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On coding genotypes for genetic markers with
multiple alleles in genetic association study of
quantitative traits
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Abstract

Background: In genetic association study of quantitative traits using F∞ models, how to code the marker
genotypes and interpret the model parameters appropriately is important for constructing hypothesis tests and
making statistical inferences. Currently, the coding of marker genotypes in building F∞ models has mainly focused
on the biallelic case. A thorough work on the coding of marker genotypes and interpretation of model parameters
for F∞ models is needed especially for genetic markers with multiple alleles.

Results: In this study, we will formulate F∞ genetic models under various regression model frameworks and
introduce three genotype coding schemes for genetic markers with multiple alleles. Starting from an allele-based
modeling strategy, we first describe a regression framework to model the expected genotypic values at given
markers. Then, as extension from the biallelic case, we introduce three coding schemes for constructing fully
parameterized one-locus F∞ models and discuss the relationships between the model parameters and the
expected genotypic values. Next, under a simplified modeling framework for the expected genotypic values, we
consider several reduced one-locus F∞ models from the three coding schemes on the estimability and
interpretation of their model parameters. Finally, we explore some extensions of the one-locus F∞ models to two
loci. Several fully parameterized as well as reduced two-locus F∞ models are addressed.

Conclusions: The genotype coding schemes provide different ways to construct F∞ models for association testing
of multi-allele genetic markers with quantitative traits. Which coding scheme should be applied depends on how
convenient it can provide the statistical inferences on the parameters of our research interests. Based on these F∞
models, the standard regression model fitting tools can be used to estimate and test for various genetic effects
through statistical contrasts with the adjustment for environmental factors.

Background
Genetic markers with multiple alleles are common phe-
nomena in genetic studies. It is well known that the
ABO blood types in human are determined by three
alleles at a genetic locus on chromosome 9. Molecular
markers such as microsatellites often have multiple
alleles. The major histocompatibility complex (MHC), a
highly polymorphic genome region that resides on the
human chromosome 6, encompasses multiple genes that
encode for many human leukocyte antigens (HLA) and
play an important role in regulation of the immune
responses. Depending on the resolution level of allele

typing, each of the HLA-A, B, C, DR, DQ and DP gene
loci could contain tens to hundreds of allele types. In
addition, in the haplotype analysis of single-nucleotide
polymorphisms (SNPs), various haplotypes from a set of
SNPs can also be treated as different alleles from a
‘super’ marker locus that consists of the set of SNPs.
Presently, there are mainly three types of genetic mod-

els that are commonly used in the genetic analysis of
quantitative traits. One is Fisher’s analysis of variance
(ANOVA) models that focus on a decomposition of the
genotypic variance into genetic variance components
contributed by various genetic effects at quantitative
trait loci (QTL) [1-6]. Another is the F∞ models that
concentrate on direct statistical modeling of the
expected genotypic values at target genetic markers or
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QTL and the association testing of various genetic
effects. The other one is the so-called functional genetic
models that emphasize on modeling the functional
effects of genes [7]. Both Fisher’s and F∞ models can be
referred to as statistical models, while the functional
genetic models have fundamentally different objectives
and estimation methods from the statistical models. A
considerable amount of discussion has been made about
the distinction between these different types of genetic
models [8-11].
The F∞ models have been widely used in genetic asso-

ciation studies of quantitative traits. In building F∞ mod-
els, how to code genotypes at a marker (or QTL) and
interpret the model parameters are fundamental issues
for constructing appropriate testing hypotheses and
making correct statistical inferences. While the Fisher’s
ANOVA models can be directly applicable to genetic
markers with multiple alleles, the F∞ models by contrast
have been mainly discussed in the biallelic case [1,9,12].
For haplotype analysis, Zaykin et al. in [13] proposed a
simple coding which included only the additive effects
of haplotypes but ignored their interactions. More
recently, Yang et al. in [11] explored an extension of the
biallelic F∞ models to multi-allele models with a focus
on the definition of various genetic effects and their
relationships with the average genetic effects defined in
the Fisher’s models. A thorough work on coding of mar-
ker genotypes and interpretation of model parameters
for F∞ models has not been done in the past especially
for genetic markers with multiple alleles.
In general, there are two different strategies in coding

the marker or QTL genotypes. One is to treat each mar-
ker or QTL as a potential risk factor with its genotypes
as the risk units. Then, similar to the strategy in hand-
ling categorical covariates in classical regression models,
at each locus we can create one dummy variable per
genotype and then include all but one (as the reference)
of these dummy variables into a model. But this geno-
type coding is often limited by the available sample sizes
especially when the number of alleles at the marker
locus is large. Alternatively, as alleles are often supposed
to be the basic genetic risk units that may contribute to
disease phenotypes in genetic studies, we may want to
treat alleles at each marker or QTL as the risk units and
examine the effects of alleles. However, genetic data has
some specialty that needs to be taken into account in
order to build the allele-based models. In the genome of
diploid species such as human being, alleles normally
appear in pairs to form a genotype at each marker locus
or QTL with one from the father and one from the
mother, except for the sex chromosomes in males. That
is, at each locus we have two within-locus risk factors
that reside on a homologous pair of chromosomes.
Unlike the classical two-way ANOVA model in which

the two risk factors own different risk units, the paternal
and maternal risk factors at a locus often share the same
set of alleles. Besides, the parental origins (i.e., the
phase) of the two alleles at each locus are quite often
unknown. These features could sometimes complicate
the allele-based coding of marker genotypes and gener-
ate confusion in interpretation of the model parameters.
In this study, we introduce three allele-based coding

schemes for building F∞ models, namely allele, F∞ and
allele-count codings. First, we formulate F∞ models
under a general regression framework to model the
expected genotypic values at given markers or QTL.
Then, under a standard ANOVA model setting, we pre-
sent several fully parameterized one-locus models using
the three allele-based coding schemes. Some potential
collinearity relationships among the coding variables of
the marker genotypes are clarified. Strategies to avoid
the redundant model parameters are also proposed.
After that, we examine the definition of model para-
meters under a reduced one-locus model framework.
The impact of a linear relationship among the coding
variables of marker genotypes on the estimability of the
model parameters is fully explored based on the linear
model theory. Finally, we consider extension of the one-
locus models to two-locus situation. Several fully para-
meterized as well as reduced two-locus models are
addressed. A focus of this study is to establish the rela-
tionships between the model parameters and the
expected genotypic values at given marker loci or QTL
for various F∞ models from these three coding schemes
under various different model frameworks, and explain
how to estimate and test for various genetic effects
through statistical contrasts. Relationships among differ-
ent coding schemes and models are also illustrated
through simulation.

Results
Fully parameterized one-locus models
In genetic studies, a quantitative trait Y is typically con-
sidered as a combination of a genetic component G and
an environmental component E with perhaps the genetic
by environmental interactions G × E, where G is the
true genotypic value from a joint (unobservable) contri-
bution of all the genetic factors to the quantitative trait
Y. In practice, given a random sample of N individuals
from a study population, let gi be the observed geno-
types at certain target marker loci or QTL and zi be a
vector of some environmental covariates that may con-
tribute to the variation of the quantitative trait for indi-
viduals i = 1, ..., N. By ignoring the genetic by
environmental interactions and assuming that the geno-
typic value G and environmental component E do not
depend on the environmental covariates zi and gi,
respectively, then the observed quantitative trait yi of an

Wang BMC Genetics 2011, 12:82
http://www.biomedcentral.com/1471-2156/12/82

Page 2 of 21



individual i can be expressed through a regression
model as

yi = G(gi) + ziβ + ei, i = 1, . . . ,N (1)

where G(gi) = E(G|gi) is the expected genotypic value
of G given the marker (or QTL) genotypes gi, b denotes
the effects of the environmental covariates, and ei is the
residual error of the model with E(ei) = 0. Similar to
introducing dummy variables for the covariates zi which
allow us to assess various environmental effects b in the
model, it is convenient to further represent G(gi) as G
(gi) = x(gi)a so that we can fit the regression model and
assess the genetic effects a of the markers or QTL,
where x(gi) is a coding function of the marker geno-
types. When the marker locus is not associated with the
phenotype, then G(gi) = E(G) is a constant which does
not depend on gi. In the rest of the paper, we will focus
on the interpretation of the marker effects a in terms of
the expected genotypic values G(g) = E(G|g) according
to different coding schemes. When certain genetic by
environmental interactions are included in the model,
the interpretation of a could be modified accordingly. It
has to be pointed out that QTL are generally assumed
to be unknown genomic regions that may contribute to
the variation of the quantitative traits with their geno-
types unobserved. But the results (i.e., the coding
schemes and the relationships between the model para-
meters and the expected genotypic values) are held for
QTL as well, although the expected genotypic values at
a target QTL can no longer be directly estimated via fit-
ting the regression models.
Now, consider one target marker locus with multiple

alleles A1, ..., Am, m ≥ 2. In general, there are m possi-
ble homozygous genotypes AjAj, j = 1 ..., m, and m(m -
1)/2 possible heterozygous genotypes AjAk, j ≠ k. Let
Gjk = E(G|g = AjAk) be the expected genotypic values,
given the marker genotypes AjAk in a study population.
Without knowing the parental origins of the alleles, we
assume as usual that the parental origin of the alleles
does not make a difference (i.e., no imprinting). We
have then Gjk = Gkj for j, k = 1, ..., m, and there are
totally m(m + 1)/2 possible distinctive expected geno-
typic values Gjk, j, k = 1, ..., m, which could be esti-
mated through the means in the genotypic subgroups
after adjustment for the environmental covariates.
Here we assume no missing genotypes for the sampled
individuals, and the random sample has its individuals
carrying all possible genotypes. How to handle missing
genotypes will be discussed in the discussion. To fully
re-parameterize these expected genotypic values
through a linear model, we then need totally m(m +
1)/2 parameters including the intercept in the model.
By treating the paternal and maternal alleles as two
independent risk factors and following the classical

two-way ANOVA notation, we can represent the
genotypic values Gjk as

Gjk = μ∗ + α∗
j + α∗

k + δ∗
jk, j, k = 1, . . . ,m (2)

where α∗
j and δ∗

jk are the realized (but unobservable)
additive effects of allele Aj and the allelic interaction
between the two alleles Aj and Ak, respectively. The
above model is different from the classical two-way
ANOVA model in that here both the paternal and the
maternal risk factors share the same set of alleles A1, ...,
Am. As usual, with the unknown paternal origins of
alleles at the locus, we assume the paternal and mater-
nal alleles have the same genetic effect. More precisely,
the paternal allele Aj and maternal allele Aj have the
same additive allelic effects α∗

j for j = 1, ..., m. Besides,
the allelic interaction between a paternal allele Aj and a
maternal allele Ak is the same as that between the pater-
nal allele Ak and the maternal allele Aj; i.e., δ

