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Abstract

Background: There are many ways to perform adjustment for population structure. It remains unclear what the
optimal approach is and whether the optimal approach varies by the type of samples and substructure present.
The simplest and most straightforward approach is to adjust for the continuous principal components (PCs) that
capture ancestry. Through simulation, we explored the issue of which ancestry informative PCs should be adjusted
for in an association model to control for the confounding nature of population structure while maintaining
maximum power. A thorough examination of selecting PCs for adjustment in a case-control study across the
possible structure scenarios that could occur in a genome-wide association study has not been previously
reported.

Results: We found that when the SNP and phenotype frequencies do not vary over the sub-populations, all
methods of selection provided similar power and appropriate Type I error for association. When the SNP is not
structured and the phenotype has large structure, then selection methods that do not select PCs for inclusion as
covariates generally provide the most power. When there is a structured SNP and a non-structured phenotype,
selection methods that include PCs in the model have greater power. When both the SNP and the phenotype are
structured, all methods of selection have similar power.

Conclusions: Standard practice is to include a fixed number of PCs in genome-wide association studies. Based on
our findings, we conclude that if power is not a concern, then selecting the same set of top PCs for adjustment
for all SNPs in logistic regression is a strategy that achieves appropriate Type I error. However, standard practice is
not optimal in all scenarios and to optimize power for structured SNPs in the presence of unstructured
phenotypes, PCs that are associated with the tested SNP should be included in the logistic model.

Background
The principal components (PCs) of genome-wide geno-
type data can be used to detect and adjust for population
structure in genetic association analyses [1,2]. The popu-
larity of the PC method is evident by its wide use: it has
been cited by over 400 publications. However, the choice
of which PCs to use and the best way to adjust for the
PCs in analyses of dichotomous traits is not yet clear.
Numerous methods have been proposed to adjust for

structure once PCs are computed (Table 1). The sim-
plest and most straightforward approach is to adjust for
continuous PCs in a regression model. Kimmel et al [3]

note that principal component analysis (PCA) is suffi-
cient for identifying population structure, but adjusting
for PCs as covariates in a model may not always elimi-
nate false positive associations since the PCs are only an
estimate of the population structure. Furthermore, Yu et
al [4] show that adjusting for unnecessary PCs can have
a negative impact on power in case-control studies
when the PCs are distributed equally in cases and con-
trols or ancestry has already been accounted for by
other variables in the model. Including PCs that do not
account for structure in the model adds noise and there-
fore reduces the power to find a true effect. Genetic
population structure depends on the genotypes, unlike
typical covariates, such as age and sex, which are not
dependent on the candidate genotypes. Since the PCs
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are linear combinations of genome-wide genotypes, the
behaviour of association models that include both SNP
genotypes and PCs warrants further investigation.
Optimal criteria for selecting PCs to include in the

model are not known. Suppose the population from which
we draw our sample consists of two sub-populations. We
can expect one of four scenarios (Table 2). A structured
phenotype indicates different probabilities of case status in
the two sub-populations (K1≠K2), while a non-structured
phenotype has equal probably of being a case in the two
sub-populations (K1 = K2). Likewise, a structured SNP
(sSNP) has unequal risk allele frequency in the two sub-
populations (p1≠p2), and a non-structured SNP (nsSNP)
has equal risk allele frequency in the two sub-populations
(p1 = p2). By testing the phenotype for association with the
PCs, we can determine if the phenotype is structured (sce-
narios A and C of Table 2) or non-structured (scenarios B
and D). However, each SNP to be tested for association
must be tested individually to determine structure status.
Our goal was to determine the optimal PCs to use in a
case/control association analysis under the 4 scenarios we
can encounter across the genome. We define optimal as
the adjustment that yields the greatest power while main-
taining appropriate Type I error.
In a genetic association study, our primary interest is

not in finding and describing the genetic structure in
the sample, but in determining if the population struc-
ture in the sample has a confounding effect on the SNP

association analyses and if adjustment for this confound-
ing is necessary. We performed simulation studies to
investigate the Type I error and power of associations
between case/control status and a SNP when adjusting
for PCs selected using samples of independent indivi-
duals. We compared the following methods of selecting
PCs (label):

