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Landscape features influence gene flow as
measured by cost-distance and genetic analyses:
a case study for giant pandas in the Daxiangling
and Xiaoxiangling Mountains
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Abstract

Background: Gene flow maintains genetic diversity within a species and is influenced by individual behavior and
the geographical features of the species’ habitat. Here, we have characterized the geographical distribution of
genetic patterns in giant pandas (Ailuropoda melanoleuca) living in four isolated patches of the Xiaoxiangling and
Daxiangling Mountains. Three geographic distance definitions were used with the “isolation by distance theory":
Euclidean distance (EUD), least-cost path distance (LCD) defined by food resources, and LCD defined by habitat
suitability.

Results: A total of 136 genotypes were obtained from 192 fecal samples and one blood sample, corresponding to
53 unique genotypes. Geographical maps plotted at high resolution using smaller neighborhood radius definitions
produced large cost distances, because smaller radii include a finer level of detail in considering each pixel. Mantel
tests showed that most correlation indices, particularly bamboo resources defined for different sizes of raster cell,
were slightly larger than the correlations calculated for the Euclidean distance, with the exception of Patch C. We
found that natural barriers might have decreased gene flow between the Xiaoxiangling and Daxiangling regions.

Conclusions: Landscape features were found to partially influence gene flow in the giant panda population. This

bamboo forests is increased.

result is closely linked to the biological character and behavior of giant pandas because, as bamboo feeders,
individuals spend most of their lives eating bamboo or moving within the bamboo forest. Landscape-based
genetic analysis suggests that gene flow will be enhanced if the connectivity between currently fragmented

Background

Gene flow, in the form of effective individual gene
movement within and between populations, is one of
the most important factors for maintaining genetic
diversity within a species and counteracting the negative
effects of habitat fragmentation [1,2]. Landscape connec-
tivity [3,4], based on landscape features, is critical for
the persistence of spatially structured populations.
Recently, studies have shown that gene flow depends
heavily on individual behavior within certain landscapes
(e.g. in populations of terrestrial Mediterranean snakes
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[5], roe deer (Capreolus capreolus) [6], or mountain viz-
cacha (Lagidium viscacia) [7]). Therefore, landscape
genetics, a subdiscipline of population genetics, has been
introduced to quantify geographic distributions of
genetic patterns (e.g. clines [8]), isolation by distance,
and correlations between genetic patterns and landscape
variables [9].

The most common methodology adopted for land-
scape genetics studies has been the comparison of geo-
graphic and genetic distance matrices to describe the
geographical structure of genetic variability, at a fine
spatial scale, within a population. The Euclidean dis-
tance (EUD) was the first metric used for these correla-
tion matrices, and is currently the most frequently used
metric for quantifying geographic distance between
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individuals [10-13]. The EUD distance has proven to be
effective in describing individual movement in relatively
homogeneous or small-scaled habitats. However, most
animals live in heterogeneous habitats, and individual
movement is greatly influenced by landscape elements
[14,15] that introduce bias into results based on a EUD
measure. The least-cost path distance (LCD), which
defines a measure of landscape connectivity, was, there-
fore, introduced as a more suitable means for assessing
the inferred effects of landscape structure on gene flow
[16-19]. The least-cost path avoids landscape regions
that are more resistant to movement and prefers paths
through permeable features. LCD can be approximated
by the path that minimizes the sum of the ‘costs’ of
every raster cell traversed along the path [20,21]. Costs
are defined by the geographical information embedded
in the landscape and the behavioral and ecological char-
acteristics of the species being evaluated [22]. Models of
functional connectivity, created using cost distance ana-
lysis, can be tested by analyzing highly variable genetic
markers to determine potential movement and dispersal
throughout a landscape [16,19,23,24]. Estimates of cost
distances are based on major features that influence
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individual movement or dispersal (such as the distribu-
tion of wooded habitat for roe deer [16], basking habitat
for timber rattlesnake hibernacula [19]) or a landscape
resistance model [25]. Factors such as topographic (alti-
tude, gradient, and slope) or anthropogenic factors (road
construction, human residence) may also influence the
movement or dispersal of individuals. Animal movement
is modeled as a trade-off that mitigates many factors
[19,26] and reflects the process of habitat selection.