∗
jk = δ∗

kj, for j,
k = 1, ..., m. Still, with m additive allelic effects and m(m
+ 1)/2 allelic interactions plus the intercept, it is clear
that model (2) is over-parameterized on modeling the m
(m + 1)/2 expected genotypic values Gjk for j, k = 1, ...,
m. As a result, the parameters μ*, α∗

j and δ∗
jk in model

(2) are not all estimable in terms of the expected geno-
typic values Gjk (see [14,15]).
In order to avoid the inestimability issue, one way is to

add constraints on the model parameters. However, those
constraints, together with the symmetry property of δ∗

jk,
could make it difficult to fit the model using the standard
software package such as SAS. Alternatively, we consider
dropping certain redundant parameters in the model.
Similar to the biallelic case [10], let us first introduce the
following indicator variables to describe the transmission
of alleles from parents to their offspring

z1j =
{
1, inherited Aj on paternal gamete,
0, inherited other alleles on paternal gamete

and

z2j =
{
1, inherited Aj on maternal gamete,
0, inherited other alleles on maternal gamete

for each allele type Aj, j = 1, ..., m. Then we define the
following coding variables of the marker genotypes

wj(g) = z1j + z2j =

⎧⎨
⎩
2, if g = AjAj

1, if g = AjAc
j

0, if g = Ac
j A

c
j

vjk(g) = z1jz2k =
{
1, if g = AjAk

0, otherwise

for j, k = 1, ..., m, where Ac
j denotes any other allele

type except Aj. Note that z1j, z2jare not observable
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because we do not know exactly which allele is inherited
from paternal or maternal gamete for the sampled indi-
viduals without their parental information. But this
unknown phase problem does not affect the definitions
of wj, vjk since wj only counts the number of allele Aj in
the genotypes and the value of vjk is 1 when the geno-
type is AjAk and 0 otherwise regardless of where the
two alleles come from. We refer to the above coding of
marker genotypes as an allele coding scheme. Model
(2) can then be re-written in a linear model form as

G(gi) = μ∗ +
m∑
j=1

α∗
j wj(gi) +

m∑
j=1

m∑
k=j

δ∗
jkvjk(gi) (3)

for i = 1, ..., N. As each individual always carries
two alleles at a marker locus with one from the
father and the other from the mother, we have∑m

j=1 z1j(gi) =
∑m

k=1 z2k(gi) = 1, for any i = 1, ..., N. There-

fore, given a particular j, wjk = 2 − ∑
k �=j wk, which is a

linear combination of the rest of {wk, k ≠ j}. For vjk, we
also have

∑m
j=1 vjk = z2k, or vjk = wk

/
2 − ∑

l�=j vlk. Hence,
each of the vjk, k = 1, ..., m, is also a linear combination
of the coding variables {wk, k ≠ j} and {vlk, l, k ≠ j}. To
avoid the redundancy of parameters due to these colli-
nearity relationships among the coding variables in model
(3), without losing generality, we consider dropping wm

and {vkm, k = 1, ..., m} in (3). Then

G(gi) = μ +
m−1∑
j=1

αjwj(gi) +
m−1∑
j=1

m−1∑
k=j

δjkvjk(gi) (4)

for i = 1, ..., N. Model (4) now provides a full re-para-
meterization of the m(m + 1)/2 expected genotypic
values Gjk for j, k = 1, ..., m with its parameters aj can
be referred to as the additive allelic effects and δjk the
allelic interactions with respect to the reference allele
Am. Given a random sample, we can then incorporate
model (4) into (1) and fit the regression model (1) using
the standard least-square approach. In terms of the
expected genotypic values, it is easy to show that μ =
Gmm, aj = Gjm - Gmm and δjk = (Gjk - Gkm) - (Gjm -
Gmm), for j = 1, ..., m - 1 and k = j, ..., m - 1. Therefore,
the additive allelic effect aj can be interpreted as the
substitution effect of replacing allele Am by Aj when
paired with another allele Am to form the genotypes.
Meanwhile, the allelic interaction δjk is the difference
between the substitution effect of replacing allele Am by
Aj (or Ak) when paired with allele Ak (or Aj) and that
when paired with allele Am. Or, in other words, δjk is
the difference between the substitution effects of repla-
cing allele Am by Aj (or Ak) with paired alleles Ak (or Aj)
and Am. Note that dropping wj and {vkj, k = 1, ..., m} for
a particular j ≠ m instead of wm and {vkm, k = 1, ..., m}
can lead to similar interpretations of the model

parameters with Aj being the reference allele. Using
model (4), we can also estimate and test for various
other genetic effects. For example, the so-called func-
tional ‘additive effects’ a∗

jk = (Gjj − Gkk)/2 and the ‘domi-

nance effects’ d∗
jk = Gjk − (Gjj + Gkk)/2, j ≠ k defined in

[11] can be expressed as a∗
jk = (αj − αk) + (δjj − δkk)/2

and d∗
jk = δjk − (δjj + δkk)/2 − 2μ, j ≠ k, respectively, in

terms of the above model parameters. So we can esti-
mate a∗

jk, d
∗
jk using the fitted model parameters or test

for the hypothesis of H0 : a∗
jk = 0 or H0 : d∗

jk = 0 through
the general linear contrasts [15] using the standard soft-
ware such as SAS. To test whether a particular allele Aj

has an overall effect, the null hypothesis is H0 : aj = δjk
= 0 for k = 1, ..., m - 1, which can be performed through
either a general linear contrast (or likelihood ratio test)
with the degrees of freedom being m for the test statis-
tic. The association test for overall effects of the locus
corresponds to the null hypothesis of H0 : aj = δjk = 0
for any j, k = 1, ..., m - 1, which has its degrees of free-
dom being m(m + 1)/2 - 1 for the test statistic. Cur-
rently, the so-called F∞ model has been widely used in
genetic association studies. In the simple biallelic case
with two alleles A and a, an F∞ model gives [16-19].

GAA = τ + a, GAa = τ + d, Gaa = τ − a

where GAA = E(G|AA), GAa = E(G|Aa) and Gaa = E(G|
aa) are the three possible expected genotypic values at the
marker. The parameters a, d are often referred to as the
additive and dominance effects of the allele A over a, and
in terms of the expected genotypic values we have a =
(GAA - Gaa)/2 and d = GAa - (GAA + Gaa)/2. This F∞ model
can also be written in a linear model form as [10]

G(gi) = τ + af (gi) + dh(gi), i = 1, . . . ,N

where f, h are two coding variables of the marker gen-
otypes that are defined as

f (g) =

⎧⎨
⎩

1, if g = AA
0, if g = Aa

−1, if g = aa

h(g) =
{
1, if g = Aa
0, otherwise

We refer to the above coding of the marker genotypes
as the F∞ coding. As a straightforward extension of the
F∞ coding scheme to multiple alleles, we can define the
following coding variables

fj(g) =

⎧⎨
⎩

1, if g = AjAj

0, if g = AjAc
j

−1, if g = Ac
j A

c
j

hj(g) =
{
1, if g = AjAc

j

0, otherwise
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for each j = 1, ..., m. It is easy to see that fj, hj and the
previous wj, vjk, j, k = 1, ..., m have the relationships: fj
(g) = wj(g) - 1, hj(g) = wj(g) - 2vjj(g), and vjk(g) = hj(g)hk
(g) as j ≠ k. Thus, for the same reason to avoid colli-
nearity, we can exclude some redundant coding vari-
ables and write a fully parameterized one-locus model
using the F∞ coding as

G(gi) = τ +
m−1∑
j=1

ajfj(gi) +
m−1∑
j=1

djjhj(gi)

+
m−1∑
j=1

m−1∑
k=j+1

djkhj(gi)hk(gi)

(5)

for i = 1, ..., N. By having model (5) equivalent to (4),
we can first build the relationships between the two
model parameters and then establish the relationships
between the parameters of model (5) and the expected
genotypic values as following

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τ = μ +
m∑
j=1

(αj +
δjj
2 )

