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Abstract

with enhanced susceptibility to several diseases.

Background: Polymorphisms of the mannose-binding lectin gene (MBL2) affect the concentration and functional
efficiency of the protein. We recently used haplotype-specific sequencing to identify 23 MBL2 haplotypes, associated

Results: In this work, we applied the same method in 288 and 470 chromosomes from Gabonese and European adults,
respectively, and found three new haplotypes in the last group. We propose a phylogenetic nomenclature to
standardize MBL2 studies and found two major phylogenetic branches due to six strongly linked polymorphisms
associated with high MBL production. They presented high Fst values and were imbedded in regions with high
nucleotide diversity and significant Tajima's D values. Compared to others using small sample sizes and unphased
genotypic data, we found differences in haplotyping, frequency estimation, Fu and Li's D* and Fst results.

Conclusion: Using extensive testing for selective neutrality, we confirmed that stochastic evolutionary factors have
had a major role in shaping this polymorphic gene worldwide.

Background

MBL (mannose-binding lectin) is an important compo-
nent of innate immunity and a central recognition mole-
cule of the lectin pathway of complement, which
probably represents the most ancient pathway of comple-
ment activation [1]. It binds to an array of carbohydrates
such as D-mannose and N-acetyl-D-glucosamine on the
surface of pathogens and directly opsonizes the microor-
ganism for phagocytosis or activates the complement sys-
tem via interaction with MBL-associated serine proteases
(MASP-1, -2, -3 and Map19). Complement activation
kills the pathogen by the membrane-attack complex or by
complement-mediated phagocytosis through increased
deposition of opsonic C3 fragments. MBL is also able to
recognize altered self structures present on apoptotic
cells, promoting their clearance, and to modulate the
release of various pro-inflammatory cytokines [2,3].

The MBL2 genetic polymorphism is responsible for the
very common and widespread variation of circulating lev-
els of MBL oligomers and of functional activity of the
protein in the human species. This variation is mainly
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caused by three single nucleotide polymorphisms (SNPs)
in the first exon of the gene: MBL2*D (Arg52Cys), *B
(Gly54Asp) and *C (Gly57Glu). These mutations have a
profound effect on the assembly and stability of the pro-
tein, which leads to an increase of low-molecular-mass
MBL that has reduced capacity of activating complement
and of ligand binding [4,5]. The D, B and C SNPs have
been collectively labeled O, whereas the major alleles at
these loci have been called A. The concentration of the
protein in serum is further modulated by at least three
SNPs in the promoter region: MBL2*H,L (located 550 bp
before the transcription start site), X, Y (located 221 bp
before the transcription start site) and P, Q (non coding
SNP located 4 bp after the transcription start site) [6,7].
The combination of structural and promoter polymor-
phisms results in a dramatic variation in the concentra-
tion of high-order MBL oligomers in apparently healthy
individuals of up to 1,000-fold (European: range <20-
10,000 ng/ml) [8]. Linkage disequilibrium between the
SNPs is responsible for only eight haplotypes (as opposed
to the 64 theoretically possible) associated with increas-
ingly lower MBL serum concentration: MBL2*HYPA =
LYQA = LYPA >LXPA HYPD = LYPB = LYQC = LYPD
[7,9-13]. Using a haplotyping strategy developed by one
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of us, we recently defined 14 additional allelic haplotypes,
most of them similar to LYQA or LYPA [2]. Genotypes
carrying two copies of either HYPD, LYPB, LYQC or
LYPD or one of them and LXPA are particularly associ-
ated with the susceptibility and severity of many diseases,
as well as with protection against intracellular infections
such as tuberculosis, leprosy and leishmaniasis [14-16].

In this work, we aimed to improve our former analysis
by sequencing and haplotyping larger samples of Euro-
pean- and African-derived populations. In order to stan-
dardize and simplify comparisons between future
association studies, we propose a nomenclature based on
the evolutionary convergence of the identified MBL2
haplotypes [17]. We tested our samples for the hypothesis
of selective neutrality and suggest that stochastic evolu-
tionary factors have had a major role in shaping this poly-
morphism worldwide.

Results

To uncover the selective role diseases could have exerted
on the MBL2 polymorphism, we evaluated the MBL2
promoter and exon 1 region from 856 chromosomes of
Gabonese adults (this work) and children [2], as well as
from 470 chromosomes belonging to individuals of Euro-
pean descent, and compared it with previously published
data. Genotype frequencies were at Hardy and Weinberg
equilibrium.

