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Abstract

Background: Genome-wide association (GWA) study has recently become a powerful approach for detecting
genetic variants for common diseases without prior knowledge of the variant’s location or function. Generally, in
GWA studies, the most significant single-nucleotide polymorphisms (SNPs) associated with top-ranked p values are
selected in stage one, with follow-up in stage two. The value of selecting SNPs based on statistically significant p
values is obvious. However, when minor allele frequencies (MAFs) are relatively low, less-significant p values can
still correspond to higher odds ratios (ORs), which might be more useful for prediction of disease status. Therefore,
if SNPs are selected using an approach based only on significant p values, some important genetic variants might
be missed. We proposed a hybrid approach for selecting candidate SNPs from the discovery stage of GWA study,

approach.

on ranked ORs.

based on both p values and ORs, and conducted a simulation study to demonstrate the performance of our

Results: The simulation results showed that our hybrid ranking approach was more powerful than the existing
ranked p value approach for identifying relatively less-common SNPs. Meanwhile, the type | error probabilities of
the hybrid approach is well-controlled at the end of the second stage of the two-stage GWA study.

Conclusions: In GWA studies, SNPs should be considered for inclusion based not only on ranked p values but also

Background

Genome-wide association (GWA) study has recently
become a powerful approach for detecting genetic var-
iants for common diseases without prior knowledge of
the variant’s location or function [1-4]. Currently,
almost all the GWA studies are conducted in two stages:
certain numbers (10-50) of the most significant single-
nucleotide polymorphisms (SNPs) associated with
top-ranked p values are selected in stage one, and
follow-up is performed in stage two.

This two-stage approach has been widely used and has
successfully identified SNPs with novel susceptibility for
different complex diseases such as lung [5-7], prostate
[8-11], and breast cancers [12-15]; glioma [16,17]; and
type 2 diabetes [18-24]. The published GWA studies
showed that in different studies, different numbers of

* Correspondence: sshete@mdanderson.org
Department of Epidemiology, The University of Texas M. D. Anderson Cancer
Center, Houston, TX 77030, USA

( BiolMed Central

the most significant SNPs were selected at stage one for
follow-up. For example, in the GWA study of lung can-
cer, 10 top-ranked SNPs were selected in stage one [5],
whereas in the GWA study of type 2 diabetes, 59 SNPs
were selected in stage one [21]. While the p value can
indicate when the association of an SNP with a disease
is statistically significant, it does not consider the asso-
ciated odds ratio (OR). The rationale for using OR as a
selection criterion is that when minor allele frequencies
(MAFs) of causal SNPs are relatively low, much less-sig-
nificant p values would be observed, even if they could
correspond to higher ORs, which might be more useful
for prediction of disease status; nevertheless, the less sig-
nificant p value may limit the inclusion of these signifi-
cant variants in a replication study. Therefore, selecting
a certain number of significant SNPs only based on
p values might overlook some important genetic variants
that could have an even greater effect on the disease
causation.
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In this paper, we proposed a hybrid approach for
selecting candidate SNPs from stage one of a GWA
study that is based on both ranked p values and ranked
ORs. Based on simulation studies, the power compari-
son results showed that our hybrid ranking approach
was more powerful than the existing ranked p value
approach for identifying relatively less-common SNPs.
We performed additional simulation studies to investi-
gate the type I error probabilities of the proposed hybrid
approach, and found that the type I errors are well-con-
trolled at the end of second stage of the two-stage
GWA study.

Methods

For the hybrid approach proposed in this paper, ORs are
considered in addition to p values when selecting SNPs
in stage one. For stage one, we selected a set of SNPs:
half were selected based on ranked p values, and the
other half were selected based on ranked ORs.

