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Abstract

Background: Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial
selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative
traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have
identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region
within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome
13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian
GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role
in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS
domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the
GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP
(rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein
NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192.

Results: SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is
associated (P < 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and
protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct
calving difficulty (ie. difficulty in calving due to the size of the calf) and gestation length. Association (P < 0.01) with
direct calving difficulty (ie. due to calf size) and maternal calving difficulty (ie. due to the maternal pelvic width size)
was also observed at the rs437107491 SNP. Following adjustment for multiple-testing, significant association (g < 0.05)
remained between the rs41694646 SNP and four traits (animal stature, body depth, direct calving difficulty and milk
yield) only. Notably, the single SNP in the bovine NESP55 gene (rs41694656) was associated (P < 0.01) with somatic
cell count—an often-cited indicator of resistance to mastitis and overall health status of the mammary system-and
previous studies have demonstrated that the chromosomal region to where the GNAS domain maps underlies an
important quantitative trait locus for this trait. This association, however, was not significant after adjustment for
multiple testing. The three remaining SNPs assayed were not associated with any of the performance traits analysed
in this study. Analysis of all pairwise linkage disequilibrium () values suggests that most allele substitution effects for
the assayed SNPs observed are independent. Finally, the polymorphic coding SNP in the putative bovine NESP55
gene was used to test the imprinting status of this gene across a range of foetal bovine tissues.
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8-10 week old bovine foetuses.

Conclusions: Previous studies in other mammalian species have shown that DNA sequence variation within the
imprinted GNAS gene cluster contributes to several physiological and metabolic disorders, including obesity in
humans and mice. Similarly, the results presented here indicate an important role for the imprinted GNAS cluster in
underlying complex performance traits in cattle such as animal growth, calving, fertility and health. These findings
suggest that GNAS domain-associated polymorphisms may serve as important genetic markers for future livestock
breeding programs and support previous studies that candidate imprinted loci may act as molecular targets for the
genetic improvement of agricultural populations. In addition, we present new evidence that the bovine NESP55
gene is epigenetically regulated as a maternally expressed imprinted gene in placental and intestinal tissues from

Background

Genomic imprinting is a form of epigenetic regulation
which results in the complete or preferential monoallelic
expression of approximately 100 mammalian autosomal
genes in a parent-of-origin dependent manner [1-6].
Genes subject to this form of epigenetic control have
been shown to play major roles in regulation of mam-
malian postnatal growth, development, and metabolism.
Furthermore, perturbations of the imprinting status of
these genes (i.e. loss of imprinting) can result in serious
physiological impairments (such as those associated with
Angleman syndrome and Beckwith-Wiedemann syn-
drome in humans), lethality and susceptibility to dis-
eases such as cancer [7-9].

Imprinted genes are organised into clusters or domains
within the mammalian genome, in which both pater-
nally-expressed and maternally-expressed genes (i.e. reci-
procally-imprinted genes, including both protein-coding
and regulatory non-coding RNAs genes) occur at a
higher density than other regions of the genome [10,11].
One such cluster of imprinted genes is the mammalian
GNAS domain which consists of a number of imprinted
genes which display complex transcriptional and epige-
netic regulation [12,13]. In humans, the GNAS domain
spans ~70 kilobases (kb) on chromosome 20 and displays
similar gene organisation and imprinting patterns to the
orthologous Gnas domain on murine chromosome 2
[14]. An integral member of this domain is the GNAS
gene which encodes the alpha-stimulatory subunit of the
trimeric guanine nucleotide-binding (or G-protein, Ggot).
G-proteins are involved in both the coupling of many
hormone and neurotransmitter receptor proteins to ade-
nylate cyclase and also the production of cyclic adenosine
monophosphate (cAMP) for downstream cellular signal
transduction pathways [15]. The human GNAS gene,
transcribed from the Gso. promoter, consists of 13 exons
(the mouse gene model contains 12 exons) and is predo-
minantly biallelically expressed, except in a subset of cells
and tissues—including proximal renal tubule cells, thyroid
and anterior pituitary glands and ovaries—where prefer-
ential expression of the maternally inherited allele is
observed [16]. Maternal-specific expression has also been

documented in neonatal adipose tissues, while the
reporting of biallelic expression in adult human adipose
tissue suggests that imprinting of GNAS is both tissue-
and developmental-stage specific [16].

Other mRNAs produced within the mammalian GNAS
domain include the reciprocally-imprinted GNASx/ and
NESPS5S5 transcripts, both of which are generated through
the use of alternative promoters and first exons that
splice to the common exon 2 of the GNAS gene [13].
The paternally-expressed GNASx! transcript encodes the
Gso isoform, XLog (extralarge Ggo'), and is synthesised
via alternative splicing of the XLog exon (located ~32.5
kb upstream of the Ggo. promoter) to exons 2-13 of the
GNAS gene [17]. The maternally-expressed neuroendo-
crine-specific NESPSS5 transcript is produced by the spli-
cing of the NESP exon (located ~45.7 kb upstream of the
Gsa promoter) and GNAS exons 2-12. NESP55 tran-
scripts encode a 55 kDa neuroendocrine secretory, chro-
mogranin-like protein of unknown function [18]. The
entire coding region of the NESP55 protein is located
within the NESP exon while GNAS exons 2-13 constitute
the 3’'UTR of NESPS5S5 transcripts [19].

Recently, a number of studies have highlighted the
relationship between the GNAS imprinting domain and
the development of disease in both mice and humans.
For example, genetic perturbations within the GNAS
domain, such as point mutations and duplication/dele-
tion of maternally- or paternally-inherited alleles, can
result in physiological dysfunction, such as reduced
body size, hypermetabolism, obesity, mental retardation
or neonatal lethality [16,20-24]. Such findings support a
major functional role for the GNAS domain in regulat-
ing mammalian growth and maturation.

Based on the known physiological role of the imprinted
GNAS domain in regulating mammalian growth and
development, we have adopted a candidate gene strategy
by assessing associations between six bovine GNAS
domain SNPs and genetic merit for a range of economic-
ally-important performance traits in 848 progeny-tested
Holstein-Friesian sires. The candidate gene approach
uses variation in genes of known biological function rele-
vant to the trait(s) of interest to investigate genotype-
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phenotype associations, and is regarded as a viable alter-
native to whole genome scans for the detection and char-
acterisation of quantitative trait loci (QTL) for complex
performance traits [25-27]. Furthermore, in support of
our approach, recent investigations have shown that
known or candidate imprinted loci (based on the
imprinting status of orthologous genes from other mam-
malian species) can underlie important QTL for complex
performance traits in livestock, including animal growth
and development [28-36], fat deposition [37], meat traits
[38], milk traits [39,40] and fertility traits [41]. In addi-
tion, other recent studies have considered the effect of
genetic imprinting on quantitative traits in managed
populations [42,43].