MBL?2 haplotypes identified in this study are listed in
Table 1. They were named according to their evolution-
ary divergence [17] from a hypothetical ancient sequence
probably related to LYQA and LYPA [11,18]. According to
the nomenclature system we adopted, the first clades to
diverge are numbered with Arabic numerals. The 26
identified haplotypes are divided into two major phyloge-
netic branches by six polymorphisms (P1, QI or g.396A
>C; P2, Q2 or g474A >G; P3, Q3 or g487A >G; P4, Q4 or
2.495_500del6; P5, Q5 or g.753C >T, all in strong linkage
disequilibrium with the commonly investigated P6, Q6
polymorphism or g826C >T) (Figure 1). Clade *I is repre-
sented by LYPA and other haplotypes with P variants.
Clade *4 is represented by LYQA and other haplotypes
with Q variants. Other clades are represented by the
intermediate rare haplotypes previously found by our
group in Gabon (2 and 3) [2]. Sublineages of each clade
are subsequently designated with capital letters (e.g.
LYQA-derived haplotypes = *44 and LYQC-derived hap-
lotypes = *4F), and individual present-day haplotypes are
given Arabic numerals (e.g. LYQA = *4A1I), following the
schema numerals/letters/numerals, if they diverge fur-
ther (e.g. the LYQC-derived haplotype with the g.797C >A
SNP, associated with severe malaria = *4F2A). This sys-
tem is flexible enough for the accommodation of new
haplotypes. For example, we added the LYPA-similar hap-
lotypes H16 and H19 found by others exclusively in
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Pygmy populations [19] as *IKI and *IL1, and added the
HYPG haplotype described by us in another study [16], as
1B4. 1t is however not suited for recombinant haplotypes.
In this case, we chose to call them by the names of the
parental haplotypes, separated by a dot. LYPD for exam-
ple is most probably the product of a recent intragenic
recombination event between HYPD (*1B2) and LYPA
(*IAI) or LYPB (*IFI) [20]. Since the recombination
between HYPD and LYPB would have generated HYPB,
which has not been found, we arbitrarily chose to call this
haplotype *1A1.1B2 (equivalent to LYPA x HYPD). We
also wished to incorporate reported associations of hap-
lotypes with MBL concentration. In order to do this, we
added a dash followed by small capitalized "h" or "I" let-
ters, referring to "high" or "low" MBL levels in serum,
respectively (e.g. LYQA = *4A1-h).

We identified in this and in other studies 14 haplotypes
belonging to clade *1 and 9 haplotypes belonging to clade
*4 and added data from others for comparison (Table 2).
Eight of the first 14 and 6 of the last 9 haplotypes were
polymorph in at least one population. Among the rare
haplotypes, we found three previously unknown in the
European population: *1B3, a rare HYPA-similar haplo-
type; *1C2, the only LXPA-similar haplotype; and *4C1-h,
a LYQA-similar haplotype with a g.456G >T SNP found
in three heterozygotes (the first two haplotypes were sin-
gletons). The g.456G >T SNP was assigned by others to
an otherwise HYPA haplotype reconstructed from
unphased genotypic data of one Sardinian heterozygote
[19]. Maximum likelihood phasing of our own data with
the EM and ELB algorithms generated 1-2% erroneously
assembled haplotypes in the Gabonese and European
samples. Only in the Gabonese, seven spurious "new"
haplotypes were generated with the EM and eleven with
the ELB algorithm (Table 3). To verify the effect of sample
size in frequency estimates, we compared the haplotype
distribution between some populations investigated by us
and by others [19]. Although there were no significant
differences with the exact population differentiation test,
differences between individual haplotype frequencies
were significant, even between samples with similar
ancestry (Table 2).

With the exception of LYQA (*4A1-h), *4 haplotypes are
well represented only in the African population. In con-
trast, HYPA (*1BI-h) and LYPB (*1F1-[) are among the *I
haplotypes that reach high frequencies in the European,
Asian and Native American, but not in the African popu-
lation (Figure 2). The uneven haplotype distribution
around the world is reflected by the average Fst value
among all segregating sites (0.1831, P < 0.00001), which
indicate great genetic differentiation between the analy-
sed populations. One of the lowest individual significant
Fst values corresponded to the X/Y SNP, whereas the
highest values corresponded to the H, L and P, Q segre-
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Table 1: Nucleotide changes and haploypes of MBL2.
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The positions corresponding to the SNPs and to the deletion (position of the first deleted nucleotide) are shown in the first row (Reference sequence: Y16577). Haplotype nomenclature was given according
to others [17]. The common nomenclature of formerly known SNPs and haplotypes (excluding LYPF and LYQE), is given in parentheses. *1B3, *1C2 and *1F2 were not investigated for MBL concentration, and
thus did not receive the designation "I" (for low MBL levels) or "h" (for high levels). For all other haplotypes, MBL levels have been reported by us and by others [2,7,9-13]. In gray: coding region of exon 1. In

