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Abstract
Background: Most existing likelihood-based methods for fitting historical demographic models to DNA
sequence polymorphism data to do not scale feasibly up to the level of whole-genome data sets. Computational
economies can be achieved by incorporating two forms of pseudo-likelihood: composite and approximate
likelihood methods. Composite likelihood enables scaling up to large data sets because it takes the product of
marginal likelihoods as an estimator of the likelihood of the complete data set. This approach is especially useful
when a large number of genomic regions constitutes the data set. Additionally, approximate likelihood methods
can reduce the dimensionality of the data by summarizing the information in the original data by either a sufficient
statistic, or a set of statistics. Both composite and approximate likelihood methods hold promise for analyzing
large data sets or for use in situations where the underlying demographic model is complex and has many
parameters. This paper considers a simple demographic model of allopatric divergence between two populations,
in which one of the population is hypothesized to have experienced a founder event, or population bottleneck.
A large resequencing data set from human populations is summarized by the joint frequency spectrum, which is
a matrix of the genomic frequency spectrum of derived base frequencies in two populations. A Bayesian
Metropolis-coupled Markov chain Monte Carlo (MCMCMC) method for parameter estimation is developed that
uses both composite and likelihood methods and is applied to the three different pairwise combinations of the
human population resequence data. The accuracy of the method is also tested on data sets sampled from a
simulated population model with known parameters.

Results: The Bayesian MCMCMC method also estimates the ratio of effective population size for the X
chromosome versus that of the autosomes. The method is shown to estimate, with reasonable accuracy,
demographic parameters from three simulated data sets that vary in the magnitude of a founder event and a skew
in the effective population size of the X chromosome relative to the autosomes. The behavior of the Markov chain
is also examined and shown to convergence to its stationary distribution, while also showing high levels of
parameter mixing. The analysis of three pairwise comparisons of sub-Saharan African human populations with
non-African human populations do not provide unequivocal support for a strong non-African founder event from
these nuclear data. The estimates do however suggest a skew in the ratio of X chromosome to autosome effective
population size that is greater than one. However in all three cases, the 95% highest posterior density interval for
this ratio does include three-fourths, the value expected under an equal breeding sex ratio.

Conclusion: The implementation of composite and approximate likelihood methods in a framework that
includes MCMCMC demographic parameter estimation shows great promise for being flexible and
computationally efficient enough to scale up to the level of whole-genome polymorphism and divergence analysis.
Further work must be done to characterize the effects of the assumption of linkage equilibrium among genomic
regions that is crucial to the validity of applying the composite likelihood method.
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Background
The availability of whole-genome polymorphism data
offers both great opportunities and tremendous chal-
lenges to the study of population genetics. Complete gen-
otype information from populations allows increased
resolution of parameters in complex evolutionary or
demographic models. The challenge is to develop compu-
tational methods that permit the efficient use of such
large-scale datasets. Likelihood-based coalescent methods
have proven very flexible for the analysis of DNA
sequence polymorphism. However full likelihood meth-
ods, such as Markov chain Monte Carlo (MCMC) and
Importance Sampling (IS), are not efficient enough to
scale up to genome-wide datasets, necessitating the use of
approximate methods for estimating likelihoods. One
problem with existing MCMC and IS methods is that a
proposal function must be employed to efficiently search
among candidate coalescent histories. To circumvent this
problem, approximate likelihood methods have proven
useful. This class of methods reduces the dimensionality
of a full DNA polymorphism dataset to a set of summary
statistics, thereby also reducing the number of coalescent
histories that need to be sampled to obtain an estimate of
the likelihood.

One potential drawback of approximate likelihood meth-
ods is that a significant amount of information contained
in the original data may be lost. A second problem with
full MCMC and IS methods is that integrating over the
entire space of possible histories for partially linked poly-
morphisms along a chromosome can quickly become
computationally intractable. In this regard, composite
likelihood has been shown to be a promising method for
the analysis of partially linked polymorphisms [1-3].
Using this method, the likelihood function is computed
marginally for each polymorphism (or contiguous sets of
linked polymorphisms) and their product is taken to be
an approximation of the full likelihood [4]. Because com-
posite likelihood methods are found to yield consistent
estimators of population parameters when the number of
regions examined becomes very large [5,6], they may be
particularly applicable to whole-genome datasets.

One of the commonly used class of models in population
genetics aims to quantify divergence time by measuring
the genetic distance between two populations or species.
Yet many measures of genetic distance are susceptible to
biases introduced by non-equilibrium conditions during
the histories of the populations. Specifically, evolutionary
forces that reduce within-population variation are known
to inflate measures of genetic distance; such forces may
include natural selection [7] or temporal fluctuations in
the effective population size [8-10]. In contrast to the
locus-specific effects of natural selection, fluctuations in
effective size, such as population bottlenecks, are expected

to influence the frequencies of alleles throughout the
entire genome and therefore should be readily detectable
using genome-wide polymorphism data. Thus, it is desir-
able to develop methods that can not only estimate diver-
gence time from genome-wide polymorphism data, but
can also simultaneously account for non-equilibrium
demographic events, such as population bottlenecks.