In cattle, the GNAS domain is located on Bos taurus
chromosome 13 (BTA13). While there is currently no
definitive evidence demonstrating that the bovine GNAS
locus is imprinted, studies have confirmed that this gene
is maternally expressed in parthenogenetic bovine
embryos [44,45]. However, the appreciable evolutionary
conservation of imprinting domains across mammalian
species, including humans, mouse, sheep, pigs and cattle,
suggests that the bovine GNAS locus may also be under
similar epigenetic regulation [46-50]. Indeed, preferential
maternal expression of the bovine NESP55 gene has been
previously reported by Khatib [51] in foetal tissue sam-
ples. In the current study, while we could not test for
imprinting of the GNAS gene (due to lack of expressed,
coding SNPs), we could validate and extend the preferen-
tial maternal expression of the bovine NESP55 gene to a
wider range of tissues at earlier stages of development to
tissues screened in previous studies [51].

Results

NESP55 is epigenetically regulated as a maternally
expressed imprinted gene in 8-10 week old bovine foetal
tissues

To determine the imprinting status of the bovine GNAS
and NESP55 genes, exonic and UTR SNPs reported in
Build 4.0 of the B. taurus genome assembly within the
ENSEMBL database http://www.ensembl.org were cata-
logued and subsequently validated via direct bi-direc-
tional sequencing of high-fidelity polymerase chain
reaction (PCR) amplicons from genomic DNA using a
panel of foetal and dam samples. In this study each of
the three predicted gene models for GNAS in the cattle
genome were considered [ENSEMBL database transcript
IDs ENSBTAT00000002746 encodes the bovine GNAS
transcript, ENSBTAT00000023246 encodes the alterna-
tively spliced transcript termed GNAS2_BOVIN and
ENSBTAT00000023234 encodes a novel alternatively
spliced GNAS transcript]. While the ENSEMBL database
reports one SNP (rs41255672) in the 3'UTR of GNAS,
our sequencing of PCR amplicons generated from
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genomic DNA isolated from 10 different animals (using
amplicons spanning exons 7 to 14 of the bovine GNAS
locus) failed to detect a heterozygous SNPs that would
allow for a test of GNAS imprinting in tissue samples
derived from each animal (results not shown).

In contrast to the monomorphism of the rs41255672
SNP, a coding SNP within NESP55 (rs41694656) was
polymorphic in four foetuses ranging in age from 8 to 10
weeks old. Reverse-transcription PCR (RT-PCR) analysis
of RNA samples derived from a wide range of tissues for
these foetuses indicated that the NESP55 transcript was
expressed in brain, heart, intestine, liver, lung, muscle
and placental (caruncle and cotyledon) tissues in both 8
and 10 week old foetuses (Figure 1). It has previously
been demonstrated that the NESP55 exon is spliced to
exon 2 of GNAS in the cattle samples tested, which is
similar to humans and mice [51]. To confirm such spli-
cing for the samples used in this study, the complemen-
tary DNA (cDNA) of the NESP55 transcripts which
spanned the predicted NESP55 exon-GNAS exon 2 splice
junction was sequenced and also confirmed that the
NESP55 exon splices to GNAS exon 2 in cattle.

While Khatib [51] has demonstrated that NESP5S is
maternally expressed in a range of foetal tissues from
10-13 weeks old, the imprinting status of NESP55 at
earlier foetal stages (e.g. 8 weeks) remains unknown.
Using the coding SNP (rs41694656) within NESP55 and
DNA sequence traces for genomic DNA and ¢cDNA
template samples, the imprinting status of NESP55 was
analysed in the current study in the four A/G heterozy-
gous foetal samples which were either 8 or 10 weeks old
(Figure 2). As the dam of foetus 2 was homozygous A/A
at this SNP, and expression of only the A allele was
observed in all of the heterozygous A/G foetal offspring
tissues tested, the results suggest that NESP5S is a
maternally expressed imprinted gene in seven foetal tis-
sues, all of which are at an earlier developmental stage
to those previously analysed by Khatib [51]. Further-
more, our results extend previous demonstrations of
NESPS5 imprinting by demonstrating here that NESP55
is also a maternally expressed imprinted gene in intest-
inal and placental tissues (cotyledon) from both 8 and
10 week old foetal samples (Figure 2).

Allele and genotype frequencies for the six GNAS domain
SNPs analysed in 848 progeny-tested Irish Holstein-
Friesian sires

To assess if DNA sequence variation within the bovine
GNAS domain on BTA13 is associated with bovine perfor-
mance traits, six SNPs (all previously reported in the
ENSEMBL database and validated by us in a previous study
[52]) were genotyped in 848 progeny-tested artificial inse-
mination Irish Holstein-Friesian sires. Summary statistics,
including genotype and allele frequencies together with
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Figure 1 Reverse-transcriptase (RT)-PCR of NESP55 expression in foetal and adult tissues. RT-PCR primers were located in the NESP55 exon
(forward primer) and GNAS exon 6 (reverse primer). Lanes 1-8: RT-PCR product of tissues from 8 weeks old foetus; lane 9 and 19: RT-PCR product
from liver from the dam of 8 and 10 weeks old foetus, respectively; lanes 10-18: RT-PCR product of tissues from 10 week old foetus. Amplified

fragments were confirmed by sequencing to be NESP55 transcript. C - PCR negative control; M - HyperlLadder Il Marker (Bioline Ltd, London, UK).

deviations from Hardy-Weinberg equilibrium (HWE), for
each of the six validated GNAS domain SNPs, are presented
in Table 1. SNPs were coded as per their unique dbSNP
database accession numbers [53], while the genomic co-
ordinates for each SNP were taken from the dbSNP data-
base and are based on Build 4.0 of the B. taurus genome
assembly (ENSEMBL release 60). The position of each SNP
relative to the bovine GNAS and NESPS55 genes (i.e.
upstream/intronic/exonic) was based on the currently
annotated transcriptional units contained within the B.
taurus GNAS domain. The position of the six assayed SNPs
within the GNAS domain is depicted schematically in Fig-
ure 3. 7% [54] and D’ [55] values of linkage disequilibrium
(LD) between all pairwise combinations of GNAS domain
SNPs are presented in Additional file 1. For all assayed
SNPs, minor allele frequencies (MAFs) ranged between
0.09 (rs43101491) and 0.32 (rs41694646). Heterozygosity (.
e. the observed number of heterozygous individuals at all
six analysed loci) for the six SNPs ranged between 0.17
(rs43101491) and 0.45 (rs41694646). None of the SNPs
assessed demonstrated significant deviation from HWE.