The giant panda (Ailuropoda melanoleuca) is often
cited as one of the most endangered mammals in the
world [27]. Currently, the species is confined to six frag-
mented mountain habitats at the edge of the Tibetan
Plateau [27]. Among the fragmented habitats, the Xiaox-
iangling (XXL) and Daxiangling (DXL) forests are the
smallest, with a combined population of around 60 indi-
viduals [28]. These are also the most fragmented habi-
tats because the Dadu River and National Road 108
have divided the habitat into four major patches (Figure
1), and a strong human presence from the local resi-
dents along the river and the road disturbs the habitat.
Giant pandas are very large and elusive mammals. Each
individual has a home range spanning an area of 3-7
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km?, where it spends most of its time. Females tend to
forage only within their home range [27], whereas the
home ranges of males may overlap. The dispersal dis-
tance can be several kilometers or more [27,29]. How-
ever, individual movement is complicated, determined
by many landscape and environmental factors, such as
altitude, slope, and human disturbance [30,31]. Pandas
prefer well-wooded slopes with an almost continuous
forest canopy [29]. However, until recently, there have
been no quantitative studies describing the relationship
between landscape features and the behavior of the
giant panda, particularly in terms of gene flow within
the population. We selected the two methods to mea-
sure LCD paths in this study. One LCD path was
defined by the bamboo resources, the main food of the
giant panda. A second LCD path was defined by habitat
suitability, a complicated landscape ecological model
that integrates several environmental variables.

The classic EUD distance and two LCD distance mea-
sures were applied in a landscape genetic analysis of the
giant panda population in the DXL and XXL mountains.
These models tested the hypothesis that landscape fea-
tures influence gene flow in the giant panda population.

Results

Genetic diversity and population structure

A total of 136 genotypes were obtained from 192 fecal
samples and one blood sample, yielding 53 unique
individual genotypes. The consistency between geno-
types was checked according to standard replication
criteria. Using the formulae [32], the mean genotype
error rate per locus was estimated to be 0.16%, and
the genotype identification error rate across nine loci
was estimated to be 1.4%. Therefore, we expected at
most two incorrect genotype identifications among
these produced, which have the potential to upwardly
bias our population estimate slightly. The combination
of the nine chosen loci can only characterize the geno-
types of full siblings as identical, by chance, with a
probability of 0.00074. In total, 53 individuals were
identified, including 11 females and 9 males in Patch
A, 6 females and 6 males in Patch B, 7 females and 7
males in Patch C, and 4 females and 3 males in Patch
D. The average allele number A was between two and
seven alleles per locus across all samples (Table 1).
The average He fell in the range 0.56-0.63, but Ho
values were slightly higher (0.66-0.71), generating
slightly negative Fis values (average Fis = -0.013,
non-significant). The Ho values were higher than the
He values, in agreement with results from a previous
study of the same region [33]. No evidence was found
for null alleles, stuttering, or allele dropout in each
locus by the program Microchecker, at a confidence
level of 100%.
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In XXL, there were two individuals living in Luding
county. The mean distance to Patch A or B was greater
than 70 km. Therefore, because the sample size was
small and the mantel test biased, we excluded these
individuals in the following analysis.

Correlations between genetic and geographical distances
as a function of raster size

The numerical model was affected by the choice of radius
(from 1200 to 1800 m). Small radii tended to yield larger
cost distances (for example, Figure 2) because smaller
radii yield a finer level of informational detail at each
pixel. The variation in cost distance was small in Patch B
(Figure 2), which may be due to the small patch area and
the concentrated distribution of individuals. At radii of
1200 and 1500 m, positive correlation indices between
genetic and LCD distances tended to be larger than the
correlation indices calculated using the EUD, and were
more negative in Patch C. However, no consensus trend
was observed for analysis performed with a radius of
1800 m in Patches B and D. Thus, for the biological
mean (home range), a conservative radius of 1500 m was
chosen for subsequent analysis.