One novel implementation of a coalescent-based method
that simultaneously estimates divergence time between
two populations and accounts for population bottlenecks
is described by Li and Stephan [11]. This method achieves
the necessary computational economies by summarizing
two-population polymorphism data in the form of the
joint frequency spectrum. The joint frequency spectrum is
a two-dimensional matrix whose elements are the fre-
quencies of the derived nucleotide allele in a joint sample
from two populations or species. Using the joint fre-
quency spectrum, mutations can be classified as either
fixed, shared, or exclusive to one of the populations [12].
Li and Stephan [11] estimate divergence time and bottle-
neck parameters from a joint frequency spectrum con-
structed from 250 X-linked loci, representing samples of
African and non-African populations of Drosophila mela-
nogaster.

While the approach of Li and Stephan [11] does provide
an economical method for fitting a parameter-rich popu-
lation divergence model to a large polymorphism dataset,
it can nonetheless be further economized and extended.
Because the authors consider linkage disequilibrium
among polymorphisms within loci, the mutation rate per
locus must be included as a parameter. In contrast, by
adopting a composite likelihood approach and assuming
linkage equilibrium among polymorphism loci, it is pos-
sible to eliminate the mutation rate as a parameter, similar
to a recent approach by Hernandez et al. [13]. Lastly, Li
and Stephan [11] used a maximum likelihood method
that evaluates a fixed set of proposed parameter values for
their model. This approach does not capitalize on
advances in Bayesian MCMC methods for model parame-
ter estimation. The present study extends the approach of
Li and Stephan [11] by both eliminating the mutation rate
as a nuisance parameter and implementing a Bayesian
MCMC approach that takes advantage of multiprocessor/
multicore computer architecture. The proposed method is
tested for accuracy using simulated joint frequency spectra
and is then applied to three large autosomal and X-linked
resequence datasets from African, European, Asian, and
Oceanian human populations [14]. Three pairwise analy-
ses of the populations are performed to estimate the
parameters of an "Out-of-Africa" bottleneck model (Fig-
ure 1), paying particular attention to the effective popula-
tion size of the X chromosome versus the autosomes.
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Results and Discussion
Behavior of the Markov Chain
To gain confidence regarding the convergence of Markov
chains to their stationary distribution, it is important that
the chains mix well and also that independent runs of the
chains converge to the same posterior probability distri-
bution. The mixing of independently seeded chains is
assessed by measuring the autocorrelation of parameter
values accepted from the prior probability distributions.
Autocorrelations are measured at lag intervals from 1 to
50. Table 1 presents the autocorrelations, at lag 50 (ρ50)
for each parameter value, over all ten replicate runs. For
each of the six different datasets shown in the table, the
two time parameters show the weakest mixing behavior.
Similarly, for each dataset, the two time parameters
showed the highest levels of cross-correlation, ranging
between -0.2 and -0.4 (data not shown). Interestingly, the
parameter that shows the best mixing behavior is the
ancestral population size scaling factor α3. The potential
scale reduction factor (PRSF) and the upper 97.5% quan-
tile of the PRSF distribution are all very close to unity
(Table 1) for every dataset, except simulated data set G,
which differs from the others in that much longer diver-
gence times are involved. A PRSF value significantly

greater than one implies that chains must be run longer to
achieve convergence to the stationary distribution.

Simulated Datasets
The performance of the method under a true population
divergence model is assessed using twelve simulated joint
frequency spectra. Table 2 lists the parameter values for
each of the twelve simulated data sets presented here. The
simulated data sets are intended to represent both recent
population bottlenecks (A-F), as well as older population
bottlenecks (G-L). The duration of the reduction phase of
the bottleneck is the same in all of the simulated data sets,
however, populations either experience a ten-fold reduc-
tion or no reduction at all, in which case the model
reduces to one of pure population growth (C, F, I, L). Sim-
ilarly, during the recovery phase of the bottlenecks, popu-
lations can grow by either 100-fold or 1000-fold. Lastly,
the ratio of the X chromosome effective population size to
that of the autosomes varies between three-quarters
(expected if there are an equal number of breeding males
and females) and unity (a 7:1 ratio of reproducing females
to males).