An intronic SNP located between exon 2 and 3 of the
bovine GNAS gene is associated with a range of
production traits in cattle

The SNP genotype associations with performance traits
for all six assayed SNPs are presented in Table 2 and 3—
only significant genotype-phenotype associations are pre-
sented in these. Notably, one SNP (rs41694646), located
in the intron separating the 2"® and 3" exons of the

GNAS gene (ENSEMBL database transcript ID
ENSBTAT00000002746), displayed highly significant
associations with a range of the cattle production traits
assessed. The G-to-C allele substitution at this locus was
associated with increases in milk yield (P < 0.001) and
milk protein yield (P < 0.05) and decreases in milk fat
and protein content (P < 0.05). No associations with milk
fat yield were observed at this SNP locus. This SNP was
also associated with carcass and growth/body conforma-
tion traits including culled cow carcass weight (P < 0.01),
progeny carcass fat (P < 0.01), progeny carcass conforma-
tion (P < 0.01) and animal stature and body depth (both
P < 0.001). However, no associations with rump angle
and rump width were observed. The rs41694646 SNP
also tended to be associated (P < 0.10) with cow angular-
ity—a subjective measure of subcutaneous fat levels in live
animals—with the G allele being associated with greater
fat cover. The low pairwise * values (< 0.030) observed
for this SNP with all other genotyped GNAS domain
SNPs in this study suggest the allele substitution effects
at this locus are independent. Following adjustment for
multiple testing, statistical associations (g < 0.05, where
q-values represent the raw P-value corrected for multiple
testing) between the rs41694646 SNP and three traits
remained—milk yield, animal stature and body depth.

SNPs within the GNAS locus are associated with
reproduction traits in domestic cattle

In addition to associations with milk, carcass and body
size traits, the rs41694646 SNP was also associated with
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Figure 2 Sequencing traces of NESP55 gene for genomic DNA and cDNA from both maternal and foetal tissues. The genomic DNA from
the mother of each foetus allowed genotyping of the maternal genotype, while the genomic DNA from each foetus allowed genotyping of the
each foetus. Arrows indicate the exonic SNP, denoted R (A/G), which was used for both DNA genotyping and to analyse allele-specific
expression status of NESP55 transcripts (CDNA) across tissues from 8 and 10 weeks old foetuses. Column number 4 presents the genotypes for all
samples/animals tested. Column 5 indicates whether monoallelic (ie. uniparental) expression was detected.

a range of calving traits, including direct calving difficulty
due to the size of offspring [i.e. a sire effect on calving dif-
ficulty] (P < 0.001) and gestation length (P < 0.01). Asso-
ciation between this SNP and direct calving difficulty
remaining after adjustment for multiple testing (g < 0.05).
This SNP also tended to be associated (P < 0.10) with
maternal calving difficulty (i.e. due to the size of the
maternal pelvic width) and perinatal mortality (a C-to-G
substitution at this locus results in 0.17% decrease in the
rate of perinatal mortality [standard error + 0.10%])—no
other SNP analysed in this study was associated with peri-
natal mortality. Significant associations with direct calving
difficulty due to offspring size (P < 0.01) and maternal

calving difficulty (P < 0.01) were also observed at the
rs43101491 SNP, which is located 14.2 kb upstream of the
GNAS gene; however these associations were no longer
significant after adjustment for multiple-testing. No signif-
icant associations were observed between any of the
above-listed traits and the remaining three SNPs located
upstream of the GNAS gene (i.e. rs43101491, rs43101486,
rs43101485).

A non-synonymous SNP within the NESP55 cattle gene
model is associated with somatic cell count

The single assayed SNP within the putative bovine
NESP55 transcript (rs41694656) displayed no significant
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Table 1 Summary statistics for the GNAS domain SNPs analysed in this study across 848 Holstein-Friesian sires

SNP Open reading frame (ORF) SNP location/dbSNP Genotypes Genotype Minor allele Deviations from
model position of SNP accession number frequencies frequency HWE (P-value)
543101491 Upstream of the GNAS gene 58,215,520 GG 0.005 0.09 (G) 0.24
GT 0.170
T 0.825
1543101493 Upstream of the GNAS gene 58,214,963 AA 0.660 0.19 (G) 0.19
AG 0.300
GG 0.040
543101486 Upstream of the GNAS gene 58,203,762 AA 0.020 0.14 (A) 0.56
AG 0.240
GG 0.740
543101485 Upstream of the GNAS gene 58,203,464 CcC 0.043 0.19 (O 0.36
CG 0.303
GG 0.654
1541694646 Intron 2 of the GNAS gene 58,183,623 CcC 0.090 0.32 (O 0.35
CG 0450
GG 0460
1541694656 Intron 1 of the putative NESP55 58,281,228 AA 0.747 0.14 (G) 0.25
gene
AG 0.229
GG 0.024

Genotype frequency, minor allele frequency (MAF) and significance of deviation for Hardy-Weinberg equilibrium (HWE) based on P-values obtained from y2-test
results are given for all seven SNPs. dbSNP database accession numbers for each SNP were provided from GenBank [[53]; http://www.ncbi.nlm.nih.gov/projects/
SNP] and the Build 4.0, release 60, of the B. taurus genome assembly in the ENSEMBL database http:/www.ensembl.org.

associations with any of the milk production, carcass, body
conformation or calving traits analysed but it was asso-
ciated (P < 0.01) with somatic cell count. However, asso-
ciation with somatic cell count no longer remained after
adjustment for multiple testing. Sequence alignment indi-
cates that this SNP lies within the first exon of putative
maternally expressed NESPS55 transcript (GenBank acces-
sion U77614.1); the NESP55 exon is situated ~89.9 kb
upstream of the first Gso exon. The G-to-A nucleotide
substitution at this locus results in a non-synonymous
aspartic acid-to-asparagine amino acid substitution at
amino acid position 192 in the NESP55 protein [51].

Discussion

SNPs within or proximal to the bovine GNAS gene and
their association with cattle performance traits
Candidate gene studies, whereby DNA sequence poly-
morphisms are pre-selected for analysis based on their
proximity to genes/loci known (or considered likely) to
play a role in regulating a phenotype of interest, are con-
sidered as viable alternatives to genome-wide association
(GWA) studies [25]. Such approaches are also regarded
as having the added advantage of reducing both the num-
ber of false-positive genotype-phenotype associations (i.e.
spurious associations detected due to chance) and false-
negative genotype-phenotype associations (i.e. true
associations that are erroneously rejected as a result of
rigorous conventional statistical testing) commonly
encountered during GWA studies [25,26,56,57].