(1) No PC adjustment (None)
(2) 10% Rule (10% Rule)
(3) PCs significantly related to the outcome at signif-
icance level a = 0.001, 0.01, or 0.05 (Sig001, Sig01,
Sig 05, respectively)
(4) PCs significantly related to the SNP at a = 0.05
or 0.01 (SNP01, SNP05, respectively)
(5) PCs significant according to the Tracy-Widom
statistic at a = 0.05 (TW)
(6) Top PCs (2 or 10) determined according to
eigenvalue (Top2, Top10, respectively)
(7) Simulated true population i.e, Gold standard
(Pop)

We tested for association with the simulated case/con-
trol outcome using logistic regression and compared
Type I error and power of associations between the out-
come and SNP when adjusting for selected principal
components of ancestry. Finally, to provide a practical
example of the methods of PC selection, we performed
all methods of PC selection using dichotomized height
data from the Framingham Heart Study.

Methods
We simulated independent genome-wide SNPs by gen-
erating ancestral population allele frequencies for 10,000
SNPs (pj, j = 1,...,10000) from a uniform (0.05, 0.50)-dis-
tribution. We then created two sub-populations (i = 1,2)
of 500 individuals, each descending from the ancestral
population according to Fst. We simulated the allele fre-
quencies pij (i = 1,2; j = 1,..., 10000) in the two sub-
populations according to a beta distribution [5]:

pij ∼ Beta

(
pj (1 − Fst)

Fst
,

(
1 − pj

)
(1 − Fst)

Fst

)
. For each

individual in population i, the genotype probabilities for
0, 1, or 2 minor alleles for SNP j were assigned with
probabilities:

P(geno = 0) = Fst(1 − pij) + (1 − Fst)(1 − pij)2

P(geno = 1) = 2(1 − Fst)pij(1 − pij)2

P(geno = 2) = Fstpij + (1 − Fst)p2ij

Table 1 Methods of ancestry informative PC selection

Method First Author

Adjusting for a fixed number of PCs Price[2]

Tracy-Wisdom statistic Patterson[1]

Regression of outcome on PCs Novembre[23], Peloso
[20]

Reduction in inflation of genomic control
lambda

Yu[4]

PC-Finder Li[21]

10% rule Jewell[24]

PCs + cluster Li[25]

Table 2 Scenarios of population structure that could
occur across the genome

Structured
Phenotype
(K1≠ K2)

Non-Structured
Phenotype
(K1 = K2)

Structured Genotype
(p1≠ p2)

A B

Non-Structured
Genotype
(p1 = p2)

C D

p1 and p2 are the allele frequencies in population 1 and 2, respectively. K1
and K2 are the frequency of disease in population 1 and 2, respectively.
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Fst is a measure of population differentiation [5]; Fst =
0.01 is representative of human population structure
seen within continents, while Fst = 0.1 is representative
of structure seen between continents [6,7]. We simu-
lated our samples using Fst values of 0.01 and 0.1. 1,000
replicates of independent genome-wide SNP data were
generated for 2 populations of 500 individuals.
We combined the two generated sub-populations and

performed PCA using the smartpca program in EIGEN-
SOFT [1]. To evaluate Type I error and power for asso-
ciation, we simulated a test phenotype and test SNP
genotype within each sub-population (Table 3). We set
the frequency of disease in sub-population 1 to be
between 10% and 19% and set the frequency of disease
in population 2 so that the overall prevalence of disease
in the combined populations was 10%. We selected a
total of 500 cases, between 250 and 475 coming from
sub-population 1 and the remaining from sub-popula-
tion 2. Under no phenotypic population structure, the
number of cases and controls in the sample from each
population are equal: 250 cases and 250 controls. Under
phenotypic population structure, we set the disease fre-
quency, and therefore the proportion of cases in the
sample coming from sub-population 2, to be 1.5, 3, 4,
or 19-fold higher than sub-population 1 (Table 4). The
controls were selected so that the sample had a total of
500 individuals from each generated sub-population. For
example, for samples with 375 cases from population 1,
there are 125 controls from population 1. The risk allele
frequency in sub-population 1 was set to 10, 20, or 30%,
and the risk allele frequency in sub-population 2 was set
so that the overall risk allele frequency in the combined
populations was 20%. When the test SNP allele fre-
quency is set to be the same in the two sub-populations,
there is no genotypic structure. To simulate a genetic
effect of the test SNP on disease, we simulated an odds
ratio of 1 for evaluating Type I error; for power we
simulated under a log-additive model with odds ratios
of 1.2 or 1.5.
We compared the methods for selecting PCs for

adjustment described above. We used logistic regression
to test the association between the test SNP and case
status adjusting for latent ancestry defined by the PCs.