The posterior probability distributions shown in Figure 2
illustrate several consistencies, as well as several system-
atic biases in the MCMCMC estimation procedure. For
both recent and ancient population bottlenecks, the time
of recovery (t1) is estimated accurately. However, the

duration of the bottleneck (t2) tends to be slightly, and

consistently, overestimated when the bottleneck occurred
2N1 generations ago (data sets G-L). When the bottleneck

is recent, the MCMC method tends to systematically
underestimate the current effective population size of

population 2 (α1), regardless of whether it is 100 or 1000

times that of the founding population size. However,
underestimation does not appear to be a problem for the
data sets obtained from simulations of an older bottle-

neck time. Also, the size of the founder population (α2)

tends to be consistently overestimated when the bottle-
neck is ancient. In all cases, the ancestral population size

(α3) is estimated accurately, which is compatible with the

results of Becquet and Przeworski [15]. Lastly, the ratio of
the effective population size of the X chromosome to that
of the autosomes (h) is estimated accurately, however, in
most cases, the 95% HPD interval includes the value of
the parameter expected under an alternate case of interest.

For example, Figure 2 shows that the median values of 
tend to slightly overestimate the true value of h = 1, and
that, in all but four cases (D, E, J, and K), the 95% HPD
interval includes 0.75 when the true h value is unity and

ĥ

Demographic modelFigure 1
Demographic model. A schematic of the two population 
divergence model that is fit to the joint frequency spectrum. 
Looking forward in time, the ancestral population splits t1 + t2 
generations before the present into two descendant popula-
tions. At this time, the effective size of population 1 is 
assumed to be N1 and the founding size of population 2 is 
assumed to be α2N1. Then, after t2 generations, population 2 
grows to effective size α1N1. Lastly, the effective size of the 
common ancestral population is assumed to be α3N1. Thus, 
the divergence model is governed by five parameters that 
need to estimated: t1, t2, α1, α2 and α3.
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also when the true value of h is three-fourths the 95%
HPD interval includes unity. This observation suggests
that the MCMCMC method may not always have the ade-
quate power to reject the null hypothesis that h = 3/4. The

effect that analyzing a larger data set may have on this
power remains to be investigated.

Estimates of Human Bottleneck Parameters
The quantiles of the marginal posterior probability distri-
butions obtained by applying the method to the rese-
quence data of Wall et al. [14] are shown in Figure 3, with
each of the three comparisons between continental
human populations shown side by side. Also, Table 3 pro-
vides the numerical values for the median estimated
parameter values and the corresponding 95% HPD inter-
vals. It should be first noted that none of these results are
consistent with a population bottleneck model. In each of
the three comparisons, the ancestral effective population
size is estimated to be twice that of the current Mandenka
effective population size and the median estimated values
of neither α1 or α2 are greater than one. Figure 4 plots the
joint posterior probability distributions of α1 and α2 for
simulated bottleneck data set A and the three empirical
resequencing data sets. These joint distributions confirm
that the method accurately detects recent population
growth from data simulated under a bottleneck model,
but is also unable to support recent population growth for
the data of Wall et al. [14]. The resequence data are con-
sistent with a model of a reduced effective population size
with no subsequent expansion for any of the four sampled
human populations.

The divergence time of African and non-African popula-
tions (td) is consistent across comparisons. The estimated
median Africa-Asia divergence time is 0.1010 × 2N1 with

Table 1: Markov chain statistics. 

Dataset Statistic t1 t2 h α1 α2 α3

AA ρ50 0.1520 0.1478 0.0353 0.0600 0.0530 0.0099
PSRF 1 1 1 1 1 1

Upper PSRF 1 1 1 1 1 1
AE ρ50 0.1587 0.1382 0.0302 0.0565 0.0349 0.0044

PSRF 1 1 1 1 1 1
Upper PSRF 1 1 1 1 1 1

AO ρ50 0.1617 0.1324 0.0133 0.0497 0.0326 0.0081
PSRF 1 1 1 1 1 1

Upper PSRF 1 1 1 1 1 1
A ρ50 0.1197 0.2637 0.0868 0.0269 0.0538 0.0669

PSRF 1 1.02 1 1.02 1 1
Upper PSRF 1.01 1.03 1 1.02 1 1

D ρ50 0.1217 0.1916 0.0728 0.0232 0.0604 0.0570
PSRF 1 1.01 1 1.01 1 1

Upper PSRF 1 1.02 1 1.01 1 1
G ρ50 0.1066 0.1567 0.1097 0.0938 0.0053 0.0805

PSRF 1.13 1.19 1.11 1 1.15 1.27
Upper PSRF 1.27 1.39 1.22 1 1.30 1.53

The behavior of the Markov chains for all datasets, as determined by ten independent runs of the chain for each dataset. Three statistics are given: 
ρ50 is the autocorrelation of each parameter at lag 50 steps, PSRF refers to the potential scale reduction factor for each parameter, and Upper PRSF 
is the 97.5% quantile of the PRSF. Multivariate PRSF values are not given. The resequencing data sets of Wall et al. [14] are abbreviated as Africa-
Asia (AA), Africa-Europe (AE), and Africa-Oceania (AO). Additionally, autocorrelation values are also presented for three representative simulated 
data sets (A, D, and G).

Table 2: Parameters for simulated data. 