SNP database: g.259C > T as rs35451939, g.273G > Cas rs11003125, g.311G > Cas ss107796309, g.388G > A as rs7100749, g.396A > Cas rs11003124, g.456G > T as rs35615810, g.474A > G as rs7084554, g.477C >

Tas ss107796300, g.478G > A as ss107796301, g.482A > G as 55107796302, g.487A > G as rs36014597, g.495delAAAGAG as rs10556764, g.578G > A as rs35236971, g.598C > A as ss107796311, g.602G > Cas

rs7096206, g.658C > A as ss107796303, g.659C > T as ss107796304, g.712A > T as ss107796305, g.753C > Tas rs11003123, g.788T > Cas ss107796312, g.797C > A as rs45602536, g.826C > T as rs7095891, g.925C

> Gas ss107796306, g.926T > G as ss107796307, g.965G > Cas ss107796308, g.1045C > T as rs5030737, g.1052G > A as rs1800450, g.1061G > A as rs1800451.
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Figure 1 Maximum parsimony tree with suggested phylogenetic
nomenclature (see text). The recombinant haplotype *1A1.182-/
(LYPD) was excluded. Bootstrap values are given at nodes of the tree.

gating sites (Figure 3). The time to the most recent com-
mon ancestor of the MBL2 alleles was inferred at 73,251
years ago [95% CI 5,220 - 214,440]. The mean coalescence
time implies that the ancestor of groups *1 and *4 alleles
were separated before the modern human dispersal from
Africa [21]. The TMRCA of groups *1 and *4 was esti-
mated to be ca. 55,000 years ago, which also indicates that
the presence of alleles of African populations in both
clades is a result of an ancient ancestry.

*]B-derived haplotypes, even those found using maxi-
mum-likelihood phasing by others [19], seem to be
restricted to Euroasiatic populations. Beyond those
described in this work, we recently identified *1B4 in the
Euro-Brazilian population. This haplotype is similar to
HYPA but with a synonymous substitution in codon 44
(also called HYPG) [16]. To our knowledge, LXPA (*I1CI-
[) has only one rare similar haplotype (*1C2), identified in
one European individual. We also found only one LYPB-
similar haplotype (*IF2), but others cite another four
[19]. Each occur with frequencies around 2% in Asian/
Amerindian groups (Ashkenazi Jewish, Japanese, Chinese
and Kaingang), but three were defined by SNPs upstream
to the region analysed in this study. The *1HI-/ haplo-
type has a similar global distribution as the commonly
investigated haplotypes and is well represented in Afri-
can, Asian and Amerindian(-derived) populations, being
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less frequent in European groups. We found a similar
haplotype (*1H2-h) once in a Gabonese and once in a
Euro-Brazilian individual. All other clade *I haplotypes
are concentrated in African groups. *1EI-h has a rare
coding mutation found only once in the Gabonese, as
*1G1-h [2]. The *1D1-h haplotype, which we found with
3% frequency in this population, was found by others
with comparable frequencies (1.6 - 4.2%) in the Mbuti
Pygmy, Nigerian Yoruba and Somali populations [19].
*1J1-h was also found with 1.6% and 0.8% frequencies in
Tanzanian Chagga and in the Somali groups, respectively.
*2A1-h and *3A1-h are intermediate between P and Q
containing haplotypes and most probably reminiscent of
the ancient original MBL2 haplotype [2]. The LYQA-sim-
ilar *4BI1-/ haplotype carries a coding mutation and was
found only once in the Gabonese, as the LYQC-similar
haplotype *4F2B-/. In addition to the Gabonese, *4DI-h
was found by others with 1.6% frequencies in the Tanza-
nian Chagga [19]. *4E1-h has a SNP within a glucocorti-
coid responsive element and seems to be well distributed
in Africa, except in the Mbuti and Baka Pygmies [19].
4F2A-1 was formerly found associated with severe malaria
[2] and has a similar distribution, except for the fact that
it is also present in South-West Asian and European(-
derived) groups with 11.9% (Ashkenazi Jewish [19]) to
0.5% (Germans, this work) frequencies. *4F3-/ was also
found in the Biaka Pygmy (2.1%), Nigerian Yoruba (1.6%)
and Tanzanian Chagga (4.7%) groups [19], as well as in
Afro-Americans [18] and in one individual of the Kain-
gang Amerindian population, known to be of mixed
ancestry [22].