The correlation indices between genetic and pairwise
least-cost paths were different for different raster cell
sizes because LCD paths, computed using friction maps
of different resolutions, appeared to differ in shape and
length. The permeability of the local landscape struc-
tures depended on the resolution of the friction maps
used, which has been observed in studies of the Ameri-
can marten (Martes americana) [24]. Generally, analysis
using grid cell sizes larger than 500 m yielded a decrease
in the correlation indices (data not shown). Thus, we
compared the effects of cell size variation for sizes smal-
ler than 250 m. The standard deviation (SD) of the cor-
relation indices calculated by habitat suitability analysis
was larger than those based on bamboo resources calcu-
lated with a radius of 1500 m (Table 2), indicating that
this type of LCD path may have a larger influence on
raster cell size. Correlations based on a raster cell size
of 90 m (Figure 3) are displayed in Figures 3 and 2 to
illustrate the relatively large correlation index (except
for Patch D). Mantel tests showed that most correlation
indices calculated using two LCD, particularly for bam-
boo resources calculated using different raster cell sizes,
were slightly larger than those calculated using EUD,
with the exception of Patch C (which gave a more nega-
tive correlation index than the correlation index calcu-
lated using EUD). In Patch D, the variation in
correlation index calculated using the LCD of habitat
suitability was large. In addition, a significant relation-
ship was only found in Patch A. Patch C showed a nega-
tive but insignificant relationship (P > 0.05) for a radius
of 1500 m.
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Table 1 Summary of basic population genetic analysis for the four populations
Region Patch (Populations) Patch Size(km?) Euclidian Distance(km) Locus No. of Alleles Ho He
Xiaoxiangling A 450 Ame-L5 6 0.900 0.795
(XXL) (n =20)
Minimum: 0.1 Ame-u10 7 0944 0810
Ame-126 2 0.650 0512
Mean: 8.2 Ame-u15 4 0.800 0636
Ame-u16 5 0.790 0.623
Maximum: 31.1 Ame-u13 4 0.739 0.755
Ame-pi22 3 0.400 0.344
AY161179* 6 0.550 0.803
AY161195 4 0.600 0.545
All loci 46 0.708 0.630
B 230 Ame-u5 6 0.833 0.837
n=12)
Minimum: 0.1 Ame-u10 4 0.750 0.757
Ame-126 2 0.583 0518
Mean: 2.9 Ame-u15 3 0.750 0.565
Ame-u16 3 0.500 0416
Maximum: 6.5 Ame-u13 4 0818 0.727
Ame-122 3 0.500 0420
AY161179 4 0917 0.725
AY161195 3 0.636 0671
All loci 3.7 0.699 0.599
Daxiangling C 320 Ame-15 5 0.857 0.720
(DXL) (n=14)
Minimum: 0.2 Ame-u10 6 0.786 0.807
Ame-126 3 0.714 0.627
Mean: 8.0 Ame-u15 4 0.571 0.558
Ame-u16 4 0.692 0.649
Maximum: 21.8 Ame-u13 4 0.786 0.664
Ame-u22 3 0.571 0.500
AY161179 5 0.500 0.603
AY161195 4 0429 0.545
All loci 42 0.656 0.608
D 350 Ame-15 2 0.714 0495
(n=7)
Minimum: 1.1 Ame-u10 5 0.85714 0.758
Ame-L26* 3 0.857 0.659
Mean: 104 Ame-u15 3 0.286 0473
Ame-u16 4 0.500 0.788
Maximum: 19.4 Ame-u13 4 1.000 0.780
Ame-u22 2 0.143 0.143
AY161179 3 0.857 0.692
AY161195 3 0.833 0.667
All loci 32 0672 0.561

Ho, observed heterozygosity; He, heterozygosity expected under Hardy-Weinberg equilibrium. The asterisks (*) indicate significant (P < 0.05) departures from

Hardy-Weinberg equilibrium.