Dataset t1 t2 h α1 α2 α3

A 0.05 0.03 0.75 10 0.1 1
B 0.05 0.03 0.75 100 0.1 1
C 0.05 0.03 0.75 100 1 1
D 0.05 0.03 1 10 0.1 1
E 0.05 0.03 1 100 0.1 1
F 0.05 0.03 1 100 1 1
G 1 0.03 0.75 10 0.1 1
H 1 0.03 0.75 100 0.1 1
I 1 0.03 0.75 100 1 1
J 1 0.03 1 10 0.1 1
K 1 0.03 1 100 0.1 1
L 1 0.03 1 100 1 1

The population bottleneck model parameters used to generate 
simulated datasets to test the accuracy of the proposed composite 
likelihood method. Parameters t1 is the time since the bottleneck 
recovery, t2 is the duration of the bottleneck, h is the ratio of the 
effective population size of the X compared to the autosomes, α1 is 
the current size of the bottlenecked population relative to the non-
bottlenecked population, α2 is the relative size of the bottlenecked 
population during the reduction phase, and α3 is the relative size of 
the ancestral population. Both time parameters are in units of twice 
the current effective population size of the non-bottlenecked 
population.
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Simulated data estimatesFigure 2
Simulated data estimates. Accuracy of parameter estimation for the twelve parameters in the divergence model. For each 
parameter, the ratio of the estimated median posterior probability to the "true" value of the parameter in the simulation. The 
horizontal gray lines delineate a ratio of unity. The heavy lines in the box plots are the median, the hinge of the boxes are the 
25% and 75% quantiles and the outer whiskers represent the 2.5% and 97.5% quantiles. Results are presented for each of the 
twelve simulated datasets, the parameters of which are listed in Table 1. Posterior probability distributions are taken over all 
ten replicate runs of the Markov chain.
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Table 3: Estimates of human demographic parameters. 

Dataset t1 t2 h α1 α2 α3

AA 0.0473 0.0466 1.1582 0.6148 0.7045 2.0666
(0.0033-0.1454) (0.0026-0.1451) (0.4642-3.4620) (0.1367-7.5359) (0.0933-8.9268) (0.7494-6.6319)

AE 0.0598 0.0543 1.5091 0.5035 1.1674 2.0612
(0.0042-0.1659) (0.0029-0.1699) (0.5987-4.1903) (0.1286-5.8619) (0.1358-9.6137) (0.7549-6.5703)

AO 0.0605 0.0568 1.7542 0.4511 1.3512 2.3385
(0.0049-0.1665) (0.0031-0.1772) (0.5381-4.6644) (0.1016-5.5873) (0.1424-9.9650) (0.8543-7.8275)

The posterior probability medians of the five parameters in the demographic model. The 95% highest posterior density interval for each parameter 
is given in the line below the median values. Values are listed for each of three data sets, including the Africa-Asia comparison (AA), the Africa-
Europe (AE) comparison, and the Africa-Oceania comparison (AO).
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a 95% HPD interval of 0.0416-0.2077. The estimated
median Africa-Europe divergence time is 0.1209 × 2N1
with a 95% HPD interval of 0.0524-0.2422. Lastly, the
estimated median of the Africa-Oceania divergence time is
0.1254 × 2N1 with a 95% HPD interval of 0.0536-0.2458.
If the current effective population size of the Mandenka is
assumed to be on the order of 104 and that the human
generation time is 25 years, these numbers correspond to
50,500 years for the Africa-Asia divergence, 60,450 years
for the Africa-Europe divergence, and 62,700 years for the
Africa-Oceania divergence. There is no support for the
hypothesis that these estimated times significantly differ
from one another and therefore, a single Africa/non-Africa
divergence event cannot be rejected.

There is some suggestion that the rate of coalescence, after
divergence from the African population, may be higher in
the Asian population than in the other two non-African
populations. This can be seen by examining the intensity
of the effective population size reduction phase (F = t2/
α2). For the Africa-Asia comparison the estimated median
F is 0.1027 with a 95% HPD interval of 0.0010-0.2297,
while the estimated median F for the Africa-Europe com-
parison is 0.0603 (95% HPD interval of 0.0019-0.2035)
and 0.05122 for the Africa-Oceania comparison (95%
HPD interval of 0.0012-0.1936). While the estimated
median F from the Africa-Asia comparison does not lie
outside the 95% HPD intervals of the other two compari-
sons, the difference is much more pronounced than the
difference between divergence time estimates, yet cannot

Human data estimatesFigure 3
Human data estimates. Representations of the posterior probability distributions for the six divergence model parameters 
from the data of Wall et al. [14]. Three pairwise population comparisons are plotted: Africa-Asia (AA), Africa-Europe (AE), and 
Africa-Oceania (AO). The heavy lines in the box plots are the median, the hinge of the boxes are the 25% and 75% quantiles 
and the outer whiskers represent the 2.5% and 97.5% quantiles. Numerical values for the median and 95% highest posterior 
density intervals can be found in Table 3. In the plot of the ratio of the X chromosome to autosomal effective population size 
(h), the horizontal gray line delineates a ratio of 3/4. As in Figure 2, the posterior probability distributions shown here are 
taken over all ten replicate runs of the Markov chain.
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be considered conclusive evidence. Lastly, the estimated
median ratios of effective population sizes for the X chro-
mosome to that of the autosomes is greater than 3/4 for
all comparisons. The model assumes a single value of h for
all populations in the model. The highest estimated
median h is found in the Africa-Oceania comparison,
while the smallest is found in the Africa-Asia comparison
(Table 3).