= Gmm + 1
2

∑m−1
j=1 (Gjj − Gmm)

aj = αj +
δjj
2 = Gjj−Gmm

2 , j = 1, . . . ,m − 1
djj = − δjj

2 = Gjm − Gjj+Gmm

2 , j = 1, . . . ,m − 1
djk = δjk = (Gjk − Gjm) − (Gkm − Gmm), j �= k

Therefore, aj can be interpreted as a half of the differ-
ence between the two expected homozygous genotypic
values Gjj and Gmm, which is the same as the additive
effect a∗

jm defined in [11]. Besides, djj is the difference
between the expected heterozygous genotypic value Gjm

and the averaged expected homozygous genotypic value
(Gjj + Gmm)/2, which is the same as the dominance
effect d∗

jm defined in [11]. It is interesting to see that djk,
j ≠ k, has the same interpretation as δjk in model (4),
which is the difference between the substitution effects
of replacing allele Am by Aj when paired with alleles Ak

and Am. Note that djj can also be interpreted as the alle-
lic interaction - the difference between the substitution
effects of replacing allele Aj by Am when paired with
another Aj and Am. In addition, based on model (5), the
additive effects a∗

jk and the dominance effects d∗
jk pro-

posed in [11] have the relationship with the model para-
meters: a∗

jk = aj − ak, d∗
jk = djk + (djj + dkk), j ≠ k. The

overall effect of a particular allele Aj can be tested
through the composite hypothesis of H0 : aj = djk = 0
for k = 1, ..., m - 1, and the overall effects of the locus
can be tested via the null hypothesis of H0 : aj = djk = 0
for any j, k = 1, ..., m - 1.
In addition to the allele and F∞ codings, another way

of coding the marker genotypes which occasionally

appears in practice is to count the number of alleles in
marker genotypes for each specific allele Aj. As each
individual can have 0, 1 or 2 copies of an allele Aj, by
taking the genotypic group with 0 copy of allele Aj as
the baseline, we can introduce the following two indica-
tor (or dummy) variables for the genotypic groups with
1 and 2 copies of the allele Aj, respectively.

h1j(g) =
{
1, if g = AjAc

j

0, otherwise

h2j(g) =
{
1, if g = AjAj

0, otherwise

for each j = 1, ..., m - 1. These coding variables of
marker genotypes have relationships h1j(g) = hj(g) = wj

(g) - 2vjj(g) and h2j(g) = vjj(g) with previous ones. We
refer to this coding of marker genotypes as the allele-
count coding. Similar to models (4) and (5), by exclud-
ing some redundant coding variables, the allele-count
coding leads to another fully parameterized one-locus
model as

G(gi) = π0 +
m−1∑
j=1

πjh1j(gi) +
m−1∑
j=1

ηjjh2j(gi)

+
m−1∑
j=1

m−1∑
k=j+1

ηjkh1j(gi)h1k(gi)

(6)

for i = 1, ..., N. Similarly, by having model (6) equiva-
lent to (4), we can establish the following relationships

⎧⎪⎪⎨
⎪⎪⎩

π0 = μ = Gmm

πj = αj = Gjm − Gmm, j = 1, . . . ,m − 1
ηjj = 2αj + δjj = Gjj − Gmm, j = 1, . . . ,m − 1
ηjk = δjk = (Gjk − Gjm) − (Gkm − Gmm), j �= k

Therefore, πj in model (6) can still be interpreted as
the substitution effect of replacing allele Am by Aj when
paired with allele Am, or the difference between the gen-
otypic values of the genotype group AjAm with one copy
of Aj versus the genotype group AmAm (baseline). hjj is
the difference between the expected genotypic value Gjj

in the homozygous genotypic group AjAj with two
copies of Aj and Gmm in the baseline group AmAm.
Besides, hjk in model (6) has the same interpretation as
δjk (or djk) before. From model (6), the general additive
effects a∗

jk = (ηjj − ηkk)/2 and the dominance effects
d∗
jk = ηjk − (ηjj + ηkk)/2 − 2π0, j ≠ k, which can be tested
either separately or jointly. The overall effect of a parti-
cular allele Aj can be tested through the composite
hypothesis of H0 : πj = hjk = 0 for k = 1, ..., m - 1. The
overall effects of the locus can also be tested via the null
hypothesis of H0 : πj = hjk = 0 for any j, k = 1, ..., m - 1.
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Each of the three models (4), (5) and (6) provides a full
re-parameterization of the m(m + 1)/2 expected genoty-
pic values under the same model framework (3). The
relationships between their model parameters and the
expected genotypic values are summarized in Table 1. It
is interesting to see from Table 1 that the null hypothesis
of aj = δjj = 0 is equivalent to either aj = djj = 0 or πj =
hjj = 0, which implies Gjj = Gjm = Gmm. So the three
models above should provide the same test statistics for
testing aj = δjj = 0, aj = djj = 0 or πj = hjj = 0.
For a biallelic locus with alleles A (or A1) and a (or A2),

we have m = 2 with three possible genotypic values
GAA = E(G|AA), GAa = E(G|Aa) and Gaa = E(G|aa).
If we adopt the allele coding, then w2(g) = 2 - w1(g), v12
(g) = w1(g) - v11(g), and v22(g) = 1 - w1(g) + v11(g). For the
F∞ coding, we have f2(g) = -f1(g) and h2(g) = h1(g). So we
can further drop d2 in model (5). For the allele-count
coding, we have h12(g) = h11(g) and h22(g) = 1 - h11(g) -
h21(g). The interpretation of model parameters for these
three biallelic QTL models are summarized in Table 2,
which is a special case of Table 1.
For a locus with three alleles A1, A2 (i.e., m = 3), we

have six possibly distinctive expected genotypic values
G11, G22, G33, G12, G13 and G23. Each of the three fully
parameterized models (4), (5) and (6) can provide a full
re-parameterization of the six expected genotypic
values. In a matrix form, from the allele coding model
(4), we have

⎡
⎢⎢⎢⎢⎢⎢⎣

G11

G22

G33

G12

G13

G23

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 0 1 0 0
1 0 2 0 1 0
1 0 0 0 0 0
1 1 1 0 0 1
1 1 0 0 0 0
1 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

μ

α1

α2

δ11
δ22
δ12

⎤
⎥⎥⎥⎥⎥⎥⎦

From the F∞ coding model (5), we have
⎡
⎢⎢⎢⎢⎢⎢⎣

G11

G22

G33

G12

G13

G23

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 −1 0 0 0
1 −1 1 0 0 0
1 −1 −1 0 0 0
1 0 0 1 1 1
1 0 −1 1 0 0
1 −1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

τ

a1
a2
d11
d22
d12

⎤
⎥⎥⎥⎥⎥⎥⎦

And the allele-count coding model (6) gives
⎡
⎢⎢⎢⎢⎢⎢⎣

G11

G22

G33

G12

G13

G23

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 0
1 1 1 0 0 1
1 1 0 0 0 0
1 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

π0

π1

π2

η11
η22
η12

⎤
⎥⎥⎥⎥⎥⎥⎦

By multiplying the design matrices on the left side of
the equations, we can show that the model parameters

Table 1 Parameterization of fully parameterized one-locus models (4), (5), (6).

Codings Relationships

Allele μ = Gmm,αj = Gjm − Gmm

δjj = Gjj + Gmm − 2Gjm, j = 1, . . . ,m − 1

δjk = (Gjk − Gjm) − (Gkm − Gmm), j, k = 1, . . . ,m − 1; j < k

F∞
τ = Gmm + 1

2

∑m−1

j=1
(Gjj − Gmm)

aj =
Gjj−Gmm

2 , djj = Gjm − Gjj+Gmm

2 , j = 1, . . . ,m − 1

djk = (Gjk − Gjm) − (Gkm − Gmm), j, k = 1, . . . ,m − 1; j < k

Allele-count π0 = Gmm,πj = Gjm − Gmm

ηjj = Gjj − Gmm, j = 1, . . . ,m − 1

ηjk = (Gjk − Gjm) − (Gkm − Gmm), j, k = 1, . . . ,m − 1; j < k

Table 2 Parameterization of one-locus models (4), (5), (6)
when m = 2.

Codings Models Relationships

Allele GAA = μ + 2α1 + δ11

GAa = μ + α1

Gaa = μ

μ = Gaa

α1 = GAa − Gaa

δ11 = GAA + Gaa − 2GAa

F∞ GAA = τ + a1
GAa = τ + d11
Gaa = τ − a1

τ = GAA+Gaa
2

a1 = GAA−Gaa
2

d11 = GAa − GAA+Gaa
2

Allele-count GAA = π0 + η11

GAa = π0 + π1

Gaa = π0

π0 = Gaa

π1 = GAa − Gaa

η11 = GAA − Gaa
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and the expected genotypic values have the relationships
as summarized in Table 3, which is consistent with that
in Table 1.

Reduced one-locus models
Due to limited available sample sizes in practice, it may
not always be feasible to use the fully parameterized
models. Quite often, one may want to check the main
effects of alleles first before including all possible allelic
interactions. Here we consider the case of including pos-
sible interactions between Aj and itself for the homozy-
gous genotypes Aj Aj, j = 1, ..., m, but ignore other
interactions between different alleles Aj and Ak (j ≠ k).
Then we obtain a reduced case of model (2) as below

Gjk = μ∗ + α∗
j + α∗

k + δ∗
j 1{j=k} (7)

for j, k = 1, ..., m. Similarly, using the allele coding, we
can present this model in a linear model form as

G(gi) = μ∗ +
m∑
j=1

α∗
j wj(gi) +

m∑
j=1

δ∗
j vj(gi) (8)

for i = 1, ..., N, where vj(g) = vjj(g) for j = 1, ..., m, with
vjj(g) defined as before.
Model (8) contains only one redundant parameter in

the a*’s due to the fact that
∑m

j=1 wj(gi) = 2 for i = 1, ...,
N. In this case, as shown in Appendix A, the parameters
δ∗
1, . . . , δ

∗
m in model (8) are estimable but the para-

meters μ* and α∗
1, . . . ,α

∗
m are not estimable. To

overcome the redundant parameter problem, we can
drop wm from model (8) and consider