We compared the proportion of replicates significant at
a = 0.05, using 1,000 replicates for each set of para-
meters to investigate Type I error and power. 1,000
replicates for Type I error provides a 95% confidence
interval of 0.036 to 0.064 around a nominal significance
level of 0.05.
To determine the effects of the PC selection methods

when a sample is composed of a more complex struc-
ture, we simulated two populations that each diverged
with as Fst of 0.01 from an ancestral population, as pre-
viously. We treated these two subpopulations as ances-
tral populations and then simulated two subpopulations
diverging from each of the ancestral populations, again
with an Fst of 0.01. The resulting sample had four sub-
populations. Due to computational limitations, a single
replicate of independent genome-wide SNP data was
generated for this scenario for PCA. As before, 1,000
replicates were used to evaluate Type I error and power,
simulating the genotype and phenotype (conditional on
genotype for power) for each replicate. We varied the
phenotypic and genotypic structure of the sub-popula-
tions, from having no structure to more extreme
structure.

Results and Discussion
Simulation Study
Type I error for the methods of selection with two sub-
populations with Fst of 0.01 is provided in Figure 1. The
95% confidence band in the plots is the 95% confidence
interval around 0.05. Type I error is at the nominal level
or conservative as long as a PC selection method is
used. As expected, when no adjustment is made for
population structure, we found that appropriate Type I
error is observed only as long as either the SNP or the
outcome is not structured. If both the SNP and the out-
come are structured, as is well known, there is highly
inflated Type I error when no PCs are included as cov-
ariates. Also as expected, we did not observe inflated
Type I error rates with a structured SNP and a non-
structured phenotype, nor with a non-structured SNP
and a structured phenotype.
Figure 2 provides power estimates with a simulated

odds ratio of 1.2. When the phenotypic frequency does

Table 3 Simulation parameters

Description Possible Values

Population differentiation (Fst) 0.01, 0.1

Population prevalence of disease (K) 0.10

Frequency of disease in sub population 1 (K1) 0.10 – 0.19

Number of cases in sub-population 1 250 - 475

Overall risk allele frequency (p) 0.20

Risk allele freq in sub-population 1 (p1) 0.10 – 0.30

Odds Ratio (log additive model) 1.0, 1.2, 1.5

Table 4 Relationship between number of cases and
population prevalence of disease in each sub-population

# of Cases in
Population 1

# of Cases in
Population 2

Fold increase in #
of cases

K1 K2

250 250 1 0.10 0.10

300 200 1.5 0.12 0.08

375 125 3 0.15 0.05

400 100 4 0.16 0.04

475 25 19 0.19 0.01
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Figure 1 Empirical Type I error results. Two sub-populations of 500 individuals each, Fst = 0.01. K1 and p1 are the population prevalence of
disease and risk allele frequency, respectively, in sub-population 1. K2 and p2 are the population prevalence of disease and risk allele frequency,
respectively, in sub-population 2. The x-axis is the various methods of selecting PCs for inclusion in the model of association and the symbols in
the plot represent the phenotypic structure. The y-axis is the proportion of logistic regression models adjusting for the selected PCs for which
the SNP p-values are significant at a significance level of 0.05.

Figure 2 Empirical power results. Two sub-populations of 500 individuals each, Fst = 0.01, simulated log additive odds ratio of 1.2. K1 and p1
are the population prevalence of disease and risk allele frequency, respectively, in sub-population 1. K2 and p2 are the population prevalence of
disease and risk allele frequency, respectively, in sub-population 2. The x-axis is the various methods of selecting PCs for inclusion in the model
of association and the symbols in the plot represent the phenotypic structure. The y-axis is the proportion of logistic regression models
adjusting for the selected PCs for which the SNP p-values are significant at a significance level of 0.05.
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not vary between the subpopulations (a non-structured
phenotype) but the frequency of the SNP does (struc-
tured SNP), we found that logistic models that include
PC covariates (Top2, Top10, TW, SNP01, SNP05) have
the highest power. When both the phenotype and SNP
are structured, the power is similar for all PC selection
methods, since all appropriately select at least one PC
for adjustment. However, when the phenotypic fre-
quency differs substantially between sub-populations but
the SNP is not structured, power is lower for selection
methods that include PCs in the model compared to
those that do not. Therefore, to obtain optimal power
for a non-structured SNP and substantially structured
phenotype, selection methods that would not include
PCs in the model are best; in this case, methods that
select PCs based on their association with the SNP
(SNP01), and methods that select PCs based on associa-
tion with phenotype perform less well (Sig001, Sig01,
Sig05, Top2, Top10). We found similar patterns with a
simulated odds ratio of 1.5, and when the Fst between
the sub-populations was 0.1.
We next expanded this simulation to larger differences