Conclusion
Efficient computational methods for fitting complex
demographic or evolutionary models to large genomic
datasets present a great challenge to population geneti-
cists. The method presented here uses two approxima-
tions to achieve the necessary computational efficiencies.
The first is an approximate likelihood method, in which

large genomic polymorphism datasets are summarized in
terms of the joint frequency spectrum. This approach
reduces the number of coalescent genealogies that must
be sampled to obtain an estimation of the likelihood,
compared with most full likelihood-based approaches.
Secondly, this methodology is rendered feasible by a com-
posite likelihood approach, which assumes that all poly-
morphic sites are in linkage equilibrium and have
independent genealogical histories. The method is imple-
mented using a model of allopatric population diver-
gence, with a founder event occurring in the history of one
of the two diverging populations.

Simulated datasets are used to investigate the accuracy of
the MCMC parameter estimation. The method is found to
perform well, although it experiences some difficulty

Evidence for population growthFigure 4
Evidence for population growth. Joint posterior density plots for the α1 and α2 parameters for four different data sets: A) 
simulated data set A, B) Africa-Asia, C) Africa-Europe, and D) Africa-Oceania. The dashed line plots the case of α1 = α2, which 
is indicative of no recent population growth. In panel A, the posterior density for the simulated bottleneck data lies below the 
dashed line, supporting recent population growth. However, in the other three panels representing the empirical resequence 
data of [14], the joint posterior density lies within the one-to-one region, suggesting a lack of evidence for recent population 
growth.
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delineating the time of the founding event versus the time
of population growth parameters, even though the inten-
sity of the bottleneck is estimated accurately. The problem
of bottleneck models being partially identifiable, with
respect to the timing and magnitude of the reduction
phase, was also observed by several other investigators
[16-18]. This suggests that current approaches to estimat-
ing bottleneck parameters may be limited to estimating
the total amount of drift occurring during the reduction
phase of the bottleneck (e.g., the product of the bottleneck
duration and the magnitude). Again, it remains to be
determined what effect the size of a data set may have on
this problem of identifiability.

The composite likelihood method is applied to three joint
frequency spectra datasets constructed from samples of
four continental human populations [14]. The results
indicate that there is evidence for a reduction in both the
African and non-African effective population sizes, but no
evidence that this reduction was followed by a recovery in
size that is characteristic of population bottlenecks. As
noted by Fay and Wu [19], there is expected to be a period
of time, following a population bottleneck, during which
the X and the autosomes lag in their signal of population
growth compared to the Y chromosome and mitochon-
drial DNA (i.e., a slower accumulation of rare mutations
than the two haploid compartments of the genome).

The conclusion gleaned from the present analysis stands
in contrast to those of Voight et al. [17], which is the only
other resequencing study to test a population bottleneck
model explicitly. Voight et al. use a variant on approxi-
mate likelihood to infer bottleneck parameters from 50
resequenced autosomal loci; their analysis was performed
separately for datasets constructed from an African, Euro-
pean, and Asian sample. Voight et al. conclude that their
African sample cannot reject a constant-size population
model, while a bottleneck model is supported by the two
samples of non-African populations. While it is clear that
the analysis presented by Voight et al. supports a reduc-
tion in the effective population size of non-African popu-
lations, their evidence for a recovery period (growth) from
autosomal data appears to depend upon a set of assump-
tions, including the absolute value of parameters such as
the size of the ancestral population and the severity of the
bottleneck, for which reliable estimates do not yet exist.
Thus, it appears far from conclusive that there is convinc-
ing evidence for recent population growth from either
autosomal or X-linked non-coding resequence datasets.

The differential recovery time for the X chromosome ver-
sus the autosomes has also prompted Pool and Nielsen
[20] to suggest that the X chromosome may recover rare
variants more quickly than the autosomes following a
population bottleneck and that this could elevate the ratio

of X-linked to autosomal nucleotide diversity. Indeed, the
human data analyzed here show equivalent levels of X-
linked and autosomal diversity [21]. The composite like-
lihood analysis suggests that, for this dataset, the effective
population size of the X chromosome is equal to, or
greater than, that of the autosomes, even after taking into
consideration that effects of a bottleneck. The effect
described by Pool and Nielsen [20] would elevate the X to
autosomal diversity ratio upwards of 1,000 generations
following the recovery period of the bottleneck.