G(gi) = μ +
m−1∑
j=1

αjwj(gi) +
m∑
j=1

δjvj(gi) (9)

for i = 1, ..., N. Note that

vm = z1mz2m = 1 − ∑m−1
j=1 wj +

∑m−1
j=1

∑m−1
k=1 vjk, which

cannot be completely determined by {wj, vj, j = 1, ..., m -
1}. Therefore, dropping {δjk, j, k = 1, ..., m - 1, j <k} from
model (4) does not directly lead to an equivalent model
of (9) as the latter contains vm. In fact, as further drop-
ping vm in (9), it will lead to a more restricted model
structure for the expected genotypic values with the
similar interpretation of its model parameters as pre-
sented in model (4). It is also interesting to see that the
haplotype coding proposed in [13] is a special case of
model (9) when we further ignore all the allelic interac-
tions and drop all the {vj, j = 1, ..., m} in the model.
By definition, a reduced model can be derived from its

original model by adding certain restrictions on the
model parameters. Typically, the model parameters in a
reduced model could be interpreted similarly as that in
its original model when these restrictions are simple
enough (e.g., by setting a subset of them being zero).
When the restrictions on the original model parameters
are complicated, however, the interpretation of the
reduced model parameters could be different from that
presented in the original model. For model (9), we can
establish the relationship between its model parameters
and the expected genotypic values using a classical
matrix approach, as shown in Appendix B. An alterna-
tive way of building this relationship is to simply treat
model (9) as a reduced form of model (8) by adding a
restriction α∗

m = 0 and taking μ = μ*, αj = α∗
j for j = 1, ...,

m - 1, and δj = δ∗
j for j = 1, ..., m. Note that adding the

restriction α∗
m = 0 on (8) does not change the modeling

structure of the expected genotypic values because α∗
m is

a redundant parameter given the others. Therefore,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ = Gmm − δ∗
m = Gjm + Gkm − Gjk,

j �= k �= m
αj = Gjm − μ∗ = Gjk − Gkm, k �= j,m,

j = 1, . . . ,m − 1
δj = Gjj − (μ∗ + 2α∗

j )
= (Gjj − Gjk) − (Gjl − Gkl), j �= k �= l,

j = 1, . . . ,m

Comparing with the parameters in model (4), we can
see that the interpretation of the parameters in model
(9) have changed slightly. The intercept μ now becomes
(Gmm − δ∗

m) instead of Gmm, the aj is the substitution
effect of replacing allele Am by Aj when paired with any
allele Ak (k ≠ j, m) instead of just Am, while the δj is the

Table 3 Parameterization of one-locus models (4), (5), (6)
when m = 3.

Codings Relationships

Allele μ = G33

α1 = G13 − G33,α2 = G23 − G33

δ11 = G11 + G33 − 2G13

δ22 = G22 + G33 − 2G23

δ12 = G12 + G33 − G13 − G23

F∞ τ = G11+G22
2

a1 = G11−G33
2 , a2 = G22−G33

2

d11 = G13 − G11+G33
2

d22 = G23 − G22+G33
2

d12 = G12 + G33 − G13 − G23

Allele-count π0 = G33

π1 = G13 − G33,π2 = G23 − G33

η11 = G11 − G33

η22 = G22 − G33

η12 = G12 + G33 − G13 − G23
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difference between the substitution effect of replacing
any allele Ak by Aj when paired with Aj itself and that
when paired with another allele Al (l ≠ j, k). If both aj

and δj are zero for a particular j <m, then Gjj = Gjm = μ
and Gjk = Gkm for any k ≠ j, m.
Under the same model framework (8), the F∞ coding

leads to the following model

G(gi) = τ +
m−1∑
j=1

ajfj(gi) +
m∑
j=1

djhj(gi) (10)

for i = 1, ..., N. By applying the relationship fj(g) = wj

(g) - 1 and hj(g) = wj(g) - 2vj(g) for j = 1, ..., m, we can
show that for models (10) and (8) to be equivalent their
model parameters have the relationship

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ = μ∗ +
m∑
j=1

(α∗
j +

δ∗
j

2 )

aj = α∗
j +

δ∗
j

2 , j = 1, . . . ,m − 1

dj = − δ∗
j

2 , j = 1, . . . ,m
α∗
m + δ∗

m
2 = 0

In other words, model (10) leads to a restriction
2α∗

m + δ∗
m = 0 on the parameters in model (8) which

makes μ∗ = Gmm − (2α∗
m + δ∗

m) = Gmm, α∗
m = −δ∗

m

/
2 and

α∗
j = Gjm − (μ∗ + α∗

m) = Gjm − Gmm + δ∗
m

/
2, j = 1, ..., m -

1. Thus,
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τ = Gmm + 1
2

m−1∑
j=1

(Gjj − Gmm)

aj =
Gjj−Gmm

2 , j = 1, . . . ,m − 1

dj = − (Gjj−Gjk)−(Gjl−Gkl)
2 , j �= k �= l,

j = 1, . . . ,m

Now dj becomes a half of the difference between the
substitution effect of replacing any allele Ak by Aj when
paired with another Aj and that when paired with an
allele Al (l ≠ j, k), which can no longer be referred to as
a dominance effect.
With the allele-count coding, we can actually con-

struct two equivalent models in this case

G(gi) = π0 +
m−1∑
j=1

πjh1j(gi) +
m∑
j=1

ηjh2j(gi) (11)

and

G(gi) = π ′
0 +

m∑
j=1

π ′
jh1j(gi) +

m−1∑
j=1

η′
jh2j(gi) (12)

for i = 1, ..., N. Similarly, we can show that model (11)
can be treated as a reduced model by adding the restric-
tion α∗

m = 0 on parameters in model (8) with the

following relationships
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π0 = μ∗ = Gjm + Gkm − Gjk,
j �= k �= m

πj = α∗
j = Gjk − Gkm, k �= j,m,
j = 1, . . . ,m − 1

ηj = 2α∗
j + δ∗

j = (Gjj − Gjm) + (Gjk − Gkm),
k �= j,m, j = 1, . . . ,m − 1

ηm = δ∗
m = (Gmm − Gjm) − (Gkm − Gjk),
j �= k �= m

On the other hand, model (12) can be treated as a
reduced model by adding the restriction 2α∗

m + δ∗ = 0 on
parameters in model (10) with the following relationships

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π ′
0 = μ∗ = Gmm

π ′
j = α∗

j = (Gjm−Gmm)+(Gjk−Gkm)
2 ,

k �= j,m, j = 1, . . . ,m − 1

π ′
m = − δ∗

m
2 = − (Gmm−Gjm)−(Gkm−Gjk)

2 ,
j �= k �= m

η′
j = 2α∗

j + δ∗
j = Gjj − Gmm,

j = 1, . . . ,m − 1

While the effect hjj in model (6) is the difference
between the two expected homozygous genotypic values
Gjj and Gmm, the effect hj in model (11) becomes the
sum of the substitution effects of replacing allele Am by
Aj when paired with Aj itself and when paired with
another allele Ak (k ≠ j, m. It is also interesting to see
that the definition of parameters in models (11) and (12)
are quite different. A null hypothesis of H0 : π ′

j = η′
j = 0

for a particular j <m in model (12) implies that Gjj =
Gmm and Gjm - Gmm = Gjk - Gkm for any k ≠ j, m, while
the null hypothesis of H0 : πj = hj = 0 for a j <m in
model (11) implies that Gjj = Gjm and Gjk = Gkm for any
k ≠ j, m, which has nothing to do with Gmm.
Under the same model framework (8), each of the above

four models (9), (10), (11) and (12) contains 2m non-
redundant parameters (including the intercept) to model
the m(m + 1)/2 expected genotypic values. When m > 3,
we have m(m + 1)/2 > 2m. Therefore, the model frame-
work (7) enforces certain constraints on the m(m + 1)/2
genotypic values. If m = 3, then each of the four models
actually provides a full re-parameterization of the six
expected genotypic values G11, G22, G33, G12, G13 and G23.
The relationships between the four model parameters and
the expected genotypic values are summarized in Table 4.
Comparing Table 4 with Table 1, we can see that the

definition of model parameters depends not only on the
coding schemes of marker genotypes but also on the
underlying framework for the structure of the expected
genotypic values. From Table 4, it is also interesting to
see that the null hypothesis of H0 : aj = δj = 0 (j <m) in
model (9) is equivalent to πj = hj = 0 in model (11),
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which implies α∗
j = δ∗

j = 0 in model (8) with restriction
α∗
m = 0, or Gjk = Gkm for any k = 1, ..., m. On the other

hand, the null hypothesis of H0 : aj = dj = 0 (j <m) in
model (10) is equivalent to π ′

j = η′
j = 0 in model (12),

which implies α∗
j = δ∗

j = 0 in model (8) with a restriction
2α∗

m + δ∗
m = 0, or Gjj = Gmm and Gjj - Gjm = Gjk - Gkm

for any k ≠ m. In general, the two null hypotheses of aj

= δj = 0 and aj = dj = 0 may not always be equivalent.
For example, when m = 3, similar to the three-allele
models discussed in the previous section, we can show
that the four model parameters and the expected geno-
typic values have the relationships as shown in Table 5,
which is a special case of Table 4. We can see from
Table 5 that a1 = δ1 = 0 is equivalent to π1 = h1 = 0
which implies G12 = G23 and G11 = G13; while a1 = d1 =
0 is equivalent to π ′

1 = η′
1 = 0 which implies G11 = G33

and G12 + G13 = G11 + G23. So, depending on the
underlying true setting of the expected genotypic values,
the null hypotheses of a1 = δ1 = 0 in model (9) could
be different from that of a1 = d1 = 0 in model (10).

Extension to two-locus models
In this section, we further explore some extensions of
the previous one-locus models to two-locus models.
Consider two marker loci with alleles A11, . . . ,A1m1 at
locus 1 and alleles A21, . . . ,A2m2 at locus 2, respectively.
Without distinguishing the parental origins of the
alleles, there are totally m1m2(m1 + 1)(m2 + 1)/4 possi-
ble distinctive expected genotypic values: Gjkrs = E(G|

Table 4 Parameterization of one-locus models (9), (10), (11), (12) when m ≥ 3.