Tajima's D was significant in those regions containing
five of the six P, Q segregating sites in the Gabonese pop-
ulation (Figure 4A). Yet Fu and Li's D* was significant in
regions with rare SNPs: the LXPA-derived *I1C2 haplo-
type in Europeans and the LYPA-derived *IEI-h haplo-
type in the Gabonese (also called LYPF due to a non-
synonymous SNP in the exon 1 region) (Figure 4B). High-
est nucleotide diversity was registered in the same win-
dows with Tajima's D peaks (Figure 4C). None of the
neutrality tests employed for the whole sequence or parts
of it yielded significant results (Table 4).

Discussion

Both circulating levels of MBL oligomers and functional
activity have been correlated with common MBL2 genetic
variants. There are at least 28 segregating sites in the
MBL2 promoter and exon 1 sequence [23], and 26 allelic
haplotypes were physically defined in this study. Nucle-
otide diversity in Afro-derived populations reached 5 x
the average value of chromosome 10 (8.25 x 10%) [24],
where the MBL2 gene resides (10q11.2Tq21). This is still
2 x less than the lowest values found for polymorphic
MHC regions (1%) [25], indicating that the MBL2 pro-
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Table 2: MBL2 haplotype frequencies (%) in diverse populations.
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Afro-Gabonese (1)

Afro-Americans 2

German Europeans (1)

Euro-Americans 2

Euro-Brazilians (V)

Haplotypes N=2856 (N=64) N=48 N =208 (N=48) N=62 N =262
*1A1-h (LYPA) 16.8 (9.5) 27.1 4.81(8.3) 1.61 344
*1A1.1B2-I (LYPD) 0 0 0 0 0.38
*1B1-h (HYPA) 5.37(6.3) 6.25 29.8 (41.7) 355 29.39
*1B2-1 (HYPD) 0.12(0) 2.08 8.17(10.4) 9.68 6.49
*1B3 0 0 0 0 0.38
*1C1-1 (LXPA) 14.6 (18.8) 14.6 21.6(83)* 16.1 20.23
*1C2 0 0 0.48 0 0
*1D1-h 3.09(0) 0 0 0 0
*1E1-h (LYPF) 0.12 (0) 0 0 0 0
*1F1-1(LYPB) 2.45 (1.6) 2.08 11.1(10.4) 129 14.89
*1F219 0 0 0 0 0
*1G1-h 0.12(0) 0 0 0 0
*1H1-h 7.01 (3.1) 6.25 0 0 1.15
*1H2-h 0.12(0) 0 0 0 0.38
*1J1-h 0.82(3.1) 0 0 0 0
*2A1-h 0.7 (0) 0 0 0 0
*3A1-h 0.12(0) 0 0 0 0
*4A1-h (LYQA) 25.6 (40.6) ** 18.8 23.1(20.9) 24.2 20.99
*4B1-1 (LYQE) 0.23(0) 0 0 0 0
*4C1-h 0 0 0.48 (0) 0 0.76
*4D1-h 0.23(1.6) 0 0 0 0
*4E1-h 5.37(1.6) 6.25 0 0 0
*4F1-1(LYQC) 16.7 (12.5) 14.6 0 0 0.76
*4F2A-1 1.75(1.6) 0 0.48 (0) 0 0.76
*4F2B-1 0.58 (0) 0 0 0 0
*4F3-1 1.17 (0) 2.08 0 0 0

North Chinese 3 (1) Hispanics 2 Pacific Rim 2 Guarani 4 Kaingang 4 (1)
Haplotypes N =348 (N=48) N =46 N=48 N=158 N =126 (N=26)
*1A1-h (LYPA) 0 6.52 2.08 0.63 1.59 (0)
*1A1.1B2-1 (LYPD) 0 0 0 0 0
*1B1-h (HYPA) 54.9(31.3) ** 28.3 45.8 48.1 52.4(65.4)
*1B2-1 (HYPD) 0 4.35 0 0 0
*1B3 0 0 0 0 0
*1C1-1 (LXPA) 14.1 (22.9) 19.6 10.4 0 0.79 (0)
*1C2 0 0 0 0 0
*1D1-h 0 0 0 0 0
*1E1-h (LYPF) 0 0 0 0 0
*1F1-1(LYPB) 14.1 (29.2)8** 13.0 16.7 47.5 26.2 (23.1)
*1F2 0 0 0 0 1.59 (0)
*1G1-h 0 0 0 0 0
*1H1-h 2.87 (4.2) 217 16.7 0 15.9(11.5)
*1H2-h 0 0 0 0 0
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Table 2: MBL2 haplotype frequencies (%) in diverse populations. (Continued)