In the present study, we have adopted a candidate
gene approach by analysing DNA sequence variation in
the bovine GNAS imprinting domain and a number of
economically-important performance traits in cattle. In
humans and mice, this domain consists of a number of
reciprocally-imprinted and alternatively spliced genes
and has been shown to have an important relationship
with mammalian growth, development and disease in
these species [12,16,22]. While the GNAS gene, which is
integral to this domain, is preferentially maternally
expressed in humans and mice, the current imprinting
status of the bovine ortholog of GNAS has not yet been
conclusively defined [44,45]. However, the degree of
imprinting conservation between mammalian species
suggests that this gene may also be epigenetically regu-
lated in cattle [46,47]. Indeed, the bovine NESPS5 gene
which lies upstream of the bovine GNAS gene has pre-
viously been shown to be a maternally expressed
imprinted gene by Khatib [51] and also by us in the cur-
rent study, the evidence for which is discussed below.

Genotype-phenotype association analysis performed in
the current study identified a number of statistically sig-
nificant associations (P < 0.05) between SNPs distributed
across the orthologous bovine GNAS domain and a num-
ber of cattle growth and development, milk, calving and
health traits. To our knowledge, this is one of the first
studies demonstrating that DNA sequence variation
within the GNAS domain underlies quantitative phenoty-
pic traits in cattle. These associations are most aptly
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Figure 3 Annotation of the GNAS imprinting region on BTA13 as per build 4.0 of the B. taurus genome sequence. The physical location
of each SNP used in this study is indicated in relation to contig BTA13. The SNPs analysed in this study are listed as per their dbSNP accession
number http://www.ncbi.nlm.nih.gov/projects/SNP. Two of the reported alternatively spliced GNAS transcripts (ENSBTAT00000002746 [GNAS] and
ENSBTAT00000023246 [GNAS2_BOVIN]) are shown here. A third novel GNAS alternatively spliced transcript reported in the ENSEMBL database
(ENSBTAT00000023234) is not shown. The direction of transcription is denoted by the hashed lines containing arrowheads. The location of the
putative bovine NESP55 first exon is shown and was determined via alignment of the bovine NESP55 mRNA sequence with build 4.0 of the B.
taurus genome. In humans and mice transcripts from this exon are spliced to exons 2-13 of the GNAS gene.

Table 2 Estimated allele substitution effect (standard error in parenthesis) between six SNPs in the bovine GNAS
domain and milk performance, somatic cell count (SCC), calving and fertility traits

SNP Allele Milk Milk protein Milk fat Milk protein ScC Direct Maternal Gestation
substitution yield yield (kg) content’ content’ (unitsx100) calving calving (days)
(kg) (%x100) (%x100) difficulty? difficulty?
1543101491 G—>T 8.65 0.25 -1.25 -0.10 0.97 -0.51%* 0.66"* -0.12
(16.56) (0.46) (1.25) (0.61) (1.01) 0.19) (0.23) 0.12)
1543101493 A—>G 4.24 0.16 0.85 0.13 -0.97 0.08 -0.19 0.05
(1205 (033) (0.91) (0.44) (0.73) (0.14) 0.17) (0.09)
1543101486 A—G -8.94 -0.05 0.1 0.37 136" -0.16 0.26 -0.04
(1358)  (0.38) (1.03) (0.50) (0.87) (0.16) (0.19) (0.10)
1543101485 C—G -261 -0.09 -0.85 -0.12 090 -0.12 0.19 -0.06
(12.04) (0.34) (0.91) (0.44) (0.72) (0.14) 0.17) (0.09)
1541694646 C—G -34.63***  -063* 1.98* 0.94* -0.60 -0.44%** 0.28" -0.23**
(1048) (0.29) (0.79) (0.38) (0.63) 0.12) (0.15) (0.08)
1541694656 A—G 20.22 0.63 -0.79 -0.02 -2.37%% 0.10 -0.29 0.01
(14.04) (0.39) (1.06) (0.52) 0.85 0.17) (0.20) 0.11)

Significance of difference from zero T= P <010 *=P <005 * =P < 001; ** = P < 0.00]1.

' A value of 1, prior to multiplication by 100, equates to 1 percentage unit.

2 Expressed in standard genetic deviation units.

Underlined values represent genotype-phenotype associations that have remained statistically significant (g < 0.05) after adjustment for multiple testing.
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Table 3 Estimated allele substitution effects (standard error in parenthesis) of six SNPs in the bovine GNAS domain on

growth performance and size

SNP Allele Culled cow carcass Progeny carcass Progeny carcass Stature®> Body depth® Angularity®
substitution  weight (kg) conformation' (x100) fat® (x100) (x10) (x10) (x10)
rs43101491 G—T 117 0.07 -4.07 -0.93 -047 -1.90
(1.06) (3.40) (2.96) (152) (142) (1.59)
1543101493 A—G -0.13 -2.03 291 0.10 0.31 051
(0.76) (245) (212) (1.07) 1.01 (1.13)
1543101486 A—G -0.23 0.20 -1.64 -1.08 -0.28 -0.90
(0.83) (2.69) (2.34) (1.20) (1.13) (1.27)
1543101485 C—-G 0.10 1.87 -2.70 0.01 -1.83 -0.29
(0.75) (242) (2.11) (1.07) (1.00) (1.13)
541694646 C—G -1.66%* 5.49%* 5.44%% -Q.97%%% ) 8g¥*¥ 187"
(0.65) (2.11) (1.82) (0.92) (0.87) (0.97)
1541694656 A—>G 040 -1.65 0.34 -4.93 -1.09 -1.15
(0.88) (2.84) (245) (1.30) (1.22) (1.39)

Significance of difference from zero ' = P < 0.10; * = P < 0.05; ** = P < 0.01; *** = P < 0.001.

! Scale: 1 (poor)-15 (good).
2 Scale 1 (low)-15 (high).
3 Expressed in genetic standard deviation units.

Underlined values represent genotype-phenotype associations that have remained statistically significant (g < 0.05) after adjustment for multiple testing.

demonstrated by the rs41694646 SNP located within the
2" intron of the bovine GNAS transcript. Notably, this
SNP was associated with, (1) animal growth and develop-
ment (as illustrated by associations with animal stature,
body depth, culled cow carcass weight, progeny carcass
conformation and progeny carcass fat deposition), (2) fer-
tility (as illustrated by associations with gestation length),
(3) milk production (as illustrated by associations with
milk yield, milk protein yield, and milk fat and protein
content), and (4) calving (as illustrated by associations
with direct calving difficulty). In addition, the rs43101491
SNP located upstream of the GNAS gene was also asso-
ciated with the two calving traits analysed here. It should
be noted that significant associations between the
rs41694646 SNP and animal stature, body depth, direct
calving difficulty and milk yield remained after correction
for multiple-testing (g < 0.05).