Codings Restrictions Relationships

Allele α∗
m = 0 μ = μ∗ = (Gjm + Gkm) − Gjk, j �= k �= m

αj = α∗
j = Gjk − Gkm, j = 1, . . . ,m − 1; j �= k,m

δj = δ∗
j = (Gjj − Gjk) − (Gjl − Gkl), j = 1, . . . ,m; k �= j �= l

F∞ 2α∗
m + δ∗

m = 0
τ = μ∗ + 1

2

m−1∑
j=1

(2α∗
j + δ∗

j ) = Gmm + 1
2

m−1∑
j=1

(Gjj − Gmm)

aj = 1
2(2α∗

j + δ∗
j ) =

Gjj−Gmm

2 , j = 1, . . . ,m − 1

dj = − δ∗
j

2 = − (Gjj−Gjk)−(Gjl−Gkl)
2 , j = 1, . . . ,m; j �= k �= l

Allele-count α∗
m = 0 π0 = μ∗ = (Gjm + Gkm) − Gjk, j �= k �= m

πj = α∗
j = Gjk − Gkm, j = 1, . . . ,m − 1; k �= j,m

ηj = 2α∗
j + δ∗

j = (Gjj − Gjm) + (Gjk − Gkm), j = 1, . . . ,m − 1; k �= j,m

ηm = δ∗
m = (Gmm − Gjm) − (Gkm − Gjk), j �= k �= m

Allele-count 2α∗
m + δ∗

m = 0 π ′
0 = μ∗ = Gmm

π ′
j = α∗

j = (Gjm−Gmm)+(Gjk−Gkm)
2 , j = 1, . . . ,m − 1; k �= j,m

π ′
m = − δ∗

m
2 = − (Gmm−Gjm)−(Gkm−Gjk)

2 , j �= k �= m

η′
j = 2α∗

j + δ∗
j = Gjj − Gmm, j = 1, . . . ,m − 1

Table 5 Parameterization of one-locus models (9), (10),
(11), (12) when m = 3.

Codings Restrictions Relationships

Allele α∗
3 = 0 μ = G13 + G23 − G12

α1 = G12 − G23,α2 = G12 − G13

δ1 = (G11 − G13) − (G12 − G23)

δ2 = (G22 − G23) − (G12 − G13)

δ3 = G33 + G12 − G13 − G23

F∞ 2α∗
3 + δ∗

3 = 0 τ = G11+G22
2

a1 = G11−G33
2 , a2 = G22−G33

2

d1 = (G12+G13)−(G23+G11)
2

d2 = (G12+G23)−(G13+G22)
2

d3 = (G13+G23)−(G12+G33)
2

Allele-count α∗
3 = 0 π0 = G13 + G23 − G12

π1 = G12 − G23,π2 = G12 − G13

η1 = (G11 − G13) + (G12 − G23)

η2 = (G22 − G23) + (G12 − G13)

η3 = G33 + G12 − G13 − G23

Allele-count 2α∗
3 + δ∗

3 = 0 π ′
0 = G33

π ′
1 = (G12+G13)−(G23+G33)

2

π ′
2 = (G12+G23)−(G13+G33)

2

π ′
3 = (G13+G23)−(G12+G33)

2

η′
1 = G11 − G33, η′

2 = G22 − G33
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A1jA1kA2rA2s) for j, k = 1, ..., m1, j ≤ k; and r, s = 1, ...,
m2, r ≤ s. Using the allele coding, we introduce the
following coding variables

w1j(g) =

⎧⎨
⎩
2, if g = A1jA1j

1, if g = A1jAc
1j

0, if g = Ac
1jA

c
1j

v1jk(g) =
{
1, if g = A1jA1k

0, otherwise

j, k = 1, ..., m1, for marker genotypes at locus 1 and

w2r(g) =

⎧⎨
⎩
2, if g = A2rA2r

1, if g = A2rAc
2r

0, if g = Ac
2rA

c
2r

v2rs(g) =
{
1, if g = A2rA2s

0, otherwise

r, s = 1, ..., m2, for marker genotypes at locus 2, where
Ac
1j (or Ac

2r) denotes any other allele type except A1j

(or A2r) at locus 1 (or 2). A fully parameterized
two-locus model for Gjkrs can then be presented as

G(gi) = μ +
m1−1∑
j=1

α1jw1j +
m1−1∑
j=1

m1−1∑
k=j

δ1jkv1jk

+
m2−1∑
r=1

α2rw2r +
m2−1∑
r=1

m2−1∑
s=r

δ2rsv2rs

+
m1−1∑
j=1

m2−1∑
r=1

(α1jα2r)w1jw2r

+
m1−1∑
j=1

m2−1∑
r=1

m2−1∑
s=r

(α1jδ2rs)w1jv2rs

+
m1−1∑
j=1

m1−1∑
k=j

m2−1∑
r=1

(δ1jkα2r)v1jkw2r

+
m1−1∑
j=1

m1−1∑
k=j

m2−1∑
r=1

m2−1∑
s=r

(δ1jkδ2rs)v1jkv2rs

(13)

for i = 1, ..., N. Similar to the one-locus models, we
can establish the relationship between the model para-
meters and the expected genotypic values as shown in
(C.1) of Appendix C. A nice property of this allele cod-
ing model is that a higher order effect is simply the
deviation of its corresponding expected genotypic value
from an approximation of the other lower order effects.
Here the corresponding expected genotypic value of a
marker effect is determined by the position of alleles
that differ from the two reference alleles A1m1 and A2m2.
So, starting from the lowest order parameter μ, it seems
straightforward to build the relationships between the
model parameters and the expected genotypic values

starting from the low-order effect parameters up to the
high-order effect parameters.

For the F∞ coding, we can define the following coding
variables for the genotypes at the two marker loci sepa-
rately.

f1j(g) =

⎧⎨
⎩

1, if g = A1jA1j

0, if g = A1jAc
1j

−1, if g = Ac
1jA

c
1j

h1j(g) =
{
1, if g = A1jAc

1j

0, otherwise

for j = 1, ..., m1, and

f2r(g) =

⎧⎨
⎩

1, if g = A2rA2r

0, if g = A2rAc
2r

−1, if g = Ac
2rA

c
2r

h2r(g) =
{
1, if g = A2rA2r

0, otherwise

for r = 1, ..., m2. A fully parameterized two-locus
model using this F∞ coding is then

G(gi) = τ +
m1−1∑
j=1

a1jf1j(gi)+
m2−1∑
r=1

a2rf2r(gi)

+
m1−1∑
j=1

m1−1∑
k=j

d1jkh1j(gi)h1k(gi)

+
m2−1∑
r=1

m2−1∑
s=r

d2rsh2r(gi)h2s(gi)

+
m1−1∑
j=1

m2−1∑
r=1

(a1ja2r)f1jf2r

+
m1−1∑
j=1

m2−1∑
r=1

m2−1∑
s=r

(a1jd2rs)f1jh2rh2s

+
m1−1∑
j=1

m1−1∑
k=j

m2−1∑
r=1

(d1jka2r)h1jh1kf2r

+
m1−1∑
j=1

m1−1∑
k=j

m2−1∑
r=1

m2−1∑
s=r

(d1jkd2rs)h1jh1kh2rh2s

(14)

for i = 1, ..., N. Still, using the relationships w1j= 1 +
f1j, w2r= 1 + f2r, v1jj= (1 + f1j- h1j), v2rr= (1 + f2r- h2r),
v1jk= h1jh1kfor j ≠ k, and v2rs= h2rh2sfor r ≠ s between
the F∞ coding variables and the allele coding variables,
we can establish the relationships between the model
parameters and the expected genotypic values as
shown in (C.2) of Appendix C. We can easily verify
that the biallelic two-locus effects EF∞·AB in [9] is a
special case of our results with m1 = m2 = 2. It is also
interesting to see that the interpretation of model
parameters in terms of the expected genotypic values
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becomes much more complicated than that in the
previous allele coding model. When m1, m2 > 2, the
low-order within-locus main effect a1jis a weighted
combination of the differences (Gjjrr − Gm1m1rr), where
r = 1, ..., m2 refer to various homozygous genotypes
A2rA2rat locus 2. The within-locus effect d1 j jis a
weighted combination of the allelic interactions
(Gjjrr − 2Gjm1rr + Gm1m1rr), r = 1, ..., m2, at locus 1 with
reference A2rA2rat locus 2. Even the intercept τ of the
model becomes a complex function of various homozy-
gous genotypic values.

Applying the allele-count coding, we can define

h(1)1j (g) =
{
1, if g = A1jAc

1j

0, otherwise

h(1)2j (g) =
{
1, if g = A1jA1j

0, otherwise

for j = 1, ..., m1, and

h(2)1r (g) =
{
1, if g = A2rAc

2r
0, otherwise

h(2)2r (g) =
{
1, if g = A2rA2r

0, otherwise

for r = 1, ..., m2. Another fully parameterized
two-locus model for Gjkrs can be written as

G(gi) = π0 +
m1−1∑
j=1

(π1jh
(1)
1j + η1jjh

(1)
2j )

+
m2−1∑
r=1

(π2rh
(2)
1r + η2rrh

(2)
2r )

+
m1−1∑
j=1

m1−1∑
k=j+1

η1jkh
(1)
1j h

(1)
1k

+
m2−1∑
r=1

m2−1∑
s=r+1

η2rsh
(2)
1r h

(2)
1s

+
m1−1∑
j=1

m2−1∑
r=1

[
(π1jπ2r)h

(1)
1j h

(2)
1r

+(π1jη2rr)h
(1)
1j h

(2)
2r + (η1jjπ2r)h

(1)
2j h

(2)
1r

+(η1jjη2rr)h
(1)
2j h

(2)
2r ]

+
m1−1∑
j=1

m2−1∑
r=1

m2−1∑
s=r+1

[
(π1jη2rs)h

(1)
1j h

(2)
1r h

(2)
1s

+(η1jjη2rs)h
(1)
2j h

(2)
1r h

(2)
1s

]

+
m1−1∑
j=1

m1−1∑
k=j+1

m2−1∑
r=1

[
(η1jkπ2r)h

(1)
1j h

(1)
1k h

(2)
1r

+(η1jkη2rr)h
(1)
1j h

(1)
1k h

(2)
2r

]