*1J1-h 0 0
*2A1-h 0 0
*3A1-h 0 0
*4A1-h (LYQA) 14.1 (6.3) 19.6
*4B1-I (LYQE) 0 0
*4C1-h 0 0
*4D1-h 0 0
*4E1-h 0 217
*4F1-1(LYQC) 0 217
*4F2A-1 0 217
*4F2B-1 0 0
*4F3-1 0 0

w
w
o o

o O O o o

0
0 0.79 (0)

N number of chromosomes (N = 162 for 1D1-h in Afro-Gabonese, and this is why the sum of frequency values in this group did not equal exactly
100%). The distribution of MBL2 genotypes in the Gabonese adult sample as a whole was homogeneous with the distribution that we formerly
found in a sample of 284 Gabonese children (39 malaria-free, 136 with uncomplicated malaria and 109 with severe malaria but not with cerebral
malaria and/or severe hypoglycemia) [2]. In parentheses: differing values found in samples of smaller size but similar ethnic background

(Gabonese Bantu, Danish, Chinese and Colombian Piapoco, respectively) [19]. & the Chinese investigated by others presented an additional LYPB
haplotype with 6.3% frequency and a g.634G > A SNP (called by them -258 G > A) [19]. In italics: this work; 1 [19]; 2 [18]; 3 [28]; 4 [22].* p < 0.05 **

p <0.01

moter-exonl nucleotide diversity is intermediate among
immune protein coding genes.

Several of the newly identified haplotypes are poly-
morph and of interest for disease association studies.
Nevertheless beside the A/B/C/D system adopted for
exon 1 alleles since 1991 [26] and of the H, L, X, Y and P,
Q names for promoter SNPs since 1998, no other nomen-
clature was suggested. We adopted a phylogenetic
approach that easily accommodates new haplotypes fol-
lowing a logical order, and suggested a way to call even-
tual recombinant haplotypes, incorporating knowledge
about MBL serum levels.

Nevertheless haplotypes generated with EM and ELB
haplotyping algorithms should be included with caution,
especially when containing singletons. In our compari-

Table 3: Performance of haplotyping algorithms.

son, EM and ELB algorithms allowed for 1-2% errors in
populations with high nucleotide diversity (). The
pseudo-Bayesian ELB performed worse in groups with
very high 1 values, as Africans, generating more spurious
"new" haplotypes. We did not find six of the haplotypes
reconstructed by others using the Bayesian method
implemented in PHASE software [19]. Two were recom-
binant (LYQB and HXPA), one presented a SNP that we
haplotyped to LYQA and three were LYPA-similar haplo-
types that seemed to be restricted to Pygmy populations,
with SNPs presenting high Fst values. To avoid the inclu-
sion of false haplotypes in the nomenclature system, we
followed the approach of a group which only analysed
haplotypes having a minimal frequency of 10% [27]. Two
of the Pygmy haplotypes fulfilled this requirement, but all

Population n Ambiguous Expectation maximization (EM) Pseudo-Bayesian (ELB)
genotypes
Wrongly assembled Spurious Wrongly Spurious
haplotypes "new" assembled "new"
haplotypes haplotypes haplotypes
Afro-Gabonese 428 59.6% 1.1% 7 2.2% 11
German 104 63.5% 1.4% 1 1.4% 2
Europeans
Euro-Brazilians 131 66.4% 1.1% 2 0.8% 1
Guarani 79 61% 0 0 0 0
Kaingang 63 71% 0 0 0.8% 0

n = number of individuals.
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Figure 2 Mutational network of MBL2 haplotypes. The size of each
node is proportional to the haplotype frequency in the pooled sample
(this work and [18,28]). Variant nucleotide positions are indicated in
red. In black: African; red: European; orange: North Chinese; blue: Gua-
rani; green: Kaingang.

other haplotypes should ideally be phased by a physical
haplotyping technique before inclusion.

Others used sample sizes at least four times smaller
than ours [18,19]. This caused discrepant frequency
results especially for the most common haplotypes. Since
rare variants are not easily detected in small population
samples, we also found considerable differences between
our Fu and Li's D* and F* and other's results [18]. Indeed,
two singletons caused significant D* values in regions
with very low nucleotide diversity levels specifically in
our European and Gabonese samples.

We added data from other studies [2,18,19,22,28] to
calculate the Fst statistic. This approach resulted in much
higher Fst values for the whole gene (0.18), than those
found previously by others (0.06 [18]) and by us using
only the Amerindian and Chinese samples (0.12, [22]).
The same was true for the H/L and P/Q SNPs (Fst values
around 0.2-0.25, compared to published 0.1-0.15, [18]),
which indicate that they are good markers for population
differentiation. As opposed to these high Fst values, the
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X/Y SNP presented values lower than 0.05 in this and in
another study [18], compatible with global balancing
selection.