To demonstrate the increased power of our proposed
hybrid approach, we performed a simulation study. We
assumed two independent disease-causing loci: D; and
D,. At locus D;, we set the MAF at 10%, and at locus
D,, the MAF was set at 40%. Furthermore, we assumed
that there were two marker loci, M; and M,, which
were associated with two disease-causing loci, D; and
D,, respectively. MAFs of markers M; and M, were also
set at 10% and 40%, respectively. The disease loci and
their corresponding marker loci were assumed to be in
high linkage disequilibrium (LD, r* = 0.8). For all the
SNPs, we used (0, 1, 2) to denote the three genotypes,
where the values corresponded to the number of copies
of the deleterious allele. This coding assumed an addi-
tive model, but different coding for representing a domi-
nant or recessive model could have also been used. Our
proposed hybrid approach was not restricted to an addi-
tive model. We defined a categorical random variable, ¥
= (0, 1), to indicate the case-control status: O repre-
sented individuals in the controls and 1 represented
individuals in the cases. We used the logistic model
defined below to simulate data.

Logit (P(Y =1)) = B¢ + B1D; + B,D,.

For the purpose of our study, we chose different ORs
for different loci. At locus D;, the OR was set as 1.8
(B, = 0.5878), and at locus D,, the OR was set as 1.5
(B> = 0.4055). B, was fixed as a constant 2. Since the
markers M; and M, were not directly associated with
the disease of interest, they were not included in the
logistic model for simulation. The specific parameters
for simulation studies are listed in Table 1.

In stage one, we first simulated genotypes for the dis-
ease-causing loci D; and D, for each individual. Given
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Table 1 Parameters for Simulation under Alternative
Hypothesis

Disease Locus 1 Marker 1  Disease Locus 2 Marker 2
(Dy) (M) (D2) (M)
OR 18 1.5
MAF 10% 10% 40% 40%

OR = odds ratio, MAF = minor allele frequency, LD = linkage disequilibrium.

The LD between the disease loci and the corresponding marker loci is 0.8,
and the two disease loci are in linkage equilibrium.

the dataset of realizations of SNPs D; and D,, we ran-
domly generated a disease status for each individual
using the logistic model above. Then, conditioned on
data of Dj, genotypes for marker locus M; were simu-
lated using the 7* value of 0.8. Similarly, genotypes for
marker M, were simulated conditioned on data of D,
with the same 7° value. Because the markers M; and M,
were in high LD with the disease loci D; and D, respec-
tively, they were also associated with the simulated
disease. In this way, we simulated a large amount of
data for the population of interest and then randomly
sampled 1,000 disease-related cases along with 1,000
normal controls from this population. In this study,
unless otherwise specified, we employed logistic regres-
sion to obtain ORs and used Wald’s test to assess
significance.

To investigate the power for each SNP to be selected
in stage one and followed up in stage two, we generated
1,000,000 replicates of a single SNP under the null
hypothesis of no association between the SNP and the
disease, each replicate with 1,000 cases and 1,000 con-
trols. To mimic realistic patterns of LD, we applied a
forward-time population simulation software program
(genomeSIMLA) to generate the 1,000,000 unassociated
SNPs [25]. We used information about markers on
human chromosome 2, including rs numbers, allele
frequencies, recombination fractions, and positions, to
seed the initial population. The initial population was
then advanced through 1,000 generations of mating to
create a pool of individuals. The case and control status
for individuals was assigned based on a penetrance func-
tion assuming one disease-causal SNP. We then ran-
domly permuted the case-control statuses of individuals
to break the association between the SNP and disease of
interest. Therefore, all the SNPs simulated were unasso-
ciated with the disease of interest. The p values and
ORs of all simulated markers were evaluated using
PLINK [26]. For the purpose of our simulation, we con-
sidered markers with a range of MAFs (10%~40%) that
covered the MAFs defined for the disease loci. The
p values and ORs obtained under the null hypothesis
were used to determine the thresholds for selecting
SNPs in stage one. We studied different selections of 10,
20, 30, and 40 SNPs in stage one to follow up on in
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stage two. Basically, we ranked the 1,000,000 SNPs with
respect to p values as well as OR values. If investigators
decided to select the top 20 SNPs in stage one using the
existing ranked p-value approach, the top 20th-ranked p
value out of the 1,000,000 p values would be the thresh-
old for selection, and the SNPs in stage one with more
significant p values than the threshold would be for-
warded to stage two. Using our proposed hybrid
approach, two thresholds for selection were considered.
One threshold was the top 10th-ranked p value, and the
other was the top 10th-ranked OR value. In order to
take into account potential overlapping of the sets of
top 10 p-value-based SNPs and top 10 OR-based SNPs,
we would first pick SNPs based on p value threshold
and then pick additional SNPs based on the OR thresh-
old. The SNPs we selected in stage one either had more
significant p values than the p value threshold or had
larger OR values than the OR threshold. The reason for
selecting 10 OR-based SNPs and 10 p-value-based SNPs
was to have the same number (20) of total top SNPs
carried over to stage two.