The effect of the low sample number in IBD analyses

The range of power for our test is 0.08-0.34 (Table 3). The
value of the power in the DXL level is still low, because
of the low relationship index. Assuming animals were
randomly distributed, the required sample size to reach

adequate power for a low index was very large and unrea-
listic for these researches of wild rare animals. In addition,
the average power of statistics based on 100 simulation
data (7 individuals) was 0.11 (95% confidence region:
0.051-0.020) and therefore the power of the test for
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Figure 2 Least-cost pathways for giant pandas in four patches:
mapped using a neighborhood radius of 1500 m and a raster cell
size of 90 m.
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Patch D (the smallest sample size) fell within this confi-
dence region (Table 3).

The spatial genetic structure (decreasing the gene flow)
The populations of XXL and DXL were consistently of
two different genetic clusters (K = 2, Figure 4), and a
clear genetic discontinuity was found between them. In
addition, we re-conducted the Mantel test at a mountain
scale (XXL and DXL), however, we only found the sig-
nificant IBD pattern in the XXL region (Table 3).

Discussion

Landscape features partially influence gene flow within
the patch level

Giant pandas are large and elusive mammals, and spend
most of their life in a home range. Currently, there are

Table 2 Correlation between genetic and geographic distances (Mantel test)

Patch Distance Raster cell size Correlation index of Mantel test
(P value given in brackets)
A EUD 0.261 (0.008)
Bam (1200 m) Bam (1500 m) Bam (1800 m) Habitat
LCD 30m 0.288 (0.001) 0.267 (0.001) 0.260 (0.002) 0.268 (0.010)
60 m 0.286 (0.001) 0.271 (0.001) 0.261 (0.002) 0.275 (0.009)
90 m 0.287 (0.001) 0.265 (0.002) 0.268 (0.001) 0.275 (0.008)
120 m 0278 (0.001) 0.267 (0.001) 0.259 (0.002) 0.264 (0.010)
250 m 0.279 (0.001) 0.263 (0.002) 0.278 (0.000) 0.278 (0.007)
SD 0.0047 0.0030 0.0080 0.0058
B EUD 0.067 (0.286)
LCD 30m 0.075 (0.282) 0.076 (0.274) 0.047 (0.357) 0.080 (0.247)
60 m 0.081 (0.264) 0.067 (0.292) 0.043 (0.035) 0.070 (0.287)
90 m 0.089 (0.249) 0.102 (0.201) 0.057 (0.326) 0.118 (0.168)
120 m 0.064 (0.313) 0.078 (0.264) 0.035 (0.384) 0.056 (0.323)
250 m 0.074 (0.286) 0.090 (0.241) 0.048 (0.347) 0.075 (0.258)
SD 0.0092 0.0136 0.0080 0.0232
C EUD -0.153 (0.112)
LCD 30 m -0.211 (0.046) -0.186 (0.063) -0.138 (0.131) -0.168 (0.092)
60 m -0.197 (0.062) -0.184 (0.062) -0.139 (0.126) -0.173 (0.085)
90 m -0.211 (0.047) -0.192 (0.054) -0.139 (0.121) -0.172 (0.078)
120 m -0.215 (0.041) -0.193 (0.057) -0.142 (0.119) -0.147 (0.109)
250 m -0.203 (0.052) -0.139 (0.127) -0.133 (0.142) 0.151 (0.105)
SD 0.0073 0.0226 0.0033 0.0123
D EUD 0.212 (0.147)
LCD 30 m 0.262 (0.167) 0.268 (0.122) 0.227 (0.139) 0.251 (0.122)
60 m 0.284 (0.112) 0.267 (0.131) 6 (0.166) 0.180 (0.172)
90 m 0281 (0.111) 0.283 (0.112) 0.226 (0.141) 0.195 (0.163)
120 m 0.280 (0.113) 0.283 (0.115) 0.227 (0.138) 0.211 (0.148)
250 m 0.237 (0.129) 0.264 (0.121) 0.229 (0.130) 0.238 (0.126)
SD 0.0198 0.0092 0.0140 0.0294