We previously discussed the origin and distribution of
the LYPA (*1AI-h), HYPA (*1B1-h), HYPD (*1B2-I),
LXPA (*1CI-I), LYPB (*IF1-l), LYPD (*1A1.1B2-]), LYQA
(*4A1-h) and LYQC (*4FI1-) haplotypes [22]. In general,
the most frequent clade *I haplotypes are globally distrib-
uted, whereas clade *4 haplotypes are more restricted to
the African continent. Four of the five most ancient hap-
lotypes also belong to clade *I: *1A1-h, *1BI1-h, *1C1-]
and *IHI-h. Among them, only *ICI-/ (with the X vari-
ant) is associated with low (although complement-acti-
vating) MBL production. This and the *4A -k haplotype
do not naturally occur in native Aboriginal, Greenlandic
and Amerindian populations [11,22,29,30], having proba-
bly been lost through bottleneck effects along the migra-
tion routes. The other eight polymorph haplotypes (with
a frequency higher than 1%) have probably had a more
recent origin, being geographically more restricted.
Among them, only two are associated with high MBL lev-
els: *IDI-h and *4E1-h. All others generate low MBL lev-
els that, in addition, are greatly restricted in complement
activation due to the B, C and D mutations, which occur
in critical residues of the collagen-like region (*1B2-,
*]F1-l, *4F1-1, *4F2A-l, *4F3-] and *1F2) (Figure 5). Inter-
estingly, the MBL1P1 pseudogene has been selectively
turned off during evolution through the same molecular
mechanisms causing the non-functional recent MBL2
haplotypes in man [31]. A more restricted distribution is
obviously the case of all haplotypes containing singletons,
as well as of *1JI-h, *4DI1-h and *4F3-/ in Africa,
*]A1.1B2-1, *1B2-l and *4CI-h in Europe. They are there-
fore characteristic of different ethnic groups.

03
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Figure 3 Global Fst values distributed along the sequence. Fsts were calculated using the data of Table 2 and of [1
sponding to variant sites are shown on the x-axis. *** p < 0.001, ** p < 0.01.

9]. Nucleotide positions corre-
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Table 4: MBL2 sequence diversity parameters of several populations.

Afro-Gabonese Afro-Am.2 European Euro-Am.2 N. Chin.3 Hispanics? Pac. Rim2 Kaingang* Guarani4
N 856 48 470 62 348 46 48 126 158
Promoter, exon 1 S 22 13 16 9 9 13 9 11 7
and part of intron 1
m 441 43.7 37.6 37.6 27.8 40.4 25.2 174 16.9
Oy 37.0 36.1 29.3 23.6 17,3 36.5 25.0 274 15.3
Dy 0.459 0.63 0.672 1.591 1.297 0.325 0.024 -0.934 0.23
D¢ -1.157 -0.004 -0.404 1.343 1.23 0.012 1.353 -0.498 1.159
F -0.583 0.245 0.028 1.68* 1.51 0.137 1.085 -0.782 0.996
H -1.28 0.743 -0.276 -0.387 -1.718 0.039 -2.163# -3.27*% -3.282*%
5'upstream S 16 10 13 7 8 10 8 9 6
regulatory region
m 52.1 51.8 434 43.1 328 46.9 28.7 1.62 1.42
Ow 35.6 36.8 315 243 20.3 37.1 294 30.2 17.4
D; 1.044 1.177 0.858 1.963 1.268 0.762 -0.063 -1.146 -0.383
D¢ 0.129 0.791 -0.783 1.227 1.166 -0.406 1.302 -0.1 1.083
F 0.606 1.08 -0.181 1.73* 1.446 -0.03 1.015 -0.56 0.693
H -1.579 0.434 -0.619 -0.74 -1.9214# -0.32 -2.394# -3.534* -3.33*
Exon 1 coding S 6 3 3 2 1 3 1 2 1
region
m 19.3 19.6 19.6 217 13.00 215 15.2 225 26.8
Ow 413 36.1 225 228 8.3 36.5 12.0 19.8 9.5
D; -0.92 -0.953 -0.183 -0.079 0.52 -0.866 0.352 0.202 1.925
D¢ -2.55% -1.7 0.717 0.726 0.43 0.9 0.547 -1.124 0.466
F -2.386 -1.718 0.499 0.564 0.544 0.432 0.567 -0.833 1.071
H 0.30 0.308 0.343 0.353 0.203 0.359 0.227 0.265 0.048