The conclusion presented here, that a bottleneck alone is
insufficient to produce the observed elevation in X-linked
diversity, indirectly supports the conclusions of Hammer
et al. [21], that a systematic skew in the breeding sex-ratio
is responsible for the X to autosome diversity ratio. How-
ever, if the expected ratio of X chromosome effective pop-
ulation size to that of the autosomes, under a purely
neutral demographic model, is h = 9/(8(2 - ϕ)), where ϕ is
the proportion of the population that is female, then
limϕ→1 h = 9/8. This expected maximum value for the ratio
of X to autosomal effective population size is lower than
all three of our median estimates of h. Although the lower
bound of the 95% HPD interval for h varies between 0.46
and 0.60 for the three comparisons, the median estimates
suggest that there may be additional forces, such as sex-
biased migration, that act at a genome-wide scale. Inter-
estingly, the conclusions reached here contrast with those
of Keinan et al. [22], who use single nucleotide polymor-
phism (SNP) genotype data to infer a lower effective pop-
ulation size for the X chromosome. These contrasting
conclusions may reflect the different types of data used in
the analyses (resequence versus SNP-typing) or the influ-
ence of natural selection near regions of the genome with
a high density of coding sequence. Undoubtedly, this
dichotomy will be resolved by the forthcoming data from
the 1,000 Genomes Project.

The combination of approximate and composite likeli-
hood methods is a promising approach for scaling up
population genetics analyses to the level of whole-
genome polymorphism data, yet much remains to be
done to characterize the validity and accuracy of these
methods. Projects are underway to examine further the
properties of this method and to apply it to a full-genome
polymorphism dataset.

Methods
Coalescent Model and Likelihood Estimation
The proposed composite/approximate likelihood method
is applied to a model of allopatric population divergence,
in which one of the populations experiences a transient
founder event. This scenario is modeled by the coalescent
process. Looking backwards in time, two populations
with effective sizes N1 and N2 = α1N1. The second popula-
Page 8 of 12
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tion changes its effective population size at time t1 to NB =
α2N1. Then at time t1 + t2, the two populations are
descended from an ancestral population of size NA = α3N1
(Figure 1). Therefore, the divergence time of the two pop-
ulations is td = t1 + t2 and time is measured in units of 2N1
generations before the present. Thus, the model consists
of four different rates of coalescence and its behavior is
governed by a total of six parameters, which are collec-
tively referred to as the vector λ = {t1, t2, α1, α2, α3}.

The coalescent process underlying this model traces the
ancestry of n1 and n2 chromosomes sampled from each of
the two populations, respectively. The total number of
chromosomes in the joint sample is n = n1 + n2. The
number of ancestral lineages remaining within each of the
two populations decays independently as time is traced
backwards, such that there will be 1 ≤ k1 ≤ n1 sampled lin-
eages remaining in population 1 and 1 ≤ k2 ≤ n2 lineages
remaining in population 2. At time td, the remaining sam-
pled lineages merge so that k = k1 + k2, at which point they
are exchangeable and continue to coalesce until the most
recent common ancestor of the joint sample. For t <td, the
rate of coalescence for the joint sample is the sum of two
independent exponential distributed rates. The total coa-
lescence rate (u) is given by

Given that a coalescent event occurs and t <td, the proba-
bility that two randomly chosen lineages in population 1
coalesce is

The probability that the coalescent event occurs in popu-
lation 2 is simply Pr (c2) = 1 - Pr(c1). When a separate joint
frequency spectrum representing X-linked data is also
being considered, then the parameter h scales both t1 and
t2, such that t1(X) = t1(A)/h and t2(X) = t2(A)/h, where t*

(X) is the time of the event for X-linked loci and t* (A) is
the time of the event for autosomal loci. Under the
assumption of neutral evolution, when the male and
females population sizes are equal, h is expected to be 3/4.

A bifurcating coalescent genealogy consists of 2n - 2
branches. Each branch in the genealogy can be labeled bz

for 1 ≤ z ≤ 2n - 2. By drawing from an exponential distri-
bution given by equation (1), each branch can be assigned
a length Tz. Let the total length of the entire genealogy be

the summation . Now let Bij be the set of

all branches in a given genealogy that have i descendants
in a sample of n1 chromosomes from population 1 and j

descendants in a sample of n2 chromosomes from popu-

lation 2. The sum of the lengths of all branches in the set
Bij for a given genealogy is

where I (bz ∈ Bij) is a boolean variable indicating member-
ship of branch bz in the set Bij.