+
m1−1∑
j=1

m1−1∑
k=j+1

m2−1∑
r=1

m2−1∑
s=r+1

(η1jkη2rs)

·h(1)1j h
(1)
1k h

(2)
1r h

(2)
1s

(15)

for i = 1, ..., N. In this case, the allele-count coding
variables and the allele coding variables have

the relationships w1j = h(1)1j + 2h(1)2j , w2r = h(2)1r + 2h(2)2r ,

v2rr = h(2)2r , v2rr = h(2)2r , v1jk = h(1)1j h
(1)
1k for j ≠ k, and

v2rs = h(2)1r h
(2)
1s for r ≠ s. Through the equivalence of the

two models (13) and (15), we can also construct rela-
tionships between the parameters in model (15) and the
expected genotypic values as shown in (C.3) of Appen-
dix C. We can see that the interpretation of parameters
in the allele-count coding model (15) are as simple as
that in the allele coding model (13) with the same inter-
cept being Gm1m1m2m2. Besides, it seems that some para-
meters such as (h1jjh2rr), (h1jkh2rs) and (h1jkh2rr) have
simpler relationships than the corresponding ones in the
allele coding model (13).
Finally, let us consider some reduced cases of the two-

locus models. By ignoring locus-by-locus interactions (i.
e., epistases), we have the following simplified two-locus
model framework

Gjkrs = μ∗ + α∗
1j + α∗

1k + δ∗
1jk + α∗

2r + α∗
2s + δ∗

2rs (16)

for j, k = 1, ..., m1 and r, s = 1, ..., m2. If we further
ignore the within-locus allelic interactions between dif-
ferent alleles, then another reduced two-locus model
framework is

Gjkrs = μ∗ + α∗
1j + α∗

1k + δ∗
1j1{j=k}

+ α∗
2r + α∗

2s + δ∗
2r1{r=s}

(17)

Similar to the one-locus models, under each of the two
reduced model frameworks we can construct the two-
locus models from the three coding schemes. The rela-
tionships between the model parameters and the
expected genotypic values under framework (14) are
summarized in Table 6, which can be treated as an
extension of Table 1 to the two-locus case. The relation-
ships between the model parameters and the expected
genotypic values under framework (17) are also summar-
ized in Table 7, which is a straightforward extension of
Table 4. Further dropping δ∗

1j for j = 1, ..., m1 and δ∗
2r for

r = 1, ..., m2 in (15) will lead to an additive model frame-
work, which has its model parameters interpretable simi-
lar to that in Table 6. From Tables 6 and 7, we can see
that both the allele and allele-count coding models have
their lower-order main effects keep similar interpretation
as to that in the previous fully parameterized case with
epistases, while the F∞ coding models have the definition
of their lower-order main effects vary depending on
whether there are epistases involved in the models.
As pointed out in [9], the genetic effects of a marker

may have different interpretation depending upon
whether the marker is fitted in a one-locus model or a
two-locus model. From the linear model theory, the
genetic effects of a marker in a one-locus model are

Wang BMC Genetics 2011, 12:82
http://www.biomedcentral.com/1471-2156/12/82

Page 11 of 21



defined based on the expected genotypic values of cer-
tain genotypes at this particular marker locus with geno-
types at the other marker loci being averaged out based
on the joint genotype distribution. For instance, marker
1 in the two-locus setting above has its effects defined
in a one-locus model based on the one-locus genotypic
values E(Gjk) = E(Gjkrs|A1jA1k) =

∑
rs P(A2rA2s|A1jA1k)Gjkrs,

which could depend on the LDs of alleles between the
two loci. When the same marker is fitted in a two-locus
model, its effects are usually functions of the expected
genotypic values with their joint genotypes taking cer-
tain reference alleles or genotypes at the other marker
loci. So, in general, even without locus-by-locus interac-
tions, a single marker’s effects could be different from
the one defined in a multi-locus model when the alleles
at different loci are in linkage disequilibrium (LD). Con-
sider a 2-locus haploid model with alleles A, a at locus
1 and B, b at locus 2. If we ignore the locus-by-locus
interaction, it is easy to show that the additive allelic
effects are a1 = GAB - GaB = GAb - Gab and a2 = GAB -

Table 6 Parameterization of two-locus models under
model framework (16).

Codings Relationships

Allele μ = Gm1m1m2m2

α1j = Gjm1m2m2 − Gm1m1m2m2 , j = 1, . . . ,m1 − 1

α2r = Gm1m1rm2 − Gm1m1m2m2 , r = 1, . . . ,m2 − 1

δ1jk = Gjkm2m2 − Gjm1m2m2 − Gkm1m2m2 + Gm1m1m2m2 , j, k = 1, . . . ,m1 − 1; j ≤ k

δ2rs = Gm1m1rs − Gm1m1rm2 − Gm1m1sm2 + Gm1m1m2m2 , r, s = 1, . . . ,m2 − 1; r ≤ s

F∞ τ = Gm1m1m2m2 +
1
2

∑m1−1

j=1
(Gjjm2m2 − Gm1m1m2m2 ) +

1
2

∑m2−1

r=1
(Gm1m1rr − Gm1m1m2m2)

a1j =
Gjjm2m2 − Gm1m1m2m2

2
, j = 1, . . . ,m1 − 1

a2r =
Gm1m1rr − Gm1m1m2m2

2
, r = 1, . . . ,m2 − 1

d1jj = Gjm1m2m2 − Gjjm2m2 + Gm1m1m2m2

2
, j = 1, . . . ,m1 − 1

d1jk = Gjkm2m2 − Gjm1m2m2 − Gkm1m2m2 + Gm1m1m2m2 , j, k = 1, . . . ,m1 − 1; j < k

d2rr = Gm1m1rm2 − Gm1m1rr + Gm1m1m2m2

2
, r = 1, . . . ,m2 − 1

d2rs = Gm1m1rs − Gm1m1rm2 − Gm1m1sm2 + Gm1m1m2m2 , r, s = 1, . . . ,m2 − 1; r < s

Allele-
count

π0 = Gm1m1m2m2

π1j = Gjm1m2m2 − Gm1m1m2m2 , j = 1, . . . ,m1 − 1

π2r = Gm1m1rm2 − Gm1m1m2m2 , r = 1, . . . ,m2 − 1

η1jj = Gjjm2m2 − Gm1m1m2m2 , j = 1, . . . ,m1 − 1

η1jk = Gjkm2m2 − Gjm1m2m2 − Gkm1m2m2 + Gm1m1m2m2 , j, k = 1, . . . ,m1 − 1; j < k

η2rr = Gm1m1rr − Gm1m1m2m2 , r = 1, . . . ,m2 − 1

η2rs = Gm1m1rs − Gm1m1rm2 − Gm1m1sm2 + Gm1m1m2m2 , r, s = 1, . . . ,m2 − 1; r < s

Table 7 Parameterization of two-locus models under model framework (17) when m1, m2 ≥ 3.

Codings Restrictions Relationships

Allele α∗
1m1

= α∗
2m2

= 0 μ = Gm1m1m2m2 − (Gm1m1rs − Gjm1rs − Gkm1rs + Gjkrs)

−(Gjkm2m2 − Gjkm2r − Gjkm2s + Gjkrs), j �= k �= m1; r �= s �= m2

α1j = Gjkrs − Gm1krs, j = 1, . . . ,m1 − 1; k �= j,m1

α2r = Gjkrs − Gjkm2s, r = 1, . . . ,m2 − 1, r �= s,m2

δ1j = Gjjrs − Gjkrs − Gjlrs + Gklrs, j = 1, . . . ,m1; j �= k �= l

δ2r = Gjkrr − Gjkrs − Gjkrt + Gjkst , r = 1, . . . ,m2; r �= s �= t

F∞ 2α∗
1m1

+ δ∗
1m1

= 0

2α∗
2m2

+ δ∗
2m2

= 0
τ = Gm1m1m2m2 +

1
2

∑m1−1

j=1
(Gjjm2m2 − Gm1m1m2m2 )

+1
2

∑m2−1

r=1
(Gm1m1rr − Gm1m1m2m2)

a1j =
Gjjrs−Gm2m2 rs

2 , j = 1, . . . ,m1 − 1

a2r =
Gjkrr−Gjkm2m2

2 , r = 1, . . . ,m2 − 1

d1j = −Gjjrs−Gjkrs−Gjlrs+Gklrs

2 , j = 1, . . . ,m1; j �= k �= l

d2r = −Gjkrr−Gjkrs−Gjkrt+Gjkst

2 , r = 1, . . . ,m2; r �= s �= t

Allele-count α∗
1m1

= α∗
2m2

= 0 π0 = Gm1m1m2m2 − (Gm1m1rs − Gjm1rs − Gm1krs + Gjkrs)

−(Gjkm2m2 − Gjkrm2 − Gjkm2s + Gjkrs), j �= k �= m1; r �= s �= m2

π1j = Gjkrs − Gm1krs, j = 1, . . . ,m1 − 1, k �= j,m1

π2r = Gjkrs − Gjkm2s, r = 1, . . . ,m2 − 1, r �= s,m2

η1j = Gjjrs − Gjm1rs − Gkm1rs + Gjkrs, j = 1, . . . ,m1 − 1; k �= j,m1

η1m1 = Gm1m1rs − Gjm1rs − Gkm1rs + Gjkrs, j �= k �= m1

η2r = Gjkrr − Gjkrm2 − Gjksm2 +Gjkrs, r = 1, . . . ,m2 − 1; s �= r,m2

η2m2 = Gjkm2m2 − Gjkm2r − Gjkm2s + Gjkrs, r �= s �= m2

Allele-count 2α∗
1m1

+ δ∗
1m1

= 0

2α∗
2m2

+ δ∗
2m2

= 0

π ′
0 = Gm1m1m2m2

π ′
1j =

Gjm1rs−Gm1m1 rs−Gkm1 rs+Gjkrs

2 , j = 1, . . . ,m1 − 1; k �= j,m1

π ′
1m1 = −Gm1m1rs−Gjm1rs−Gkm1 rs+Gjkrs

2 , j �= k �= m1

π ′
2r =

Gjkrm2−Gjkm2m2−Gjksm2 +Gjkrs

2 , r = 1, . . . ,m2 − 1; r �= s,m2

π ′
2m2 = −Gjkm2m2−Gjkrm2−Gjksm2 +Gjkrs

2 , r �= s �= m2

η′
1j = Gjjrs − Gm1m1rs, j = 1, . . . ,m1 − 1

η′
2r = Gjkrr − Gjkm2m2 , r = 1, . . . ,m2 − 1
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GAb = GaB - Gab at locus 1 and 2, respectively. In a one-
locus model at locus 1, however, we can show that the
locus has its additive allelic effect α∗

1 = α1 +Dα2/(pApa),
where D = PAB - pApB is the LD between the two loci.