The phenotypic associations with SNP variation in the
GNAS domain detected in this study are supported by
genetic analysis of the GNAS domain in other mamma-
lian species. Genetic defects within the human GNAS
domain can cause similar physiological defects to those
observed in knockout mice strains. Heterozygous muta-
tions disrupting expression from the Gsoo promoter dis-
play symptoms characteristic of Albright hereditary
osteodystrophy (AHO) including short stature, bracy-
dactyly and neurological defects. In addition, maternal-
specific inheritance of mutations in the GNAS gene can
result in severe obesity and resistance to growth-regu-
lating hormones. Alternatively, paternally-derived muta-
tions in Ggou promoter-generated transcripts do not lead
to development of obesity or multi-hormonal resistance
reflecting the paternal-silencing of this promoter
[16,58].

In mice, paternally- and maternally-inherited null
mutations associated within the Gnas gene cluster
results in severe, albeit different, developmental and dis-
ease phenotypes. For example, heterozygous mice carry-
ing maternally-derived knockout mutations within exon
2 of the Gnas gene (an exon common to all transcripts
produced within the Gnas domain) display severe obe-
sity, increased insulin sensitivity and increased perinatal
mortality, while heterozygotes carrying a paternally-
derived exon 2 knockout mutations (indicative of a loss
of Gnasxl transcripts) also displayed increased perinatal
mortality, greatly increased insulin sensitivity, hyperme-
tabolism and reduced adiposity; homozygous individuals
were embryonically lethal [59-61]. Furthermore, a mis-
sense mutation in Gnas exon 6 (referred to as the Oed-
Sml mutation) causes post-natal growth retardation
when paternally-inherited in heterozygotes; when mater-
nally-inherited in heterozygotes this mutation result in
marked subcutaneous oedema, obesity and increased
neonatal mortality [62]. Collectively, these lines of evi-
dence have led to suggestions that the XLag isoform
(encoded by the Gnasxl) functions to promote growth
and increase lipid/fat content and metabolism during
development, while the function of the Gga protein is
to reduce growth, fat mass and metabolism during
development [63]. Notably, the bovine GNAS SNPs
assayed in this study showed similar phenotypic effects
on growth and fat deposition. Although no significant
associations with calf perinatal mortality was observed,
there was an observed tendency for the rs41694646 SNP
to be associated with this trait. Indeed, the observed
association between the intronic rs41694646 SNP and
the effect of the sire on calving difficulty may possibly
be due to foetal growth effects on calving success.
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The association of the GNAS imprinting locus with
progeny carcass fat deposition in cattle is intriguing as it
resonates with proposed theories for imprinting evolu-
tion of genes controlling non-shivering thermogenesis in
animal species (such as cattle and other domestic ani-
mals) that display huddling behaviour [64,65]. Young
mammals generate heat through non-shivering thermo-
genesis and conserve heat loss through social thermore-
gulation (huddling) [66-68]. In this regard, GNAS has
been highlighted as a gene that produces both a mater-
nally expressed promoter and a paternally expressed
inhibitor of non-shivering thermogenesis, which is pro-
posed to lead to an intragenomic conflict driving
imprinting at the GNAS domain [64,65].

A recent molecular evolutionary analysis of 34 mam-
malian imprinted genes by our group found that GNASx/
is only one of two imprinted transcripts/genes (the other
being OSBPLS) which displays site-specific positive Dar-
winian selection consistent with the parental conflict the-
ory for evolution of imprinted genes [69,70]. In addition,
the biochemical evidence from studies of the GNAS-
derived gene products in humans and mice is often cited
as support for the parental conflict or kinship theory for
the evolution of imprinting. This theory proposes that
paternally-expressed imprinted genes can act in the
developing offspring to recruit biological resources from
the mother and hence promote offspring growth, whereas
maternally-expressed genes act to restrict demand on
maternal biological resources by inhibiting offspring
growth [69]. Phenotypes associated with disruptions of
the imprinted GNAS locus have been particularly high-
lighted as supporting evidence for the parental conflict
theory for the evolution of imprinting [64,65,71]. While a
similar scenario in cattle is tempting to speculate given
the observed associations with growth at the bovine
GNAS gene in this study, determining the relative pheno-
typic contributions from maternally- and paternally-
derived alleles at the rs41694646 SNP was not feasible as
the association analysis presented here was not con-
ducted across a structured, multi-generational population
with known ancestral relationships. However, based on
the results presented in the current study the use of this
SNP in future QTL mapping studies using structured,
multi-generational populations may allow for some test-
ing of the parental conflict theory in relation to the
GNAS gene-derived transcripts in livestock.

Genotype-phenotype association analysis between the a
non-synonymous NESP55 SNP and somatic cell count

The NESPSS transcript is produced by the splicing of
the first NESP exon and Ggo. exons 2-13; however, the
entire NESP55 coding sequence is contained within its
first exon with Gso exons 2-13 forming the 3'UTR of
NESPS5S transcripts. This transcript encodes the NESP55
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protein which consists of 241 amino acids and is an
acidic, soluble heat-stable chromogranin-like protein
localised within large dense core granules of secretory
cells [19,72,73]. Although NESP5S is expressed in a wide
range of human and murine tissues (especially neuroen-
docrine tissue including adrenal medulla, pituitary and
hypothalmus) its function remains unknown [16]. While
gene knockout studies in mice have shown that elimina-
tion of maternally-derived NESP55 transcripts do not
affect post-natal development, altered behavioural reac-
tivity to novel environments were observed [74].

Regardless of the function of its encoded gene pro-
duct, the observed association between the rs41694656
SNP and somatic cell count (SCC) is noteworthy. The
SCC phenotype reflects the number of leukocytes per
millilitre of milk and is an indicator of clinical and sub-
clinical mastitis in cattle. Clinical mastitis is the most
frequent cause of involuntary culling in North American
dairy herds costing the US dairy industry an estimated
$2 billion annually [75-78]. Both SCC and clinical masti-
tis are strongly positively correlated and therefore selec-
tion for reduced SCC, either through quantitative
genetics or molecular genetics means, is expected to, on
average, reduce the incidence of mastitis [79,80].
Recently, a microsatellite-based whole genome scan
identified a BTA13 as harbouring a QTL for SCC in
Danish Holstein cattle [81]. Notably, this QTL was
located in the genomic region encompassing the GNAS
domain. Given the significant association observed
between the NESP55 SNP and SCC in the current
study, it is possible that the NESP55 gene underlies this
QTL for SCC or is linked to another genetic locus that
is associated with this trait.

The G-to-A substitution at the rs41694656 SNP
located within the NESP55 gene represents the only
coding sequence polymorphism analysed in this study,
and results in a non-synonymous aspartic acid to aspar-
agine codon substitution at amino acid position 192 of
the NESP55 protein. However, given the similar bio-
chemical properties between these two amino acids
(both are small polar amino acids) it seems unlikely that
this SNP is causal for the SCC phenotypic effect
observed in this study. Rather, it is more plausible to
suggest that this SNP is associated through LD with
causal regulatory mutations (or set of mutations) located
proximal to, or within the bovine NESP55 gene that
have not yet been identified.