in allele frequencies between the two sub-populations.
With large Fst (0.10), we expect many SNPs with greater
than a 0.2 difference in allele frequency between sub-
populations, and thus we believe it may be more com-
mon to observe large allele frequency differences
between populations than large phenotypic differences
between populations. We found that as the difference in
the risk allele frequency between the two sub-popula-
tions increases, the difference in power between adjust-
ing and not adjusting for PCs becomes greater (see
additional file 1) when a non-structured phenotype and
structured SNP were tested for association. Consistent
with our previous results, we found when both the phe-
notype and the SNP are structured any method of selec-
tion was adequate. When the SNP is non-structured (p1
= p2 = 0.5) and the phenotype has large structure (phe-
notypic ratio = 4), we found slightly higher power when
selecting PCs by the 10% rule compared to not selected
any PCs, contrary to the findings presented in Figure 2.
As seen in additional file 1, the difference in Type I
error between using the 10% rule method versus no PC
selection method is similar to the difference in power.
The difference between the two analyses is that PC1 is
included in 16% of the replicates for the 10% rule.
Finally, we increased the sample size for the genome-

wide SNPs simulation to 5,000 individuals from each
sub-population. Increasing the sample size allowed us to
determine if our observed results were affected by the
simulated sample size of 500 cases and 500 controls.
We found the same patterns with the larger sample size
as we did when we used the 500 individuals from each
sub-population (results not shown).

In general, we observed similar patterns when the data
consisted of four sub-populations as with the two sub-
populations scenario already presented (see additional
file 2). When the SNP and phenotype frequencies do
not vary over the sub-populations, all methods of selec-
tion provided similar power and appropriate Type I
error for association. When the SNP is not structured
and the phenotype has large structure, then selection
methods that do not select PCs for inclusion as covari-
ates provide the most power. Likewise, when there is a
structured SNP and a non-structured phenotype, selec-
tion methods that include PCs in the model have
greater power. When both the SNP and the phenotype
are structured, all methods of selection have similar
power, except when the SNP differs between the 4 sub-
populations and only the top 2 PCs are selected for
adjustment. In this case, we observe elevated Type I
error and loss of power because three PCs are required
to distinguish 4 subpopulations, and only 2 PCs are
included in the model. The loss of power when we do
not adjust fully for the population structure is due to an
attenuation of the effect due to the population structure
(negative confounding). Positive confounding occurs
when the structure is in the same direction as the true
genetic effect, or that the phenotypic means and risk
allele frequencies are positively correlated. Negative con-
founding occurs when the structure is in the opposite
direction as the true genetic effect, or in other words,
that the phenotypic means and risk allele frequencies
are negatively correlated [8]. While we only report
results here based on negative confounding, simulations
with positive confounding yielded similar conclusions
(see additional file 3).
Overall, we find that for some scenarios, the optimal

choice of PCs to adjust for in a genome-wide association
study using logistic regression is SNP-dependent
(Table 5). We define optimal as maximal power while
maintaining appropriate Type I error. When both the
SNP and the phenotype are structured or both are non-
structured, then any of the methods of PC selection will
maintain reasonable Type I error and have similar
power. This is most likely because all of the approaches
retain at least the first PC when both the SNP and the
phenotype are structured. When the SNP is not struc-
tured but the phenotype has substantial structure (K1 =
0.19, K2 = 0.01), selection methods that result in no PC
adjustment (SNP01, 10% Rule, None) have optimal
power. Conversely, when the phenotype is not struc-
tured and the SNP is structured, we achieve optimal
power when PCs are included in the model, e.g., for the
selection methods that include a fixed number of PCs
or PCs associated with the SNP in the model (TW,
Top2, Top10, SNP01, SNP05). With logistic regression,
when adjusting for non-confounding covariates
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(covariates only associated with the outcome) there is a
loss in precision [9]. But, omitting balanced covariates
(covariates that are uncorrelated with the outcome in
the sample), biases the results towards the null, whereas
the results are not biased if the balanced covariates are
included in the model of association. In some situations,
the increased precision achieved by omitting the covari-
ates improves the power despite the bias of the para-
meter estimate for the SNP toward the null.
We explored the bias and standard error of our mod-