Simulation Examples
We use some numerical examples to illustrate proper-
ties of the models we have discussed. First, we consider
the same example discussed in [11] of a three-allele locus
with allele frequencies p1 = 0.2 for A1, p2 = 0.3 for A2, and
p3 = 0.5 for A3. The six genotypic values are G11 = 10, G12

= 30, G22 = 50, G13 = 36, G23 = 46 and G33 = 42. We
adopt a similar strategy to specify the genotype frequencies
as: Pjj = p2j − D for j = 1, 2, 3 and Pjk = 2pjpk + D for j ≠ k,
where D is a measure of departure from Hardy-Weinberg
equilibrium (HWE) for the three alleles at the locus and
D- ≤ D ≤ D+ with

D− = −min
j�=k

{2pjpk} = −0.12

and

D+ = min
j=1,2,3

{p2j } = 0.04

We consider two cases: i) D = 0 for HWE, and ii) D
= 0.02 for Hardy-Weinberg disequilibrium (HWD).
The phenotypic value of an individual is simulated as a
sum of its true genotypic value and an environmental
noise from N(0, s2), where the s2 is chosen to be
either 0 or s2 = 288 with the latter one corresponds to
a 20% heritability level when D = 0. For each of the
four configurations, we simulate 10,000 random sam-
ples with 1000 individuals each. For each random sam-
ple, we fit the three fully parameterized one-locus
models (4), (5) and (6) under model framework (2)
using the least square approach and estimate the
model parameters as well as the six genotypic values.
The means and standard deviations (SD) of the least
square estimates (LSE) of the model parameters and
the six genotypic values from the 10,000 random sam-
ples in fitting these three models are summarized in
Table 8.
As each of the three models provides a re-parameteriza-

tion of the six genotypic values, for each random sample
the three models always give exactly the same estimates of
the six genotypic values and the residual variance as we
expected, even though their model parameters are defined
in different ways. As a result, under each configuration, the
three models have the same means and SD for the LSE of
the six genotypic values and the residual variance. Without
environmental variation, each model can accurately esti-
mate its model parameters and the six genotypic values for
each random sample regardless of whether there is HWE
or HWD. When there is environmental variation on the

phenotypes, it is known that the least square estimators of
the model parameters are unbiased under either HWE or
HWD. However, the HWD may affect the variance of the
least square estimators of the model parameters and the six
genotypic values. Note that the genotypic frequencies are
P11 = 0.04, P22 = 0.09, P33 = 0.25, P12 = 0.12, P13 = 0.20 and
P23 = 0.30 under HWE, while with D = 0.02 the genotypic
frequencies become P11 = 0.02, P22 = 0.07, P33 = 0.23, P12 =
0.14, P13 = 0.22 and P23 = 0.32. So, under HWD, we tend to
have more individuals carrying genotypes A1A2, A1A3, A2A3

but less individuals carrying genotypes A1A1, A2A2, A3A3 in
the random samples than that under HWE. Without know-
ing the accurate genotypic values, more individuals with
certain genotypes in a random sample can then provide
better estimates of the corresponding genotypic values. This
explains why under HWD the estimates of G11, G22 and
G33 have larger SD (or variances) than that under the
HWE, and the estimates of G12, G13 and G23 under HWD
have smaller variances than that under the HWE.
As another example, let us consider the statistical mod-

eling of two-locus genotypic values Gjkrs, where the first
locus have three alleles A1, A2, A3 and the second locus
have two alleles B1, B2. Assume that the alleles at locus 1
have the same allele frequencies as that in the previous
example; i.e., p1 = 0.2 for A1, p2 = 0.3 for A2, and p3 = 0.5
for A3, while the two alleles at locus 2 have frequencies q1
= 0.2 for B1 and q2 = 0.8 for B2. The two-locus genotypic
values G2 = (Gjkrs), j, k = 1, 2, 3; r, s = 1, 2 are given by

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

G1111 G1112 G1122

G2211 G2212 G2222

G3311 G3312 G3322

G1211 G1212 G1222

G1311 G1312 G1322

G2311 G2312 G2322

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

10 10.9 9.6
50 50.3 49.9
42 42.6 41.2
30 30.5 29.6
36 36.8 35.4
46 46.7 45.2

⎤
⎥⎥⎥⎥⎥⎥⎦

which are modified values from the previous one-locus
model in a way that the Gjk11 = Gjk, Gjk12 = Gjk +
e1jkand Gjk22 = Gjk - e2jkwith e1jkand e2jkbeing some
small positive fluctuations according to the genotypes
B1B2 and B2B2 at locus 2. We assume Hardy-Weinberg
equilibria at both loci and specify their haplotype fre-
quencies as: h11 = p1q1 - D1, h12 = p1q2 + D1, h21 = p2q1
- D2, h22 = p2q2 - D2, h31 = p3q1 + (D1 - D2), h32 = p3q2
- (D1 - D2), where D1 (and D2) are the linkage disequili-
bria (LD) between alleles A1 and B2 (and A2 and B1) at
the two loci. We consider two scenarios: i) D1 = D2 = 0
for linkage equilibrium (LE); and ii) D1 = 0, D2 = 0.03
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for LD. The phenotypic value of an individual is still
simulated as a sum of its genotypic value and an envir-
onmental noise from N(0, s2), where the s2 was chosen
to be either 0 or s2 = 286 with the latter one corre-
sponds to a 20% heritability level when D1 = D2 = 0.
For each of the four configurations, we simulate 10,000
random samples with 1000 individuals each. For each
random sample, we consider fitting models under three
model frameworks: i) one-locus models (4), (5) and (6)
at locus 1 under model framework (2); ii) two-locus
models without epistases from the three coding schemes
under model framework (14); iii) fully parameterized
two-locus models (13), (14) and (15) with epistases. Still,

for each random sample, the three allele coding models
under the same model framework give exactly the same
estimates of the 18 genotypic values as we expected
(results not shown here). As the result, under each
model framework, the three models have the same
means and SD for the LSE of the 18 genotypic values
and the residual variance, although the means and SD
for the LSE of their model parameters are different. To
compare the LSE of model parameters for models from
the same coding under different model frameworks, we
summarize in Table 9 the means and SD of the LSE of
the model parameters from the 10,000 random samples
in fitting the three allele-coding models: the one-locus

Table 8 Means (SD) of LSE for three one-locus models (4), (5) and (6) when m = 3.

Allele μ a1 a2 δ11 δ22 δ12 s2

True 42 -6 4 -20 0 -10

D = 0, s2 = 0 42.0(0.00) -6.00(0.00) 4.00(0.00) -20.00(0.00) 0.00(0.00) -10.00(0.00) 0.00(0.00)

D = 0, s2 = 288 41.99(1.07) -5.98(1.61) 3.99(1.44) -20.06(3.80) 0.02(2.85) -9.98(2.42) 287.84(12.91)

D = 0.02, s2 = 0 42.00(0.00) -6.00(0.00) 4.00(0.00) -20.00(0.00) 0.00(0.00) -10.00(0.00) 0.00(0.00)

D = 0.02, s2 = 288 41.98(1.14) -5.97(1.60) 4.01(1.46) -20.07(6.21) 0.03(3.09) -10.04(2.31) 287.81(12.91)

G11 G22 G33 G12 G13 G23

10 50 42 30 36 46

10.00(0.00) 50.00(0.00) 42.00(0.00) 30.00(0.00) 36.00(0.00) 46.00(0.00)

9.96(2.73) 49.99(1.79) 41.99(1.07) 30.02(1.55) 36.01(1.20) 45.98(0.98)

10.00(0.00) 50.00(0.00) 42.00(0.00) 30.00(0.00) 36.00(0.00) 46.00(0.00)

9.96(5.66) 50.03(2.21) 41.98(1.14) 29.97(1.38) 36.01(1.12) 45.99(0.93)

F∞ τ a1 a2 d11 d22 d12 s2

True 30 -16 4 10 0 -10

D = 0, s2 = 0 30.00(0.00) -16.00(0.00) 4.00(0.00) 10.00(0.00) 0.00(0.00) -10.00(0.00) 0.00(0.00)

D = 0, s2 = 288 29.98(1.64) -16.01(1.46) 4.00(1.05) 10.03(1.90) -0.01(1.42) -9.98(2.42) 287.84(12.91)

D = 0.02, s2 = 0 30.00(0.00) -16.00(0.00) 4.00(0.00) 10.00(0.00) 0.00(0.00) -10.00(0.00) 0.00(0.00)

D = 0.02, s2 = 288 29.99(3.05) -16.01(2.88) 4.03(1.25) 10.04(3.10) -0.01(1.54) -10.04(2.31) 287.81(12.91)

G11 G22 G33 G12 G13 G23

10 50 42 30 36 46

10.00(0.00) 50.00(0.00) 42.00(0.00) 30.00(0.00) 36.00(0.00) 46.00(0.00)