It is important to note that while many QTL scans for
performance traits (using multi-generation resource
populations with known pedigree structure) have incor-
porated imprinting effects in their statistical model
[82-84], this was not possible in the current study as the
DNA samples used were derived from progeny-tested
Holstein-Friesian sires. While the association of
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variation in a domain containing maternally expressed
imprinted genes (i.e. NESP55 and possibly GNAS in cat-
tle) with phenotypic data derived from progeny-tested
sires seems somewhat incongruent, this can possibly be
explained by the fact that the genetic merit for each of
traits examined here is calculated from many descen-
dents across multiple generations (with female interme-
diaries). Therefore, variation in sire-derived maternally
expressed imprinted genes could still be associated with
performance.

Imprinting of the bovine NESP55 gene

To date, NESPS5S is the only transcript within the GNAS
domain complex which has been shown to be imprinted
in cattle exhibiting a maternally expressed pattern of geno-
mic imprinting [51]. Our results further indicate that
NESPSS5 remains imprinted across many tissues of earlier
stage foetuses (e.g. 8 week) than previously analysed (i.e.
from 10-13 week old foetuses [51]) (Figure 1 and 2). In
addition, we demonstrate that NESP55 is also epigeneti-
cally regulated as a maternally expressed imprinted gene
in intestinal and placental samples (cotyledon) of the 8-10
day old foetal offspring (Figure 1 and 2).

Conclusions

Overall, our results provide evidence that DNA
sequence variation within the bovine GNAS imprinting
domain is associated with a number of performance
traits in domestic cattle. We also provide additional evi-
dence (to earlier reports) indicating that the NESP55
gene in this domain is a maternally expressed imprinted
gene in foetuses as early as 8 weeks old. This lends
further support to the accumulating body of research
indicating that imprinted genes (and the complex
imprinting cluster domains they reside in) can harbour
important quantitative trait loci for economically-rele-
vant performance traits in domestic livestock species.
These observations increase support for the inclusion of
imprinted loci (and their associated DNA sequence
polymorphisms) as molecular markers for future domes-
tic animal improvement strategies.

Methods

Analysis of NESP55 expression

A. Foetal tissue samples collection

Foetal samples were collected from two abattoirs: (a) the
Kildare Chilling Company (Kildare town, County Kil-
dare, Ireland), and (b) Meadow Meats (Rathdowney,
County Laois, Ireland). Upon collection the foetuses
were immediately chilled on ice. After dissection, the
obtained tissues were submerged in an appropriate
volume of RNAlater® solution (Applied Biosystems,
Warrington, UK). In total, 10 foetuses ranging from 6-
10 weeks old (based on the crown-rump length of the
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foetus) were collected. The tissues were kept at 4°C
overnight, then the RNAlater® solution was removed
and tissues were frozen in liquid nitrogen and stored at
-80°C.

B. RNA extraction from foetal tissue

Total RNA was extracted using RNAqueous® Kit
(Applied Biosystems, Warrington, UK) following the
manufacturer’s instructions. Approximately 75 mg of
the frozen sample was removed and homogenised in
750 ul lysis buffer (supplied with the RNAqueous® Kit)
using a hand electric homogeniser. The lysate was then
mixed with 750 pl of 64% v/v ethanol by inverting the
tube several times. The lysate/ethanol mixture was
applied to a filter cartridge supplied with the kit and
centrifuged at 13,000xg for one minute. The flow-
through was discarded and the cartridge was washed
with a 700 pl of Wash Solution 1 and subsequently with
500 pl Wash Solution 2 and 3 (supplied with the RNA-
queous® Kit). Upon the addition of each appropriate
solution the tubes were centrifuged at 13,000xg for one
minute and the flow through was discarded. Total RNA
was eluted twice with 50 pl of DNAse- and RNAse-free
water, divided into aliquots, and quantified using a
NanoDrop™ ND1000 spectrophotometer V 3.5.2
(Thermo Scientific Ltd., Wilmington, DE, USA). To vali-
date RNA integrity two volumes of formaldehyde-based
loading dye was added to each RNA sample and ana-
lysed on 1% agarose gel in 1x TBE after ethidium bro-
mide staining.

C. cDNA synthesis

c¢DNA synthesis reactions were carried out using the
QuantiTect Reverse Transcription Kit (Qiagen Ltd.
Crawley, UK) following the manufacturer’s instructions.
Approximately 1 pg of total RNA in 12 pl RNAse-free
water was mixed with 2 ul of genomic DNA (gDNA)
Wipeout Buffer and incubated for 5 min at 42°C. The
reaction mixture was then cooled on ice and 6 pl of
reverse transcription master mix containing 1 pul of the
Quantiscript® reverse transcriptase enzyme (Qiagen Ltd.
Crawley, UK), 1 ul of reverse transcription primer mix
and 1x Quantiscript reverse transcription buffer was
added to each RNA sample. The reaction was incubated
at 42°C for 30 min and subsequently the reverse tran-
scriptase enzyme was inactivated by placing the samples
for 3 min in 95°C. ¢cDNA samples were diluted 1:4 for
further analysis.

D. gDNA PCR amplification, RT-PCR amplification and
sequencing of NESP55 amplification products

PCR amplifications of gDNA for DNA sequence analysis
were performed in 50 pl volume. RT-PCR amplifications
were performed in 20 pl volume. PCR primers used for
gDNA amplifications were located in the single NESP55
coding exon (forward primer sequence: 5-AGTCCGA-
GACCGAATTCG-3’; reverse primer sequence: 5'-
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CATTAGCTGAGCCGGATGG-3), while PCR primers
for cDNA amplification were located in the NESP55
coding exon (forward primer sequence: 5-AGTCCGA-
GACCGAATTCG-3’) and exon 6 of the bovine GNAS
gene (reverse primer sequence: 5-CGTTGGAGCGCT-
CATAGCAG-3’), respectively. Each PCR reaction
included 20 ng of DNA or cDNA; 0.4 uM of each pri-
mer; 1x Green GoTaq” Flexi Buffer (Promega Ltd., Ire-
land); 0.25 mM of each dNTP (Sigma Aldrich Ltd.,
Ireland) and 0.4 Units of GoTaq"” Flexi DNA Polymer-
ase (Promega Ltd., Ireland). MgCl, solution was added
to each PCR at a final concentration of 2.5 mM. For all
PCR amplifications, an initial denaturation step of 5 min
at 95°C was followed by 35 cycles of a 3-step amplifica-
tion programme of 30 sec at 95°C for denaturation, 30
sec at 60°C for annealing and 1 min at 72°C for exten-
sion. The final extension step was performed after 35
cycles of the above process at 72°C for 5 minutes. All
content of each PCR reaction was loaded on a 1% w/v
agarose gel stained with ethidium bromide (Sigma
Aldrich Ltd., Ireland) in 1x TBE buffer and visualised
under UV light. All sequencing reactions were per-
formed commercially by GATC Biotech Ltd. (Constance,
Germany) using the primer sequences listed above and
resulting DNA sequence traces were analysed using the
LaserGene Package (DNASTAR, WI, USA).