Am. American European include the German Europeans and Euro-Brazilians, which were homogeneous at the genotypic level N. Chin. North Chinese Pac. Pacific; N number of chromosomes; S
number of segregating sites; m (x10-4) nucleotide diversity per site, 6, (x10-4) Watterson's Theta per site from S; D; Tajma's D; D¢ Fu and Li's D without an outgroup (D*); F Fu and Li's F without an
outgroup (F¥); H Fay and Wu's H with the chimpanzee (Genbank: AY970685.1) as an outgroup. In italics: this work; 2 [18]; 3 [28]; 4 [22]. * P < 0.05 # P < 0.10
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Figure 4 Sliding window plot of (A) Tajima's D values, (B) Fu and Li's D* values and (C) nucleotide diversity for the entire sequenced region.
Statistics were calculated for overlapping windows of 60 bp, placed at 15 bp intervals along the sequence. * P < 0.05.

The clades *I and *4 are separated by six mutational
steps (P, Q variants), which probably occurred before the
human out-of-Africa migration (Figure 5). Of these six
segregating sites, probably the most ancient is the g.487G
>A variant and the most recent, the g.396A >C variant [2].
Q variants are less widely distributed than P variants, jus-
tifying their high Fst values. They are functionally associ-
ated with higher promoter activity [6,32] and five of them
presented positive, significant Tajima's D values in the
Gabonese population. A significant positive value for
Tajima's D test indicates an excess of intermediate-fre-
quency variants, as compared with expected frequencies
under neutrality, and constitutes evidence of balancing
selection (mutations leading to higher MBL levels could
have been selectively retained in the ancient human pop-
ulation) or population subdivision. Nevertheless the
emergence of several recent mutations as well as genetic
drift erased the selective signature at the long haplotype
scale, leading to non-significant, although positive,
Tajima's D values for the whole haplotype in this and in
other studies (eg. Table 4), one of which included 1,166
chromosomes from 24 worldwide populations [18,19,22].

The patterns of MBL2 variation at the large temporal
scale would thus have been shaped by stochastic evolu-
tionary factors and therefore be compatible with neutral
evolution.

Conclusions

In this work, we evaluated the MBL2 promoter-exon 1
region using haplotype-specific sequencing in more than
700 chromosomes and found three new European haplo-
types. We propose a phylogenetic nomenclature to stan-
dardize MBL2 studies and found two major phylogenetic
branches due to six strongly linked polymorphisms asso-
ciated with high MBL production. They present high Fst
values and are imbedded in regions with high nucleotide
diversity and significant Tajima's D values. Compared to
others using small sample sizes and unphased genotypic
data, we found differences in haplotyping, frequency esti-
mation, Fu and Li's D* and Fst results. Using extensive
testing for selective neutrality, we confirmed that sto-
chastic evolutionary factors have had a major role in
shaping this polymorphic gene worldwide.
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Methods

Subjects and samples

We investigated 104 German Europeans, 131 Euro-Bra-
zilians and 144 Gabonese adults. The German Europeans
were healthy unrelated students and employees of the
University of Tiibingen, enrolled as controls in a genetic
association study with type 2 diabetes, approved by the
Ethics Committee of the University of Tiibingen in Ger-
many [33]. The Euro-Brazilians were healthy blood
donors with mixed, however predominantly European
ancestry, resident in Parana state, South Brazil, sampled
for different association studies, all approved by the Eth-
ics Committee of Research in Humans of the Clinical
Hospital, Federal University of Parand, Brazil [16,34,35].
The Gabonese individuals took part in a large epidemio-
logic survey to detect the prevalence of asymptomatic
Plasmodium falciparum infection in the villages around
Lambaréné, Gabon, a study approved by the ethics com-
mittee of the International Foundation Albert Schweitzer
Hospital [36]. All individuals signed an informed consent
form prior to their inclusion in these studies.

MBL2 typing
DNA was collected with anticoagulant ethylenedi-
aminetetraacetic acid and extracted from peripheral