els to better understand the dependency of power on
the SNP structure (Figure 3). Biased estimates occur
when both the phenotype and SNP are structured and
no population structure covariate (PCs or true popula-
tion) is included in the model (Figure 3A). There is a
loss of precision (increased SE) when the phenotype is
structured and the SNP is not and a population struc-
ture covariate is included in the model (Figure 3D),
resulting in the decreased power. Likewise, when the
SNP is structured but the phenotype is not, the SE is
smaller if a population structure covariate is not
included in the model (Figure 3B), but there is a nega-
tive bias when no adjustment is included, resulting in
decreased power. As far as we know, no one has pro-
posed to look at the structure of a SNP to determine
whether to adjust for structure in genome-wide associa-
tion studies with binary outcomes.

Example of Principal Component Selection Criteria with
Height
Average adult height is taller in northern Europe than in
southern Europe. By our definition, height is a struc-
tured phenotype, i.e., it varies by ancestry. Lactose intol-
erance also varies across Europe from North to South.
The genetic polymorphism in the LCT (Lactase) gene
that causes lactose intolerance, and the SNPs in LD
with this polymorphism, appears to be associated with
height in non-homogeneous samples of individuals of
European descent [10]. Observing an LCT-height asso-
ciation in a sample indicates the sample has population
structure. As an example of using the various methods
of PC selection in practice, we investigated the associa-
tion between height and four SNPs in the Framingham
Heart Study, adjusting for selected PCs. Because our

interest is in dichotomous outcomes, we dichotomized
height by the median for this example, and used logistic
regression to test for association between four SNPs and
dichotomized height:

• rs1042725 and rs6060369 [11]: Two positive con-
trol SNP not in the LCT gene that are known to be
associated with height. Both SNPs are associated
with PC1 with p-values of 9.67E-08 and 0.0003,
respectively.
• rs2322659 [10]: A structured SNP in the lactase
gene which is known to vary in frequency among
European Americans. This SNP is highly associated
with PC1 (p-value = 3.8E-73).
• rs2290305: a non-structured SNP, not associated
with PC1 (p-value = 0.425).

Table 6 displays the results of the association between
dichotomized height and the SNPs adjusting for PCs
chosen by the various methods of selection. For the
structured SNP (rs2322659), we found that when we do
not adjust for PCs, we obtain a false positive association,
but the association diminishes when PCs are included in
the model. For the positive control SNPs (rs1042725
and rs6060269), we found that adjusting for PCs can
either enhance or diminish the association with height.
This is probably due to whether the structure is a posi-
tive or negative confounder of the association [12].

Conclusions
We performed a simulation study in which we gener-
ated multiple sets of genome-wide SNPs. The goal was
to investigate Type I error and power of associations
between case-control status and a SNP when adjusting
for ancestry informative PCs selected by a variety of
rules. A second aim of this study was to examine more
critically the effects of the amount of phenotypic struc-
ture and genotypic structure on the association analysis,
as well as investigate the bias and precision of the
associations.
We did not specifically address the issue of which

SNPs to include in the PCA. Using all available
SNPs in a PCA provides the maximal information to
ancestry, but highly correlated SNPs or unusual

Table 5 Scenarios that could occur across the genome with the optimal method of selection

Structured Phenotype
(K1 ≠ K2)

Non-Structured Phenotype
(K1 = K2)

Structured Genotype
(p1≠ p2)

Any method of selection except no PC adjustment Selecting a fixed number of PCs or PCs associated
with the SNP

Non-Structured
Genotype
(p1 = p2)