Further, we investigated what percentage of the SNPs
could reach a genome-wide threshold for declaring sig-
nificance. Therefore, for each replicate selected in stage
one, we simulated independently another 1,000 cases
and 1,000 controls using the same simulation approach
and the same parameters. We then employed a joint
analysis using fixed indicators for stages one and two, as
joint analysis of two stages is efficient and always results
in increased power to detect genetic variants [27]. For
each pair of corresponding replicates from stages one
and two, data from both stages were pooled into one
data set. We assumed that the data from different stages
were from possibly different sites. Therefore, in order to
control for the possible confounding effects of sites, we
used (1, 2) to denote the indicator for each stage, with 1
representing stage one and 2 representing stage two.
Multivariable logistic regression analysis was applied to
the SNP and the stage indicator, and the significance
was estimated using Wald’s test. All results were based
on 1,000 replicates.

We performed additional simulations to examine the
type I error probabilities of the proposed hybrid
approach under the null hypothesis of no association
between SNPs and disease. We assumed that there were
two marker loci, M; and M,, that were not associated
with the disease of interest, with MAFs similar to that
used in the power studies. We applied the same soft-
ware, genomeSIMLA [25], to generate the unassociated
SNPs. We initialized the population with small ranges of
MAFs. We simulated 10,000,000 replicates each with
1,000 cases and 1,000 controls. The case-control status
was assigned at random, independent of the markers, so
that markers were unassociated with the disease status.
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As in the power comparison studies, the same sets of p
values and ORs of 1,000,000 replicates of a single SNP
under the null hypothesis were employed to determine
the thresholds for selecting SNPs in stage one to follow
up. Similarly, for each replicate selected in stage one, we
independently simulated another replicate using the
same simulation approach and same parameters and
performed a joint analysis using data from both stages.

Results

Table 2 lists the resulting medians of negative logarithm
to base 10 of the p values and ORs based on 1,000 repli-
cates generated in stage one. The medians of OR esti-
mators for the disease-causing loci D; and D, were
1.8016 and 1.4973, respectively, which had good agree-
ment with the ORs used to generate the data sets
(1.8 and 1.5). The results for D; and D, were only
reported for comparison purposes. In real GWA studies,
the causal SNPs might not be genotyped. Most of the
real markers studied are probably in LD with the causal
SNPs and, therefore, are associated with the disease of
interest, such as the markers M; and M, in our simula-
tion study. In stage two, we assumed that D, and D,
were not observed, and therefore, we focused only on
the study of two markers. The associated markers gener-
ally show lower ORs than those of the actual causal
SNPs because of the imperfect LD (* = 0.8). Therefore,
it is not surprising to see that the medians of the OR
estimators of markers M; and M, were smaller than the
medians of the corresponding disease loci. As discussed
previously, when MAFs of disease-causing SNPs are
relatively low, p values would be less significant, even if
the corresponding ORs are much higher. This situation
applies to the following case. Marker M; (MAF = 10%)
was associated with a higher OR (OR = 1.6777) but with
a less-significant p value (-Logl0 of p value = 4.9597);
whereas M, (MAF = 40%) had a lower OR (OR =
1.4323) but a much more significant p value (-Logl0 of
p value = 7.1542). Therefore, ranking SNPs based only
on p values will have less power for marker M; to be
included in stage two, even though it has a higher OR
and is potentially more useful for making predictions of
disease status.