‘Bam (1200)" indicates that the least-cost path defined by bamboo resources with a neighborhood radius of 1200 m. Bam (1500) and Bam (1800) are similarly
defined. ‘Habitat’ indicates that the least-cost paths are based on habitat suitability analysis. ‘SD’ indicates the standard deviation. The numbers in italics indicate

significant mantel tests (P < 0.05).
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approximately 1600 pandas in the wild, restricted to 24
fragmented forests [28]. The individual size of each
population is small, especially in our study area.. How-
ever, this gives us a chance to sample more extensively
and to investigate fine-scale landscape genetics. In fact,
we have sampled most of the local populations [34].
Moreover, we have to acknowledge the effect of our low
sample number on the mantel test as the statistical
power for our analysis was low. Both sample size and
the random distribution of giant pandas may have influ-
enced the power of our test and some caution in our
interpretation is warranted. This phenomenon might be
a common one in fine-scale analyses involving large or
elusive endangered mammals in habiting fragmented
habitats [35].

Table 3 Statistical power of our tests and correlations
between genetic and EUD distances (Mantel test)
between patches

Region Sample Correlation index  Power of Test*
(P value)
Patch
A 18 0261 (0.008) 0.25
B 12 0.067 (0.286) 0.08
@ 14 -0.153 (0.112) 0.14
D 7 0.212 (0.147) 0.13
Mountain
XXL 30 0.217(0.000) 0.34
DXL 21 0.078(0.193) 0.10

« Power of test: 1-f (type Il error); oc = 0.05 level.

On the whole, our results partially support the
hypothesis that geographical landscape features influ-
ence gene flow of the giant panda (Table 2). These
results might be closely linked to the biological charac-
teristics and behavior of pandas. (1) The giant panda, a
bamboo feeder, spends most of his/her life eating bam-
boo or moving within a bamboo forest, and the food
intake of an adult panda is enormous, 10-18 kg (av.
12.5) per day [29]. (2) A previous radio tracking study
showed that pandas prefer to move within well-wooded
forests with a continuous forest canopy [27,31], because
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Figure 4 The population structure in the Xiaoxiangling and
Daxiangling Mountains.
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bamboo grows more densely in open spaces than it does
beneath a canopy, and the stalks are drier and more
stunted, which affects the nutritional content of the
bamboo [29]. In continuous bamboo forests, pandas can
reduce energy expenditures related to seeking food [29].
(3) Lastly, movement and dispersal of giant pandas is
complicated, and is influenced by many environmental
variables [30,31]. In our habitat suitability analysis, we
have integrated 11 relevant environmental variables
(Table 4).

Our study demonstrated that the correlations between
landscape features and gene flow (dispersal) were
enhanced by the presence of habitat types preferred by
the species, in agreement with other studies. For exam-
ple, the mobility of forest species is favored by wooded
landscapes, and correlation coefficients between disper-
sal data and the LCD measures were slightly stronger
than with Euclidean distance measures (see, for example,
roe deer, [16]; martens, [17]; mountain vizcacha, [7]). A
previous study [19] found a significant positive correla-
tion between genetic differentiation and a cost-based
distance metric adjusted to include the quantity of
potential basking habitat between hibernacula.

Geographic measurements that best explain the
relationship between landscape features and gene flow
A comparison of several geographic measurements
showed that the bamboo resources measure yielded
slightly more influence on gene flow, as indicated by the
significantly larger positive correlation indices calculated
for this measure compared to the EUD measure in
Patches A and D (non-parameter test, P < 0.05). The
effects of habitat suitability depended more strongly on
raster cell size and yielded larger SDs (standard devia-
tion) between correlation indices than the effects of
bamboo resources. No significant changes were observed

Table 4 The environmental variable used in the model of
ENFA

Environmental

Description of the variable

variable

ELEV Elevation of the study area

ELEV-SD Standard deviation of altitude in a 800-m radius

SLOP Slop of the study area

SLOP-SD Standard deviation of the slop in a 800-m radius

EASTNESS Average eastness in a 800-m radius (Sine of the
aspect)

NORTHNESS Average northness in a 800-m radius (Cosine of
the aspect)

DIST-RES Distance to the resident

DIST-ROA Distance to the main road

FORE-FQ Forest frequency in the 800-m radius

SHRB-FQ Shrub frequency in the 800-m radius

DIST-LAN Distance to the land(non-forest)
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in the Mantel test after using LCD (from non-significant
to significant, Table 2). The effects of landscape features
on gene flow were different in the different patches.