Selecting PCs associated with the SNP (a = 0.01), 10% Rule, no PC
adjustment

Any method of selection

p1 and p2 are the allele frequencies in population 1 and 2, respectively. K1 and K2 are the frequency of disease in population 1 and 2, respectively.
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chromosomal phenomena such as known inversion
polymorphisms or genomic regions known to play a
role in susceptibility to a disease can affect the results
from a PCA [13]. Under some conditions, including
the chromosomal regions with high influence in PCA
may have a negative impact on power when PCs
are used to adjust for ancestry. For example, if the
region harbours a true genetic effect, the effect may
be adjusted away. Thus, some researchers have

recommended not using PCs that are correlated with
localized chromosomal regions [14].
All simulations were performed using distinct sub-

populations. Admixed individuals are commonly used in
GWAS. While we did not explicitly simulate admixed
individuals, we know based on previous work [15] that
PCA to detect ancestry and subsequent adjustment
works similarly with admixed individuals having global
phenotypic structure. On the other hand, PCs based on

Figure 3 Bias and standard error (SE). Two sub-populations of 500 individuals each, Fst = 0.01, simulated log additive odds ratio of 1.2. Bias
was computed as the estimated effect minus the true simulated beta. For the non-structured phenotype, each sub-population had a population
prevalence of disease of 0.1. For the structured phenotype the population prevalence of disease was 0.16 in sub-population 1 and 0.04 in sub-
population 2. The non-structured SNP had a frequency of 0.2 in each population, and the structured SNP had a frequency of 0.1 in sub-
population 1 and 0.3 in sub-population 2. None indicates no PCs were adjusted for in the model and Pop indicates that the known population
was adjusted for in the model.
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genome-wide data do not adequately capture local
ancestry or local phenotypic structure [16,17]. If local
phenotypic structure exists, other techniques need to be
applied to capture and adjust for local ancestry such as
PCA in the region of the test SNP, or methods that esti-
mate local ancestry proportions such as ANCESTRY-
MAP [18] or LAMP [19]. Further work needs to be
done to determine how to adjust for local ancestry with-
out adjusting away true effects.
We focused our exploration on linear PC adjustment

models. We did not investigate adjusting for clusters
identified in the individual genotype data because pre-
vious work has suggested that linear adjustments are
adequate for the population structure typical of Eur-
opean populations [20]. We did not investigate the
method of testing the reduction in the inflation of the
genomic control lambda [4] or PC-Finder [21] due to
the computational burden of these algorithms. Prior to
excluding these methods, we investigated the run time
for the PC-Finder algorithm and found that it is related
to the number of PCs selected. When more PCs are
needed to adjust for the structure, the algorithm takes
longer to run. With simulated genotypes similar to
those presented in this chapter, PC-Finder requires
between 5 minutes and one hour to select PCs. While

these methods may be feasible in individual data sets
where the algorithm needs to be run only once for the
outcome of interest, it is not suited for simulations
requiring thousands of replicates. Furthermore, we
found in our dichotomized height example that PC-Fin-
der did not select any PCs for adjustment and therefore
did not remove the false association with the LCT SNP.
Our findings suggest that to optimize power under cer-

tain scenarios, the choice of covariate PCs in a genome-
wide association study using logistic regression with a
dichotomous outcome should be SNP-dependent. Our
findings only apply to case-control or dichotomous out-
come analyses using logistic regression. These results may
appear to conflict with Xing and Xing [22], who recently
clarified that covariate adjustment in logistic regression
always leads to a loss of precision, but not always a loss of
power. They conclude that when the genotype and covari-
ates are independent, it is still more efficient to adjust for
the predictive covariates. In contrast, we found that with
large phenotypic structure and non-structured genotype, it
is not more efficient to adjust for ancestry informative
PCs. This is due to the very large (odds ratio > 10) associa-
tion between the population and outcome and the expo-
sure with a frequency of 50% (i.e., half the sample is in
population 1 and the other is in population 2). When we

Table 6 Height association results with methods for selecting PCs

beta (p-value) of SNP

sSNP* nSNP** Positive Control SNPs

Method for selecting PCs Selected PCs rs2322659 rs2290305 rs1042725 rs6060369

No PC Adjustment NA -0.406
(< 0.001)

-0.086
(0.338)

-0.251
(0.002)

0.221
(0.007)

Top 2 PCs PC1, PC2 -0.043
(0.646)

-0.064
(0.491)

-0.149
(0.073)

0.336
(< 0.001)

Top 10 PCs PC1 - PC10 -0.057
(0.563)

-0.054
(0.571)

-0.132
(0.121)