Table 2 Medians of Significance and Odds Ratios in Stage
One Based on 1,000 Replicates

Stage One
Median D, M, D, M,
-Log10 of p value 6.0613 4.9597 8.7299 7.1542
OR 1.8016 16777 14973 14323

OR = odds ratio.
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Power comparisons

We reported the powers for each SNP to be selected in
stage one in Table 3. We considered ranges of SNPs
selected in stage one (10 to 40). The results in Table 3
are grouped into two panels with respect to two differ-
ent ranking approaches. For example, if an investigator
decided to select 20 SNPs (2™ row in Table 3) in stage
one using the existing ranked p-value approach, marker
M; would be selected for follow-up in 579 out of 1,000
replicates, and marker M, would be selected in 909 out
of 1,000 replicates; power to select marker M; would be
57.9%, and power to select marker M, would be 90.9%.
However, using our hybrid approach of selecting top
SNPs (10 SNPs based on ranked p values and 10 based
on ranked ORs) resulted in powers of 89.9% and 87.0%
for selecting markers M; and M,, respectively. Com-
pared with the existing ranked p-value approach, our
proposed hybrid approach was more powerful for select-
ing marker M;, without losing much power for selecting
M,, in stage one. Considering the above example, power
gain for selecting marker M; was 32.0%, whereas power
loss for selecting marker M, was only 3.9%.

Even though our approach increased power to select
marker M; for follow-up in stage two, we wanted to test
what percentage of these SNPs could reach a genome-
wide threshold for declaring significance. Therefore, for
each replicate selected in stage one, we simulated inde-
pendently another 1,000 cases and 1,000 controls using
the same simulation approach and the same parameters.
We then employed a joint analysis using fixed indicators
for stages one and two (see Methods section). The
power comparisons and medians of ORs for the joint
analysis are shown in Table 4. The results are arranged
into two panels according to use of the existing p-value-
based ranking approach and use of our proposed hybrid
ranking approach. The p values and ORs were estimated
based on the joint analysis from both stages.

As expected, all of the p values from the joint analysis
were much more significant than those from stage one.
We used a genome-wide threshold p value of 1.7 x 107
[27] for declaring the significance of the SNPs. Our

Table 3 Power to Select Top Single-Nucleotide
Polymorphisms in Stage One for Replication Based on
1,000 Replicates

Number of Selections p-Value-Based Ranking

Hybrid Ranking

Approach Approach
M, M, M, M,
10 52.2% 87.0% 88.9% 84.2%
20 57.9% 90.9% 89.9% 87.0%
30 61.1% 92.4% 90.4% 90.4%
40 62.6% 93.0% 91.2% 90.9%

OR = odds ratio.
MAF was set at 10% for M, and 40% for M,.
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proposed hybrid approach for GWA study gained con-
siderable power for marker M; over that of the existing
ranked p-value approach. For instance, when the num-
ber of selections in stage one was 20, the observed
powers were 56.3% and 90.9% for selecting markers M;
and M,, respectively, using the existing ranked p-value
approach; when our proposed hybrid approach was
used, however, the observed powers were 80.0% and
87.0% for selecting M; and M,, respectively. Even when
40 SNPs were selected for follow-up, we still observed a
20.6% increase in power for selecting marker M; with
loss of about 2% power for selecting marker M,.