These patterns may be rationalized by several observa-
tions. First, EUD is defined by the simplest straight line
between individuals, presenting an idealized travel route
that is unrealistic for giant pandas in most circum-
stances. The movement of giant pandas is complicated
by many landscape and environment factors [30,31].
Food (bamboo resources) may have the largest influence
on behavior [27,29]. The model for habitat suitability
integrated 11 variables, but was biased to favor more
realistic movement paths for giant pandas. Therefore, a
simple model based on an LCD defined by bamboo
resources performed slightly better than a model based
on an EUD measure. Second, if the connectivity between
bamboo resources was high, the cost distances defined
by bamboo resource distributions did not vary signifi-
cantly with raster cell size. The inter-habitat suitability
map, on the other hand, was more fragmented. Raster
cell size produced large variations in the cost-distance
path, such as those seen in Patch D. Third, considering
the relatively small size of each patch, the mantel tests
for IBD patterns based on EUD paths and two types of
LCD paths, with a radius of 1500 m, gave similar results
(Table 2). For example, the area of Patch B is small, and
giant pandas live mainly in one large gully. The paths of
EUD and two LCD are similar. Last, giant pandas may
move over long distances, and genes may flow within
overlapping home ranges [27], which can bias the IBD
gene flow pattern within the connected bamboo
resources.

Habitat fragmentation and gene flow of giant pandas
between patches

Our results show that habitat loss and fragmentation
might have decreased gene flow of giant pandas. Major
river courses (the Dadu River) might have played an
important role in shaping boundaries of groups in giant
panda, notably the significant two genetic clusters, XXL
and DXL (Figure 4). Moreover, human activity along the
river and the presence of roads has further lead to habi-
tat loss and fragmentation across the XXL and DXL
mountains (Figure 1). However, the genetic boundaries
and spatial dynamics in these regions need further
investigation.

We found a significant IBD pattern in the XXL region,
especially in Patch A (Table 2 and 3). According to our
wild investigation and the third national survey of giant
pandas [28], the mean altitude of giant panda activity in
Patch A is the highest (3500.74 m + 219.06), and the
major bamboo is Bashania spanostachya Yi. The forest
and food (bamboo) resource fragmentation is the most
serious threat to habitat, and has limited the panda’s
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distribution to within three major ditches, the Niuchang,
the Dayang, and the Caimagu ditches. Thus, limited
food resources may lead to a non-random distribution
of individuals. In addition, there was no significant pat-
tern found in the DXL region (Table 3). In the DXL
region individuals live at a low range of altitudes and
have sufficient resources (Yushania lineolata Yi and
Bashania spanostachya Yi). Thus, they are able to move
freely about the landscape, reflecting the partial random
distribution.

Conclusions

Here we found that landscape features might influence
gene flow of giant pandas across two scales. First, within
patches, the use of an LCD measure improves the
model for individual movement and gene flow by broad-
ening the geographic measurements that are integrated
into one or more important ecogeographical variables,
such as food resources (bamboo). However, some uncer-
tainty was introduced by the size of the neighborhood
radius defined in the numerical model and by the raster
cell size. Although use of a complicated model or sev-
eral parameters to describe landscape ecology increases
uncertainty in the current model implementations,
improvements can be made by integrating additional
ecological factors, including intra-specific interactions
and kin and resource competition. Giant panda research
has yet characterized larger populations, which would
decrease the bias inherent in small population sizes. If
using LCD methods, the effects of neighborhood radius
and raster cell size on least-cost path approaches should
be rigorously investigated. Second, at a broader inter-
patch scale, natural barriers and human activity along
the river might have further decreased gene flow and
led to habitat fragmentation and subsequent population
differentiation of giant pandas in these regions. There-
fore, the landscape genetic analysis presented here sug-
gests that it is vital to connect currently fragmented
habitats and increase the connectivity of bamboo
resources within a habitat to restore population viability
of the giant panda in these regions. For these small iso-
lated populations reintroductions will be an effective
strategy.