0.322
(< 0.001)

Tracy-Widom statistic PC1 - PC81 -0.062
(0.566)

-0.057
(0.581)

-0.174
(0.061)

0.318
(0.001)

Associated with the outcome at
a = 0.05

PC1, PC2, PC4, PC8, PC21, PC25, PC28, PC39, PC47, PC49,
PC56, PC64, PC77

-0.03 (0.762) -0.049
(0.617)

-0.164
(0.059)

0.313
(0.001)

Associated with the outcome at
a = 0.01

PC1, PC4, PC21, PC25, PC28, PC49, PC77 -0.015
(0.875)

-0.053
(0.578)

-0.162
(0.059)

0.322
(< 0.001)

Associated with the outcome at
a = 0.001

PC1, PC4, PC28 0.014
(0.884)

-0.047
(0.619)

-0.163
(0.055)

0.322
(< 0.001)

Associated with the SNP at
a = 0.05

varied by SNP -0.041
(0.677)

-0.092
(0.312)

-0.148
(0.075)

0.333
(< 0.001)

Associated with the SNP at
a = 0.01

varied by SNP -.038 (0.703) -0.086
(0.338)

-0.164
(0.170)

0.313
(< 0.001)

10% Rule PC1# -0.037
(0.692)

-0.086
(0.338)

-0.148
(0.075)

0.333
(< 0.001)

PC-Finder [21] NA -0.406
(< 0.001)

-0.086
(0.338)

-0.251
(0.002)

0.221
(0.007)

Regression estimate (p-value) of the association between outcome and SNP adjusting for the selected PCs are displayed in the table. *sSNP is a structured SNP.
This SNP is in the lactase gene, and varies in frequency across Europe; ** nSNP is a non-structured SNP. This SNP does not vary among subgroups in the FHS
sample; # PC1 was selected except for the nSNP (rs2290305), in which case, no PCs were selected by the 10% rule.
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extended Xing and Xing’s simulations to larger exposure
odds ratios with the exposure frequency of 50%, we
obtained results consistent with our findings above.
Whether to adjust for covariates depends on the complex
relationships between the outcome, the covariate, and the
genotype. When the phenotype does not have substantial
structure, we obtain similar power when adjusting for
population structure as when not adjusting for population
structure. In their investigation, Xing and Xing limited to
the situation where the covariate and genotype are inde-
pendent. In our work, the SNP of interest and the ancestry
informative PCs may not be independent. The SNP geno-
type is included in the linear combination of the genotypes
that define the PCs; structured SNPs contribute a higher
weight to some PCs. We found that with structured SNPs
and non-structured phenotypes, it is more efficient to
adjust for PCs.
For linear regression using continuous phenotypes, one

can check phenotypes for association with the PCs. If a
top PC is significantly associated with the phenotype of
interest then the trait-genotype association model should
include PCs as covariates to adjust for population struc-
ture. Unlike logistic regression, adjusting for covariates
associated with the trait in linear regression always
improves the precision of the effect estimate by reducing
the residual variance [9]. Since the PCs are orthogonal, a
single model regressing the top PCs on the outcome can
be used to determine if the PCs are associated with the
outcome. Associated PCs should be included as covari-
ates in genome-wide association studies (GWAS).
Standard practice is to include a fixed number of PCs

in association models for GWAS. Here, we conclude that
if power is not a concern, then selecting the same set of
PCs for adjustment for all SNPs in logistic regression is a
strategy that achieves appropriate Type I error. However,
standard practice is not optimal in all scenarios and to
optimize power for structured SNPs in the presence of
unstructured phenotypes, PCs that are associated with
the tested SNP should be included in the logistic model.
The gain in power we observed in our simulations was
an approximate 5%-percentage point increase for adjust-
ing only when the SNP is structured over always adjust-
ing for the ancestry informative PCs. We note that some
of the differences in power may disappear if we correct
for Type I error, but this is not done in practice. It may
be easier and more intuitive to adjusting for the same set
of PCs across all SNP associations.

Additional material

Additional file 1: Supplemental Figure 1. Empirical Type I error and
power for increasing risk allele frequency differences.

Additional file 2: Supplemental Figure 2. Empirical Type I error and
power with 4 sub-populations.

Additional file 3: Supplemental Figure 3. Power for 2 sub-populations
and positive confounding.
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