In addition, we also investigated power of selecting
both markers loci (M; and M,) simultaneously. The
power results are reported in Table 5, which are orga-
nized into two panels with respect to stage one and
joint analysis. In the joint analysis, the powers for select-
ing both markers were decided by the genome-wide
significance as before. The results in Table 5 showed
that the hybrid ranking approach has higher power to
select both markers M; and M,. For example, if 20
SNPs were selected in stage one, the observed powers
for selecting both markers were 52.3% and 78.2%,
respectively, for using the p-value-based approach and
the hybrid approach. In joint analysis, the observed
powers for selecting both markers were 50.5% and
70.4% for the two different ranking approaches, respec-
tively, and the proposed hybrid approach gained 19.9%
increase in power.

Type | error estimate

Based on 10,000,000 replicates for each marker locus,
we first estimated the percentages of replicates of unas-
sociated SNPs selected for follow-up in stage two. If 10
SNPs were selected in stage one, using the hybrid
approach, marker M; would be selected for follow-up in
4,365 of 10,000,000 replicates, and marker M, would be
selected in 58 of 10,000,000 replicates. When the stan-
dard ranked p-value approach was applied, marker M,
would be selected for follow-up in 143 of 10,000,000
replicates and marker M, would be selected in 111 of
10,000,000 replicates. If 20, 30, and 40 SNPs were
selected in stage one, using the hybrid approach, marker
M; would be selected for follow-up in 5,823, 6,736, and
7,803 replicates, respectively, and marker M, would be
selected in 111, 227 and 250 replicates, respectively.
Using the standard ranked p-value-based approach, mar-
ker M; would be selected for follow-up in 292, 401 and
511 replicates, respectively, and marker M, would be
selected in 250, 362 and 468 replicates, respectively.
However, importantly, after performing the joint analy-
sis, we found that none of the replicates that have been
moved forward to the second stage could satisfy the
genome-wide threshold p value of 1.7 x 107 for
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Table 4 Median Odds Ratios and Powers in Joint Analysis (Stage One and Stage Two Combined)

Number of Selections

Joint Analysis

p-Value-Based Ranking Approach

Hybrid Ranking Approach

M, M, M, M,
10 OR 1.7387 14467 1.6866 14447
Power at 1.7 x 107 51.2% 87.0% 79.4% 84.2%
20 OR 1.7342 14418 1.6787 14467
Power at 1.7 x 107 56.3% 90.9% 80.0% 87.0%
30 OR 17343 14363 16801 14398
Power at 1.7 x 107 58.9% 92.3% 79.7% 90.4%
40 OR 1.7224 14379 16761 14418
Power at 1.7 x 107 60.6% 93.0% 81.2% 90.9%

OR = odds ratio.

declaring significance, using either our approach or the
standard approach. If we increased the threshold p value
for declaring significance to 107, one replicate of mar-
ker M; would be significant on the basis of both the
hybrid and ranked p-value approaches. Therefore, we
can conclude that the type I error rates of the proposed
hybrid approach were well controlled at the end of the
experiment (stage two).

Discussion

In this paper, we proposed a hybrid approach to rank
and select SNPs in stage one of a GWA study — ORs
are considered in addition to p values. The results from
the simulation study show that the hybrid approach has
an increased power for identifying the less-common
genetic variants. Meanwhile, we concluded through
simulation studies that the type I error rates of the
hybrid approach are controlled at the end of the
experiment.

In our study, we selected half of the candidate SNPs
on the basis of ranked p values and the other half on
the basis of ranked ORs. In reality, one could select the
same or different numbers of candidate SNPs based on
ranked p values and ranked ORs. For example, one
could select the ranked-p-value-based SNPs using the
common GWA study threshold (e.g., p value < 10™) but
select the ranked-OR-based SNPs using a less significant