Methods

Sample collection

In total, 192 fecal samples and one blood sample were
collected in each of the four patches of the DXL and
XXL mountains (Figure 1a) between March and Octo-
ber, 2005. The mean distance between patches was 76
km. Field staff performed a ‘zig-zag’ search for panda
feces, gully by gully and slope by slope, in an altitude
range of 2,000 and 3,900 m. Most samples were less
than two weeks old, as judged by the status of the

Page 8 of 11

mucosal outer layer of the feces. All samples were GPS
positioned. Up to five grams of feces were peeled from
the outer layer and stored in 99% ethanol.

DNA extraction and amplification

DNA was extracted from feces with standard controls
[36]. Eighteen giant panda microsatellite genetic loci
[37] and three redesigned loci [38] were initially
assessed, and nine loci (Ame-05, Ame-10, Ame-13, Ame-
15, Ame-16, Ame-26, Ame-22, AFAY161179, and
AY161195) were selected for this study on the basis of
PCR efficiency, polymorphisms, and yield. To obtain
reliable genotypes, a modified multi-tube approach [39]
was used as follows: Fifty cycles of PCR amplification
were carried out simultaneously for up to four loci, with
combinations selected based on fragment size, Tp,, and
fluorescent dye (FAM, TET, or HEX), using the QIA-
GEN Mutliplex PCR kit according to the manufacturer’s
protocol at optimized annealing temperatures. Products
were resolved using an ABI 377 prism automated
sequencer, and analyzed using GeneScan v3.1.2 and
Genotyper 2.5 (Applied Biosystems). Sex identification
was carried out according to previously described meth-
ods [40]. A species-specific sexing primer pair ZX1 was
designed to amplify a 210 bp region of the Y chromo-
some of the giant panda. PCR and cycling conditions
were similar to those used for microsatellite amplifica-
tion. Each sample was amplified three times with ZX1,
and products were separated by electrophoresis on a
2.0% agarose gel. A sample was identified as male if at
least two experiments showed the 210 bp SRY band,
and as female if no bands were produced.

Genotyping errors are frequently encountered in non-
invasive genetic analysis using fecal samples [39,41], and
pre-selection of samples and rigorous laboratory proce-
dures must be followed to produce accurate genotypes.
As part of this process, we conducted mitochondrial
DNA analysis for species verification, and our microsa-
tellite genotyping protocol followed the criteria [39].
Genotype error rates were estimated using a mathemati-
cal approach [32]. The software GIMLET was used to
calculated the probabilities of identity (P;p) and
P(p-sibs)) to quantify the efficacy in discriminating the
nine loci in combination.

Genetic diversity and pairwise individual genetic
distances

Genetic diversity was measured as the mean number of
alleles per locus (A), observed heterozygosity (Hp), and
expected heterozygosity (Hg) [42]. Wright’s F statistics
were estimated [43]. We also calculated the deviations
from the Hardy-Weinberg equilibrium for each locus of
each population. Analysis was performed using Arelquin
v3 (Excoffier and Schneider 2005). The presence of null
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alleles, stuttering, and small allele dominance was tested
using Microchecker [44]. Genetic distances between
individuals, a,, were defined [11] and computed using
SPAGeDI [45].

Landscape features and four geographical distances
Euclidean distance

The Euclidean distance, as the traditional predictor of
genetic difference between populations, was calculated
using geographic straight-line distances between each
pair of individuals using the ArcGIS 9.0 software (Figure
1b).

Least cost distance based on food resources (bamboo)

The map of the bamboo distribution was imported
from a previous study [28] and our field survey. A grid
map of the bamboo distribution was made using five
raster cell sizes (30, 60, 90, 120, and 250 m), and cells
were assigned as either containing or excluding bam-
boo. The density of bamboo was averaged by a 1500 m
radius circular moving window. This neighborhood
radius was chosen based on the giant panda home
range size (3-7 km?) [27,29]. Different radii were tested
(1200 and 1800 m) to gauge the effect of neighborhood
size on LCD analysis. A raster map of bamboo density
assigned cost values to each cell in the range 0 to 100.
In this map, cells with a bamboo density of 0 were
assigned a cost value of 100, indicating the maximum
travel cost of a panda through that region, and a cost
value of 1 was assigned to cells with a bamboo density
of 100, which was the minimum travel cost. In this
way, a resistance or travel cost grid map of panda
movement was calculated. The travel cost map per-
mitted calculation of the least-cost distance between
pairs of panda individuals using PATHMATRIX [46]
in Arcview3.2 (Figure 1c and 2a).