Furthermore, assume an infinite sites model in which μ is
the rate of mutation for a given variable nucleotide posi-

tion and that this rate is diminishingly small (e.g., μ → 0).
Conditioned on that nucleotide site being polymorphic
and the genealogy for that site ( ), the probability of

sampling a mutant nucleotide with frequency i in popula-
tion 1 and j in population 2 is

[23]. These assumptions eliminate the mutation rate as a
nuisance parameter in the model. If a total of r independ-
ent Monte Carlo samples are generated, the probability of
sampling a polymorphism with configuration (i, j) can be
approximated

where Pr ( r|λ) is the probability of the rth coalescent

genealogy. To avoid the zero-frequency problem, in cases

where Pr (i, j|λ) = 0, Laplace's rule of succession is applied
and a negligible probability density equal to

u
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is added to the zero probability entry. Although this pseu-
docount is somewhat arbitrary, it is equal to a single ran-
dom branch length drawn from the entire Monte Carlo
sample of size r. Finally, the likelihood of λ, given the
entire observed joint frequency spectrum (S) from a total
of  polymorphic nucleotide sites, can be approximated by

where Sij is the number of sites with configuration (i, j)
and provided that i + j is not equal to zero or n1 + n2, since
neither of these two conditions would result in a poly-
morphism at that site. A total of r = 105 coalescent geneal-
ogies are sampled to estimate Pr(i, j|λ).

By taking the product of the marginal likelihoods across
all  polymorphic nucleotide sites in equation (7), it is
assumed that all sites are in linkage equilibrium and,
therefore, have independent coalescent genealogies. This
means that equation (7) belongs to a class of approximate
methods known as composite likelihood [4]. There is
some suggestion that composite likelihood estimators of
population parameters are consistent, particularly when
the number of regions examined becomes very large.
While the data of Wall et al. [14] consist of only 40 inde-
pendent regions of the genome, the method may be
promising for future analyses of whole-genome polymor-
phism data. One potential consequence of linkage dise-
quilibrium among sites may be that the resulting credible
intervals for the MCMC parameter estimation may be too
narrow.

Metropolis-coupled Markov chain Monte Carlo 
(MCMCMC) Parameter Inference
A Bayesian approach is used to estimate the model param-
eters in λ from the observed joint frequency spectrum data
(S). The parameters in λ constitute the state of a Markov
chain that relies upon equation (7) to sample from its sta-
tionary distribution,

where f(λ) is the prior density of parameter values and
f(S) = ∫L(S|λ) f(λ)dλ is a normalizing constant. The prior
densities employed in this study were chosen from
repeated exploratory runs of the Markov chain. For the
analysis of the human resequence data, the prior distribu-
tions for the two time parameters are uniform over the
interval (0, 1), while the prior for the ratio of X chromo-
some to autosomal effective population size is uniform
over the interval (0, 5). The prior densities for the relative

effective population size parameters are exponential with
mean 3. Markov chain transition probabilities are gov-
erned by the Metropolis-Hastings criterion [24,25].

Multiple Markov chains are run in parallel and then
Metropolis-coupled, a method in which chains attempt to
swap their current states [26]. Metropolis-coupled chains
are known to improve the mixing of parameter values [27]
and also convergence behavior [28]. Metropolis-coupled
chain x can be assigned a heating term (βx) to modify the
Metropolis-Hastings transition probability from the cur-
rent state λ to a proposed state λ'. This modified transition
probability (U) is given by the equation

where q(λ → λ') is the probability of proposing a move
from state λ to λ'. The probability that an attempted swap
of parameter values between two randomly selected
chains x and y is successful can be written as

[27]. For the purposes of the present study, an incremen-
tal heating scheme was used for eight Metropolis-coupled
chains; in this scheme, the heating term for chain x is
given by βx = 1/[1 + ΔK(x - 1)]. A temperature increment
parameter of ΔK = 1.1 is used in this study, which yields
an average swapping rate of 30-40% between chains. Only
the state of the non-heated chain is recorded at each step.

The general Metropolis-coupled Markov chain Monte
Carlo (MCMCMC) algorithm proceeds as follows:

1) Randomly assign initial parameters value in λ, sampled
from f (λ).

2) Sample r genealogies, each with probability Pr ( r|λ),

and calculate f (λ| S) from equation (8).

3) Randomly select a parameter in λ and propose a new
value from f (λ) to obtain λ'.

4) With probability U, let λ = λ', otherwise retain λ.

5) Randomly select two chains with states λx and λy and,
with probability V, exchange the values of λx and λy, oth-
erwise retain the current state of each chain.