threshold (e.g., p value < 107%) for follow-up in stage
two. It should be noted that while ranking SNPs based
on ORs, both risk and protective effect SNPs should be
considered. In our study, we did not have knowledge
about whether extremely large or extremely small effect
size is more important; therefore, we reversed ORs cor-
responding to protective effect SNPs before ranking all
the ORs (for ranking purposes only). In our simulation
studies, we considered a range of MAFs of 10%~40%. A
GWA study with 1,000 cases and 1,000 controls has
adequate power to detect the SNPs with an MAF of
10% or higher. To detect variants with smaller MAFs,
such as less than 5%, a larger sample size will be
needed. The impact of the true OR, average LD and
MATF on the power of a GWA study to detect suscept-
ibility SNP markers is discussed in Park et al. [28].
Furthermore, these authors also provide sample sizes
required for GWA studies to identify associations.

One may argue that using the ranked p values within
the rare variants and ranked p values within the com-
mon variants to select candidate SNPs would lead to
similar results. The obvious deficiency of this approach
is the difficulty in defining a boundary for separating
rare and common variants. Furthermore, even if one
could define a threshold for rare and common variants
(say 10%), among the set of rare (or common) variants,
there will still be relatively rare variants and relatively

Table 5 Power to Select Both SNPs (M; and M,) in Stage One and in Joint Analysis (Stage One and Stage Two

Combined)
Number of Stage One Joint Analysis (Power at 1.7 x 107)
Selection
p-Value-Based Ranking Hybrid Ranking p-Value-Based Ranking Hybrid Ranking
Approach Approach Approach Approach
10 45.0% 75.0% 43.6% 66.0%
20 523% 78.2% 50.5% 70.4%
30 56.0% 81.7% 54.0% 71.6%
40 58.1% 82.8% 55.9% 72.8%
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common variants. Therefore, when only selecting top
SNPs based on the ranked p values within rare variants,
one may still be more likely to select the SNPs that are
relatively common in the rare variants set, but miss the
SNPs that are relatively rare in the rare variants set. For
example, if defining SNPs with MAFs < 10% as rare var-
iants and using the ranked p values within rare variants
set, one might not be able to capture the SNP with
MAF = 3% but OR = 2.5 in stage one (but select the
SNP with MAF = 9% but OR = 1.5, for example), even
though the OR value represents a very significant asso-
ciation between this SNP and the disease of interest. We
had considered such an approach to our simulated data,
where we defined SNPs with MAF = 10% as rare
variants and SNPs with MAF = 40% as common variants.
The powers for selecting both rare and common variants
did not increase, however, and were almost identical to
those obtained using the standard ranked-p-value
approach (data not shown).

It is well known that large ORs usually correspond to
rare variants, and significant p values correspond to
common variants, regardless of whether or not the var-
iants are associated with the disease of interest. In our
simulation study, we actually found that this is the case,
and this can further verify the rationale of our hybrid
approach. Figure 1 shows the relationship between p
values and ORs based on 1,500,000 null SNPs (no asso-
ciation with disease), where 500,000 SNPs were simu-
lated using MAF = 6.45%, 500,000 SNPs were simulated
using MAF = 10%, and 500,000 SNPs were simulated
using MAF = 40%. We observed that, at the same p

+ MAF = 40%
o < MAF =10%
o MAF =645%

-log10 of p values

Odds Ratios

Figure 1 Odds Ratios versus p Values Based on 1,500,000
Simulated Non-Disease-Related SNPs.
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value levels, SNPs with MAF = 6.45% always have the
largest ORs; while at the same OR levels, SNPs with
MAF = 40% always have the most significant p values.
In addition to the simulation study, we also investigated
the expected test statistics of association tests, as well as
the corresponding p values, under the alternative
hypothesis. Figures 2 and 3 show the graphs of the
expected test statistics and the p values, respectively, as
the functions of ORs and MAFs, given a fixed sample
size. The details of the expected test statistics and the
assumptions are described in the Appendix. We
observed that, for this specific example, when MAF = 0.4
and OR = 1.5, the expected test statistic was 4.1733 and
the corresponding negative logarithm to base 10 of p
value was 4.5044; when MAF = 0.1 and OR = 1.8, the
expected test statistic was 2.6813 and the corresponding
negative logarithm to base 10 of p value was 2.1312.
Therefore, using the ranked p values approach with a
threshold of 10, the SNP with OR = 1.8 and MAF = 0.1
would not be included in the further analysis, although it
has a higher effect size; however, with the use of the
hybrid ranking approach, this SNP would have a greater
chance of being included in the next stage.