Least cost distance based on habitat suitability

The Ecological Niche Factor Analysis (ENFA, [47])
model identifies a set of uncorrelated factors that
accounts for the information by comparing the distribu-
tions of environmental variables and the population dis-
tribution dataset across the surveyed geographical area.
One factor, Marginality, was defined as the ecological
distance between the species optimum and the mean
habitat within a reference area. A second factor, Specia-
lization, was defined as the ratio of the ecological var-
iance in mean habitat to the variance observed for the
focal species. With these factors, a habitat suitability
map was plotted using the medians algorithm. Habitat
suitability values for the giant panda were defined on
the range 0 to 100. Higher values corresponded to
higher habitat quality. ENFA analysis was performed
using the BIOMAPPER3.1 [48] software. Habitat suit-
ability was computed with 11 ecogeographical variables
described in previous studies [27,29] (Table 4), including
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three categories of environmental descriptors: (1) the
topographical variables ELEV, ELEV-SD, SLOP, SLOP-
SD, EASTNESS, and NORTHNESS; (2) the biological
variables FORE-FQ and SHRB-FQ; and (3) the anthro-
pogenic variables DIST-RES, DIST-ROA, and DIST-
LAN. These environmental variables were derived from
satellite images, topography, and the road network GIS
database, digitally represented in GIS (ArcGIS 9.0) as
raster maps. Using the ENFA method, we calculated the
habitat suitability index (HSI) for every cell in the study
area and assigned 1 to those cells with an HSI of 100,
and assigned 100 to those cells with an HSI of 0. This
map yielded a map of travel cost based on habitat suit-
ability. Environmental variables were derived from satel-
lite images, topography, and the road network GIS
database, digitally represented in GIS (ArcGIS 9.0) as
raster maps. The HSI was computed from the ENFA.
100 minus the value of the HSI gave the value of cost
for LCD analysis. The LCD was computed using PATH-
MATRIX [46] in Arcview3.2 (Figure 1d and 2b). LCD
was calculated with different cell sizes, 30 m, 60 m, 90
m, 120 m, and 250 m.

Relationship between genetic and geographic distances
To test the effects of landscape features on gene flow
within the giant panda population, we compared the
matrix of pairwise genetic distances with four matrices
of geographical distances. The resulting correlations
were evaluated by Mantel tests implemented in GENA-
LEX 6.2 [49]. P values were obtained using a permuta-
tion procedure (10,000 permutations).

In order to evaluate the effect using a low number of
individuals in our IBD analyses, we used Gpower 3.1
http://gpower.software.informer.com/3.1/ to determine
the power of the test. In addition, IBDsim [50] was used
to generate simulated genetic data to assess confidence
for the above test. IBDsim uses a coalescent algorithm
to derive various IBD models with continuous or dis-
crete subpopulations. For nine microsatellite loci the
number of alleles allowed in the model was 15 and a
generalized stepwise mutation (GSM) model with a 5 x
10"* mutation rate was chosen. We conducted 100
simulations with small population size (according to the
result of the individual indentified in each patch).

Spatial genetic cluster analysis

Geneland is a computer package that allows to make
use of georeferenced individual multilocus genotypes to
infer the number of populations and the spatial location
of genetic discontinuities between populations [51]. We
ran the MCMC five times (to verify the consistency of
the results), allowing K to vary, with the following para-
meters: 500,000 MCMC iterations, maximum rate of
Poisson process fixed to 200, minimum K fixed to 1,
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maximum K fixed to 8. We used the Dirichlet model as
a model for allelic frequencies as it has been demon-
strated to perform better than any alternative model.
We then inferred the number of populations in our
sample from the modal K of these five runs, and ran it
an additional several times with K fixed to this number.
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