6) Go to step 2.
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In step 6, the algorithm returns to step 2, rather than step
3. This means that at each step the likelihood of the cur-
rent state is recalculated, rather than retained from the
previous step. Retaining the previous likelihood may
result in the chain becoming stuck in a state that, by
chance from the Monte Carlo sample, yields an unusually
high likelihood; however it is also guaranteed to produce
samples from the true posterior distribution, regardless of
the Monte Carlo sample size [29]. While the true variance
of the target distribution can be obtained with this
"sticky" method, it may also impede the convergence
behavior of the chain and, hence, require more steps in
the chain. In contrast, the practice of recalculating the like-
lihood ("smooth" MCMC) are expected to result in higher
acceptance rates, while the resulting posterior distribution
may also have increased variance over that of the true tar-
get distribution, but it may also improve convergence
behavior [30]. Initial runs using the "sticky" MCMC
approach yielded lower overall rates of parameter mixing
than did the "smooth" MCMC method. Therefore, only
results using the "smooth" MCMC algorithm are reported
here.

For each dataset, ten independently seeded replicates of
the Markov chain are run for 105 steps, not including an
initial "burn-in" period of 103 steps. A C++ program, writ-
ten to perform the MCMCMC method called mc3 is freely
available over the internet at http://www.rochester.edu/
College/BIO/labs/Garrigan/software.htm. The OpenMP
application program interface http://www.openmp.org/
is used to distribute parallelized Markov chains across the
shared memory of eight cores in dual Intel Quad-core
Xeon processors running at 2.66 GHz. The duration of the
Metropolis-coupled runs are typically 40-80 hours,
depending upon the dataset or the MCMC algorithm. The
mc3 program allows users to input the desired number of
Metropolis-coupled chains to run on their particular com-
puter.

The potential scale reduction factor (PSRF) is used to
quantify the convergence of the ten replicate runs to the
stationary distribution [31], as implemented in the CODA
package for the free statistical programming environment
Rhttp://www.r-project.org. The CODA package is also used
to calculate posterior probability densities, parameter
autocorrelations and cross-correlations, as well as the
95% highest posterior density (HPD) intervals.

Assessing the Accuracy of the Method
Twelve simulated joint frequency spectra are generated
under a two-population divergence model with known
parameters, given in Table 1. Marginal posterior probabil-
ity distributions for the model parameters are then esti-
mated, using the method outlined above. For each
simulated data set, a joint frequency spectrum of 1000

unlinked single nucleotide polymorphism loci is gener-
ated for both the X chromosome and the autosomes,
resulting in a total of 2000 unlinked polymorphic sites.
The number of sampled chromosomes in each simulation
is n1 = 20 and n2 = 20, for both the X-linked and autosomal
joint frequency spectra. The prior distributions used for
the analysis of simulated data sets A-F are the same as
those given above for the analysis of the human rese-
quence data, except the prior for α1 was exponentially dis-
tributed with mean 50. For simulated data sets G-L, only
the prior for t1 was altered to a uniform distribution over
the interval (0, 5).

Application to Human Resequence Data
The composite likelihood method is then applied to the
X-linked and autosomal resequence data of Wall et al.
[14]. The data consist of 14 X chromosomes and 28 auto-
somes sampled from the Mandenka population, a sub-
Saharan Africa food-producing population, 16 X chromo-
somes and 32 autosomes sampled from the Han Chinese
population, 16 X chromosomes and 32 autosomes sam-
pled from the Basque population from France, and 14 X
chromosomes and 18 autosomes sampled from the Mela-
nesian population. For each population, 20 autosomal
and 20 X-linked loci are resequenced for a total of ~210
kilobases from each individual. Using these four datasets,
three pairwise analyses are performed: (1) Mandenka-
Han Chinese for the Africa-Asia (AA) comparison with
318 X-linked polymorphisms and 655 autosomal poly-
morphisms, (2) Mandenka-Basque for the Africa-Europe
(AE) comparison with a total of 328 X-linked polymor-
phisms and 648 autosomal polymorphisms, and (3)
Mandenka-Melanesia for the Africa-Oceania (AO) com-
parison with 148 X-linked polymorphisms and 614 auto-
somal polymorphisms.

One interesting question is whether the parameters of a
putative non-African bottleneck or divergence times are
consistent across all three comparisons, suggesting a com-
mon historical event shared by all non-African popula-
tions, or if there is clear evidence for distinct, independent
historical divergence/bottleneck events for different non-
African populations. These resequence data were chosen
because they likely represent neutrally evolving regions of
the genome and do not suffer from the ascertainment bias
that may artificially skew the frequency spectra of other
single nucleotide polymorphism datasets [14].

Another motivation to utilize the resequence data of Wall
et al. [14] is that Hammer et al. [21] find that, after correct-
ing for mutation rate, nucleotide diversity for the X-linked
loci is nearly equal to the nucleotide diversity for the auto-
somal loci. Hammer et al. [21] conclude that high vari-
ance in male reproductive success may account for the
nearly equal effective population sizes of the X and auto-
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somes; however, Pool and Nielsen [20] show that the X
versus autosomal effective size may be equal during the
growth phase following a population bottleneck. The
intention here is to use the method to ascertain whether
rapid population growth following a bottleneck, or a
decrease in male effective population size, may result in
increased levels of X chromosome genetic diversity.
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