator of the statistic:

 Then, the global rela-

tive efficiency concerning the power of T can be defined as
follows:

where Tobs and Tcomp denote observed and complete global

statistic T, respectively. In case that the null hypothesis
specifies only a subset of haplotypes and by treating the
remaining haplotypes as a nuisance parameter, we use the
classical score statistic when the null hypothesis is com-

posite, as described in Cox and Hinkley [23]. Let s, s, s,-

s, -s, s and -s,-s denote the corresponding subsets of the

covariance matrix  in (8). As in (7), s

denotes the subset of interest and -s is considered as a

nuisance parameter. Then, the global statistic concerning
for the subset s is

and relative efficiency is denoted as 

In order to select the most informative individuals in a
case control study, the forward stepwise selection proce-
dure could be employed for maximizing the power of glo-
bal test T; i.e., it is determined which multilocus
combination of genotypes provides most information
gain, when the phase ambiguity is resolved.
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