blood mononuclear cells through standard salting-out
and phenol/chloroform/isoamyl alcohol methods. A frag-
ment of 1059 nucleotides was amplified using the for-
ward primers MBLfor (5'-
ATGGGGCTAGGCTGCTGAG-3") and the reverse
primer MBLrev (5'-CCAACACGTACCTGGTTCCC-3').
Sequence specific (SSP) PCR products were generated
using the same reverse primer, combined to forward
primers specific for variant H (Hf: 5-GCTTACCCAG-
GCAAGCCTGTG-3) or for the variant L (Lf: 5'-GCT-
TACCCAGGCAAGCCTGTC-3Y); for the variant X (Xf:
5-CCATTTGTTCTCACTGCCACC-3") or for the vari-
ant Y (Yf: 5-CCATTTGTTCTCACTGCCACG-3'). The
PCR products with the primers Hf or Lf with MBLrev
and Xf or Yf with MBLrev were 837 and 508 nucleotides
in length, respectively. Hf and Lf were also combined to
specific reverse primers for the variant P (Pr: 5'-
CTCAGTTAATGAACACATATTTACCG-3) or for the
variant Q (Qr: 5-CTCAGTTAATGAACACATATT-
TACCA-3'), generating a product of 599 nucleotides. All
fragments were sequenced with the amplification primers
or with an internal exon 1 sequencing primer, MBLint (5'-
GAGGCCAGGGATGGGTCATC-3'), using Big dye ter-
minator version 1.1 chemistry (Applied Biosystems, Fos-
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ter City, CA). Amplification conditions are described in
detail elsewhere [20]. The reactions were purified with
the Performa DTR V3 system (Edge BioSystems, Gaith-
ersburg, MD) and analyzed on an automated sequencer
(ABI Prism 3100 Genetic Analyzer, Applied Biosystems,
Foster City, CA). New variants (singletons) were verified
by reamplification and resequencing.

Statistical analyses

Genotype and haplotype frequencies were obtained by
direct counting. We tested for deviations from Hardy-
Weinberg proportions with the exact test of Guo and
Thompson [37]. The haplotype frequency distributions of
the populations examined by our group and by others
were compared by applying the exact test of population
differentiation of Raymond and Rousset [38]. Genetic dif-
ferentiation among populations was estimated from hap-
lotype frequencies using the Fst statistic, based on the
analysis of molecular variance [39]. To verify the effect of
other methods to infer haplotypes compared to physical
haplotyping of SNPs, we simulated our own data using
the (maximum-likelihood) EM algorithm or the (pseudo-
Bayesian) ELB algorithm, with the settings recommended
by the authors [40,41]. These statistical analyses were
done using the software package ARLEQUIN version 3.1
[42]. Fisher's exact tests were performed for differences
between individual haplotype frequencies, using SISA
software package http://home.clara.net/sisa.

We calculated the following summary statistics of
genetic diversity: the number of polymorphic sites (S),
the nucleotide diversity over loci (1) and Watterson's 6,
defined as 4Ney, where Ne is the effective population size
and , the estimated mutation rate. We examined devia-
tion from neutrality-equilibrium conditions using
Tajima's D statistic [43], Fu and Li's D and Fu and Li's F
without an outgroup (also known as D* and F*) [44] and
Fay and Wu's H [45] tests. Significance was assessed by
comparing the observed values to 10% coalescent simula-
tions, conditional on the observed sample size and on the
value of S or on the value of 6, assuming a standard neu-
tral model with no recombination. Deletions were
excluded from all analyses. To see if deviation from selec-
tive neutrality can be found in specific regions of the
gene, we also tested the 5' upstream regulatory region
(which includes the non-coding P, Q SNP) and the exon 1
coding region separately. The heterogeneity in m values
and Tajima's D statistic across the sequenced region was
also examined by use of the sliding window feature of the
DnaSP program. Statistics were calculated for overlap-
ping windows of 60 bp, placed at 15 bp intervals along the
sequence. Neutrality tests and sequence diversity param-
eters were calculated using the DnaSP version 4.10.1 soft-
ware [46].

The Network 4.1.1.2 package http://www.fluxus-tech-
nology.com/sharenet.htm was used to construct the min-
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imum-mutation network, which reflects the mutational
relationships among the MBL2 haplotypes by means of
the Median Joining (M]) algorithm [47]. The MEGA 3.1
program was used to construct the phylogenetic maxi-
mum parsimony tree with bootstrap test http://

www.megasoftware.net/. The time to the most recent
common ancestor (TMRCA) of MBL2 was estimated

using a relaxed molecular clock approach [48]. Evolution-
ary rate was modeled by the uncorrelated lognormal dis-
tribution and a coalescent prior (Bayesian skyline) was
assigned to the tree. The average rate of molecular evolu-
tion of the MBL2 gene (1 x 107) was obtained using a
theta per site value of 0.0039 calculated for human
sequences in DnaSP [46] and the estimate of human
effective population size of 10,000 [49]. A normal prior
with mean 1 x 107 and standard deviation of 1 x 107 was
used for the rate of evolution. Divergence time inference
was conducted in BEAST 1.4.8 [50]. In order to obtain
the posterior distribution of divergence times, the
Markov chain was sampled 50,000 times and 10% of the
states were discarded as burn-in.
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