SNP genotype-phenotype association analysis

A. Bovine GNAS domain sequence analysis and SNP
validation

Two alternatively spliced transcripts have described for
the currently annotated bovine GNAS gene (ENSEMBL
gene ID ENSBTAG00000017475) in the ENSEMBL data-
base (http://www.ensembl.org, ENSEMBL release 60,
November 2010). These are: (a) the GNAS transcript
(ENSEMBL transcript ID ENSBTAT00000002746) which
consists of eight translated exons and one untranslated
exon and encodes a 253 amino acid protein, and (b) the
GNAS2_BOVIN transcript (ENSEMBL transcript ID
ENSBTAT00000023246) which consists of 16 translated
exons encoding a 350 amino acid protein. The final eight
translated exons of the GNAS2_BOVIN transcript repre-
sent the first eight translated exons of the GNAS tran-
script (Figure 3). A novel transcript (ENSEMBL
transcript ID ENSBTAT00000002746) consisting of all
alternatively spliced GNAS and GNAS2_BOVIN exons
together with additional exon sequences has also been
reported in the ENSEMBL database.

The methods used to validate DNA sequence poly-
morphisms for genotyping within the bovine GNAS
domain have been discussed in detail elsewhere [52].
Briefly, high-fidelity PCR amplicons spanning putative
SNPs within the bovine GNAS region on BTA13 as per
Build 4.0 of the bovine genome in the ENSEMBL
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database were generated for a panel of 26 animals (com-
prising European Bos taurus, African B. taurus and
Indian B. indicus animals) and sequenced bi-directionally
(Macrogen Inc., Korea; http://www.macrogen.com). The
MEGA 4.0 software package [85] was used to analyse all
resulting DNA sequences and to confirm the presence of
SNPs. In the current study, we used six validated GNAS
domain SNPs (three transitions and three transversions)
for high-throughput genotyping. One SNP (rs41694646)
was located within the second intron of the GNAS gene
(ENSEMBL gene ID ENSBTAG00000017475; ENSEMBL
transcript ID ENSBTAT00000002746) while four SNPs
(rs43101491, rs43101493, rs43101486, rs43101485) were
located upstream of the bovine GNAS gene based on the
currently annotated open reading frame (ORF) gene
model of the GNAS gene.

The final SNP (rs41694656, a G-to-A nucleotide sub-
stitution) was located within the first exon of the bovine
NESPS5S gene. Previously, Khatib [51] used this SNP to
detect imprinting of the bovine NESP55 gene, however
given the major advances in bovine genomics resources
since then, we confirmed the location of this SNP using
a bioinformatics approach. At the time of analysis, the
genomic DNA (gDNA) sequence of this gene was not
fully annotated within B. taurus reference genome
sequence. Instead, the location and gDNA sequence of
NESPS5 was identified via alignment of the complete
NESP55 mRNA sequence (GenBank accession number
U77614.1) with Build 4.0 of the bovine genome using
the BLAT sequence alignment tool available through the
UCSC genome browser http://genome.ucsc.edu. The
amino acid sequence of the NESP55 complete transcript
carrying the A allele at the rs41694656 SNP was pro-
duced using the ‘Translate’ option on the ExPASy pro-
teomics server http://www.expasy.ch. Alignment of the
resulting amino acid sequences revealed that the G-to-A
nucleotide substitution at the rs41694656 SNP causes an
aspartic acid (codon GAC) to asparagine (codon AAC)
at amino acid position 192 of the NESP5S protein, thus
confirming the findings of Khatib [51].

B. DNA samples, DNA extraction, high-throughput SNP
genotyping and SNP data filtering

Genomic DNA from 914 progeny-tested Irish Holstein-
Friesian sires was purified using a Maxwell™ 16 auto-
mated apparatus (Promega Corp., Madison, WI, USA) as
per manufacturer’s instructions. These sires have been
used to produce progeny in Ireland (via artificial insemi-
nation) and were representative of the commercial germ-
plasm used in Irish dairy herds in past years. Genotyping
for all six GNAS SNPs was performed on all 914 sires
together with an additional 25 independently-extracted,
duplicate samples that were included for genotype quality
control purposes. All SNP genotyping was performed
commercially by Sequenom Inc. (San Diego, CA, USA;
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http://www.sequenom.com using their proprietary Mas-
sARRAY iPLEX™ Gold genotyping platform. This SNP
genotyping platform discriminates between SNP alleles
using single base primer extension technology after
which primer extension products are analysed using
matrix-assisted laser desorption ionisation time-of-flight
(MALDI-TOF) mass spectroscopy http://www.sequenom.
com/iplex. Furthermore, this SNP genotyping platform
has been validated by us in a previous study [86].

Genotype quality control and data filtering were per-
formed on all data prior to association analyses. This
involved the use of an iterative algorithm to remove
SNPs and individuals that yielded poor genotype call
rates. Firstly, SNPs with a genotype call rate < 75%
across all 914 individuals were removed, followed by the
removal of individuals with genotype call rates of < 85%
across all remaining SNPs—this resulted in the removal
of 21 sires and no SNPs from the study. Secondly, SNPs
that yielded genotypes in < 90% of all remaining 893
individuals were discarded followed by the removal indi-
viduals that failed to yield a genotype for < 90% of all
remaining SNPs—this resulted in the removal of a
further 45 sires from the study, while no SNPs were dis-
carded after the second filtering process.

After data filtering, genotypic data for all six SNPs
and 848 progeny-tested sires with an average co-ances-
try of 2.2% remained. The SNP genotype concordance
rate between technical replicate for these SNPs was
100%. Summary statistics for each SNP (including allele
and genotype frequencies) and phenotype association
analyses were performed using this edited dataset.
D’ and r* estimates of linkage disequilibrium (LD)
[54,55] between every pairwise combination of segre-
gating SNPs across the GNAS domain were also gener-
ated from this edited dataset using the HAPLOVIEW
software package [87].