Currently, ranked p value is used as a criterion for
selecting common variants, but from Figures 1, 2, and 3,
we can conclude that ranked OR should be used as an
additional criterion for selecting less-common variants.
These two approaches are complementary, and there-
fore, a hybrid approach using both ranked p value and
ranked OR should be more powerful for selecting rare
variants. It should be noted that the type I error is con-
trolled in the joint analysis because the SNPs selected in
stage one with the use of our hybrid ranking approach
are not final, and they have to meet the GWA signifi-
cance (1.7 x 107) in joint analysis. The results from the
simulation studies confirmed this statement.

Conclusions

We proposed a hybrid approach for selecting candidate
SNPs from the discovery stage of GWA study, based on
both p values and ORs, and conducted a simulation
study to demonstrate the performance of our approach.
The power comparison results show that our hybrid
ranking approach is more powerful than the existing
ranked p value approach for identifying relatively less-
common SNPs. Therefore, GWA studies should consider
including SNPs based not only on ranked p values but
also on ranked ORs. Furthermore, with the rapid devel-
opment of sequencing techniques, much denser SNP
chips with more low-MAF SNPs may be available in the
near future. With these improved technologies, our
hybrid ranking approach for selecting top SNPs offers a
promising direction for future research in GWA studies.
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Figure 2 The Expected Test Statistics E(T) under the Alternative Hypothesis as a Function of Minor Allele Frequencies (MAFs, p) and
Odds Ratios (ORs, exp (B)) given a Fixed Sample Size n = 2000. The expected test statistics under the alternative hypothesis were estimated
using Equation (1), where we used o = 4.6, n = 2000, and assumed an additive underlying genetic model. We observed that, when MAF = 04
and OR = 15, E(T) = 4.1733; when MAF = 0.1 and OR = 1.8, E(T) = 2.6813.

Appendix
Without loss of generality, we considered a simple linear
regression model:

The hypothesis we are interested in testing is Hy: B =
0 versus Hy: B # 0. The estimate has the estimate
variance s2 /lez , where s is its estimated standard
deviation. Therefore, we can obtain the test statistics T
as follows:

T=23></ x;? /s

Under the null hypothesis Hy, T follows a ¢-distribu-
tion with v = n-2 degrees of freedom, and if § = 0, T
has a noncentral ¢-distribution with v = n-2 degrees of

freedom and non-centrality

u=p lzxf / o [29]. The expected value of the non-

central ¢-distribution test statistics is

parameter

E(T)=ﬂ IU/2F((U_1)/2),

—_——, v >1,
T(v/2)

1)

Where I' (-) is the gamma function. In order to draw
the graphs of the expected test statistics and the corre-
sponding p values, we used o = 4.6 and n = 2000, and
assumed an additive genetic model. Therefore, in
the above equation, the degree of freedom is v
n-2 1998, and the non-centrality parameter is

p =log(OR)nx(2(p? + p)) / 4.6, where p is the

MAF, and OR is odds ratio.
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Figure 3 The Negative Logarithm to Base 10 of p Values under the Alternative Hypothesis as a Function of Minor Allele Frequencies
(MAFs, p) and Odds Ratios (ORs, exp (B)) given a Fixed Sample Size n = 2000. The negative logarithm to base 10 of p values is
corresponding to the expected test statistics in Figure 2 under the alternative hypothesis. We observed that, when MAF = 0.4 and OR = 1.5,
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