C. Phenotypic data and association analyses

A range of phenotypic traits were analysed in this study
and were categorised into six broad categories: (1) milk
production traits [milk yield, fat yield, protein yield and
milk fat and protein concentration], (2) udder health
[somatic cell count, SCC], (3) carcass traits [culled cow
carcass weight, progeny carcass weight, progeny carcass
conformation score and progeny subcutaneous carcass
fat level], (4) animal size in live animals [animal stature,
body depth, chest width, rump angle and rump width];
(5) subjectively assessed subcutaneous fat level on live
animals [angularity and body condition score], and (6)
calving traits [calving difficulty (both direct and mater-
nal calving difficulty), gestation length and perinatal
mortality]. All phenotypic data were kindly supplied by
the Irish Cattle Breeding Federation http://www.icbf.
com and a detailed description of all traits is provided
in Additional File 2.
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The phenotypes used in this study are sire genetic
merit based not on data on the sires themselves but on
the performance of their female progeny across multiple
generations. Using known relationships among animals,
performance records on relatives are used to estimate
the genetic merit of an animal (i.e. a sire). Systematic
environmental effects on the progeny are adjusted for
and the random non-genetic variation associated with
the progeny’s phenotypes is minimised, thus facilitating
a more accurate measure of genetic merit. This
increased study power is particularly beneficial for low
heritability traits where the proportion of phenotypic
variance attributable to additive genetic differences is
low. The disadvantage of such a study design is that the
performance traits included for analysis are limited to
those routinely measured on progeny. The average num-
ber of progeny per sire analysed here was 842 daughter-
parity records. When coupled with the mixed model
methodology used and the de-regression of the pre-
dicted transmitting ability (PTA), this implies that the
associations reported herein are independent of pedigree
structure.

Sire PTA (i.e. the average genetic merit for a given
trait that an animal transmits to its offspring) was the
dependent variable for all traits with the exception of
the milk production traits, including somatic cell count,
which were daughter yield deviations (DYDs, the aver-
age of a sire’s daughters’ performance) expressed on a
PTA scale. Models used in genetic evaluations in Ire-
land, as well as variance components, have been sum-
marised in detail previously [88]. DYDs for 305-day
milk, fat and protein yield as well as geometric mean
SCC (log. somatic cell count) are estimated in Ireland
using a repeatability animal model across the first five
lactations. PTAs for calving interval and survival are
estimated using a multi-trait animal model, including
data from the first three lactations. PTAs for milk yield
are used to adjust PTA for survival for differences in
genetic merit of milk yield; hence, this survival trait is
functional survival. PTAs for cow carcass weight, pro-
geny carcass weight, progeny carcass fat score (scale 1
to 15; Hickey et al. [89]) and progeny carcass conforma-
tion score (scale 1 to 15; Hickey et al. [89]), measured
at slaughter, are estimated in a multi-trait animal model.
Cows slaughtered between 875 and 4,000 days of age
are included in the evaluation of cow weight while male
progeny slaughtered between 300 and 1,200 days of age
and female progeny slaughtered between 300 and 875
days of age are included in the evaluation of the remain-
ing three carcass traits.

Genetic evaluations for calving ease are undertaken
using a bivariate animal-dam model so that PTAs for
direct and maternal calving ease are both generated. In
the bivariate model the breeding-goal trait (i.e. the
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phenotypic trait wished to be improved genetically) is
calving ease scored by commercial Irish farmers and the
predictor trait is calving ease scored prior to 2002 in
progeny test and pedigree herds. A similar approach is
used to estimate breeding values for gestation length
and perinatal mortality with the exception that an ani-
mal model is used. Direct calving difficulty refers to the
additive genetic effect of the genotype of the calf (e.g.
size of the calf) while maternal calving difficulty refers
to the additive genetic effect of the genotype of the
calf's dam (e.g. pelvic weight of the dam). Perinatal mor-
tality is a dichotomous variable scored by farmers as calf
dead at birth or within 24 hours [90].

Genetic evaluations for angularity and body condition
score are undertaken as part of a joint evaluation in the
UK and Ireland. The estimated breeding values (EBVs)
are standardised to the mean and standard deviation of
the base population. Both angularity and BCS are sub-
jective measures of the subcutaneous fat levels of the
live animal. All PTAs were deregressed using the proce-
dure outlined by Berry and colleagues [91].

Only sires with a reliability, less parental contribution,
of > 60% were retained for inclusion in the association
analysis. A total of 742 sires fulfilled these criteria for
inclusion in the analysis of milk, fat and protein yield as
well as milk fat and protein concentration. 501 sires were
included in the association analysis with calving interval,
while 477 sires were included for association analysis
with calf survival. The number of sires with a reliability
of > 60% for the carcass traits was 446 and the number of
sires with a reliability of > 60% for angularity and body
condition score varied and was 521 and 504, respectively.
The main advantage of using high reliability sire PTAs
generated from progeny performance is the increased
accuracy of the phenotype compared to actual pheno-
types of individual animals. This is particularly true for
low heritability traits where the accuracy of the genetic
merit of an animal based on a single measure is low (i.e.
square root of the heritability). The use of highly accurate
phenotypes in association analyses is vital to obtain accu-
rate estimates of associations.

The association between each SNP and performance
was quantified using weighted mixed linear models in
ASREML [92] with individual included as a random
effect, and average expected relationships among indivi-
duals accounted for through the numerator relationship
matrix. Year of birth (divided into five-yearly intervals)
and percent Holstein of the individual bull were
included as fixed effects in the model. In all instances
the dependent variable was de-regressed PTA or DYD,
weighted by their respective reliability less the parental
contribution. Genotype was included in the analysis as a
continuous variable coded as the number of copies of a
given allele.
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Regression on individual SNPs were initially underta-
ken to identify spatial patterns of SNPs associated with
performance. Because of the covariances between SNPs
(i.e. linkage disequilibrium), and between phenotypes,
traditional multiple testing adjustments that assume
independence among the regressors (e.g. Bonferroni per-
mutation) were not appropriate. Spectral decomposition
of the square root of the pair-wise linkage disequili-
brium between the SNPs was used to determine the
effective number of variables (i.e. SNPs); an effective
number of 4.22 SNPs were identified. Furthermore, the
phenotypes were grouped into six categories as
described previously. Adjustment [93] for multiple test-
ing was therefore undertaken assuming a total of there-
fore 25.37 effective independent tests (i.e. 4.22 effective
SNPs times six groups of traits).

All research was conducted in accordance with the
ethical guidelines and procedures of the UCC and UCD
Animal Ethics Committees.

Additional material

Additional file 1: GNAS domain pairwise SNP linkage disequilibrium
(LD) values. This Microsoft Excel file contains D' and > measures of LD
for each GNAS domain pairwise SNP combination.

Additional file 2: Descriptions of the performance traits assessed in
the present study. This Microsoft Word file contains detailed
information for each of the phenotypic trait analysed as provided by the
Irish Cattle Breeding Federation (ICBF) http://www.icbf.com.
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