9.96(2.73) 49.99(1.79) 41.99(1.07) 30.02(1.55) 36.01(1.20) 45.98(0.98)

10.00(0.00) 50.00(0.00) 42.00(0.00) 30.00(0.00) 36.00(0.00) 46.00(0.00)

9.96(5.66) 50.03(2.21) 41.98(1.14) 29.97(1.38) 36.01(1.12) 45.99(0.93)

Allele-count π0 π1 π2 h11 h22 h12 s2

True 42 -6 4 -32 8 -10

D = 0, s2 = 0 42.00(0.00) -6.00(0.00) 4.00(0.00) -32.00(0.00) 8.00(0.00) -10.00(0.00) 0.00(0.00)

D = 0, s2 = 288 41.99(1.07) -5.98(1.61) 3.99(1.44) -32.03(2.92) 8.00(2.09) -9.98(2.42) 287.84(12.91)

D = 0.02, s2 = 0 42.00(0.00) -6.00(0.00) 4.00(0.00) -32.00(0.00) 8.00(0.00) -10.00(0.00) 0.00(0.00)

D = 0.02, s2 = 288 41.98(1.14) -5.97(1.60) 4.01(1.46) -32.02(5.76) 8.05(2.51) -10.04(2.31) 287.81(12.91)

G11 G22 G33 G12 G13 G23

10 50 42 30 36 46

10.00(0.00) 50.00(0.00) 42.00(0.00) 30.00(0.00) 36.00(0.00) 46.00(0.00)

9.96(2.73) 49.99(1.79) 41.99(1.07) 30.02(1.55) 36.01(1.20) 45.98(0.98)

10.00(0.00) 50.00(0.00) 42.00(0.00) 30.00(0.00) 36.00(0.00) 46.00(0.00)

9.96(5.66) 50.03(2.21) 41.98(1.14) 29.97(1.38) 36.01(1.12) 45.99(0.93)
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model (4), the two-locus model under model framework
(14), and the two-locus model under model framework
(13). Models from the other two coding schemes behave
similarly.
As we mentioned before, the one-locus models are

actually modeling the expected genotypic values given
the genotypes at locus 1. When D1 = D2 = 0, we can

show that the expected genotypic values at locus 1 are
G11 = 10.03, G22 = 50.03, G33 = 41.68, G12 = 29.90, G13

= 35.87 and G23 = 45.71, which correspond to μ =
41.68, a11 = -5.81, a12 = 4.03, δ111 = -20.03, δ122 = 0.29
and δ112 = -10 as the true parameters in the allele cod-
ing one-locus model. When D1 = 0, D2 = 0.03, the
expected genotypic values at locus 1 become G11 =

Table 9 Means (SD) of LSE for three allele-coding models regarding the two-locus genotypic values

One-locus model μ a11 a12 δ111 δ122 δ112 s2

True 41.68 -5.81 4.03 -20.03 0.29 -10

D1 = D2 = 0, s2 = 0 41.68(0.04) -5.81(0.06) 4.03(0.06) -20.03(0.14) 0.29(0.09) -10.00(0.08) 0.37(0.01)

D1 = D2 = 0, s2 = 286 41.69(1.07) -5.83(1.61) 4.03(1.44) -20.00(3.79) 0.27(2.85) -9.99(2.43) 286.58(12.82)

True 41.55 -5.74 4.21 -20.04 0.09 -10.06

D1 = 0, D2 = 0.03, s2 = 0 41.55(0.04) -5.74(0.06) 4.21(0.06) -20.04(0.14) 0.09(0.09) -10.06(0.08) 0.36(0.01)

D1 = 0, D2 = 0.03, s2 = 286 41.54(1.07) -5.74(1.61) 4.23(1.45) -20.09(3.81) 0.07(2.83) -10.09(2.43) 286.27(12.94)

Two-locus model - no epistases μ a11 a12 δ111 δ122 δ112 a21

True 41.88 -5.81 4.03 -20.03 0.29 -10 0.64

D1 = D2 = 0, s2 = 0 41.88(0.02) -5.81(0.01) 4.03(0.01) -20.03(0.01) 0.29(0.05) -10.00(0.02) 0.64(0.02)

D1 = D2 = 0, s2 = 286 41.91(2.88) -5.82(1.61) 4.03(1.44) -19.99(3.79) 0.27(2.85) -9.99(2.43) 0.63(2.90)

δ211 s2

-1.92

-1.92(0.03) 0.024(0.002)

-1.92(3.41) 285.64(12.79)

True 41.85 -5.80 4.06 -20.04 0.14 -10.04 0.65

D1 = 0, D2 = 0.03, s2 = 0 41.85(0.02) -5.80(0.01) 4.06(0.01) -20.04(0.01) 0.14(0.05) -10.04(0.02) 0.65(0.02)

D1 = 0, D2 = 0.03, s2 = 286 41.87(2.94) -5.80(1.61) 4.07(1.45) -20.09(3.81) 0.12(2.83) -10.07(2.43) 0.62(2.88)

δ211 s2

-1.92

-1.92(0.03) 0.02(0.00)

-1.88(3.38) 285.36(12.94)

Two-locus model with epistases μ a11 a12 δ111 δ122 δ112 a21

True 42 -6 4 -20 0 -10 0.6

D1 = D2 = 0, s2 = 0 42.00(0.00) -6.00(0.00) 4.00(0.00) -20.00(0.00) 0.00(0.00) -10.00(0.00) 0.60(0.00)

D1 = D2 = 0, s2 = 286 41.92(5.73) -5.99(8.65) 4.04(7.67) -19.79(19.86) -0.04(15.62) -9.82(13.54) 0.66(6.04)

D1 = 0, D2 = 0.03, s2 = 0 42.00(0.00) -6.00(0.00) 4.00(0.00) -20.00(0.00) 0.00(0.00) -10.00(0.00) 0.60(0.00)

D1 = 0, D2 = 0.03, s2 = 286 42.24(8.60) -6.11(11.83) 3.66(10.05) -20.04(22.95) 0.51(14.85) -9.77(14.64) 0.38(8.86)

δ211 (a11a21) (a12a21) (δ111a21) (δ122a21) (δ112a21) (a11δ211)

-2 0.2 0.1 -0.1 -0.5 -0.4 -0.2

-2.00(0.00) 0.20(0.00) 0.10(0.00) -0.10(0.00) -0.50(0.00) -0.40(0.00) -0.20(0.00)

-2.05(6.99) 0.23(9.12) 0.07(8.08) -0.35(20.98) -0.47(16.35) -0.65(14.30) -0.29(10.58)

-2.00(0.00) 0.20(0.00) 0.10(0.00) -0.10(0.00) -0.50(0.00) -0.40(0.00) -0.20(0.00)

-1.80(9.71) 0.24(12.24) 0.39(10.44) -0.03(24.03) -0.94(15.63) -0.52(15.27) -0.15(13.52)

(a12δ211) (δ111δ211) (δ122δ211) (δ112δ211) s2

-0.2 0.2 1.7 1

-0.20(0.00) 0.20(0.00) 1.70(0.00) 1.00(0.00) 0.00(0.00)

-0.18(9.39) 0.55(24.51) 1.70(18.94) 1.35(16.46) 282.45(12.83)

-0.20(0.00) 0.20(0.00) 1.70(0.00) 1.00(0.00) 0.00(0.00)

-0.44(11.64) 0.07(27.44) 2.11(18.14) 0.98(17.29) 282.81(12.74)
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10.03, G22 = 50.08, G33 = 41.55, G12 = 29.97, G13 =
35.81 and G23 = 45.77, which correspond to μ = 41.55,
a11 = -5.74, a12 = 4.21, δ111 = -20.04, δ122 = 0.09 and
δ112 = -10.06 as the true parameters in the allele coding
one-locus model. In both cases, the least square estima-
tors of the one-locus model parameters are unbiased
estimators of the true parameters. Note that, unlike the
one-locus model in the previous example, the LSE of
the model parameters are no longer exactly the same as
the true values even when no environmental noises are
involved. The reason is that the expected genotypic
values at locus 1 depend on not only the genotypic
values but also the joint genotype frequencies in the
sample, which may change slightly from sample to sam-
ple due to the sampling variation.
For the two-locus model without epistases, it cannot

provide unbiased estimators for all the genotypic values
because of the model mis-specification. However, the LSE
of its parameters associated with locus 1 are similar to
the ones in the one-locus model at locus 1. In fact, as we
know from the linear model theory, the true values of its
parameters associated with locus 1 are the same as the
ones defined in the one-locus model at locus 1 when the
two loci are in LE. Under LD, the least square estimators
of its model parameters associated with locus 1 could be
biased, and the biasness depends on the LD setting.
The two-locus model with epistases gives a full re-

parameterization of the 18 genotypic values. Therefore,
when no environmental noises are involved, the LSE of
its model parameters are exactly the same as their true
values for each random sample regardless of the LD
between the two loci. It has to be pointed out that this
phenomenon holds only when the random sample con-
tains all the 18 possible genotypes. In our simulation
setting, the frequencies for certain genotypes such as
A1A1B1B1, A1A3B1B1 and A2A2B1B1 are pretty small. As
the result, we occasionally (about 22-23% of the 1000
random samples) may obtain a random sample that has
no individuals carrying certain genotypes. In this case,
the design matrix in the fully parameterized model
becomes singular and the LSE of the model parameters
are no longer unique. To keep our illustration of the
model properties simple, we excluded those random
samples in fitting the two-locus model with epistases
(reduced models are less likely to have singular design
matrices). Other techniques such as ridge regression
could be applied to handle those skewed random sam-
ples. In the presence of environmental noises, it is also
noted that the LSE for some of its model parameters
such as δ111, (δ111a21) and (δ111δ211) have much larger
SD than the LSE of other parameters. This is due to the
low frequencies of genotypes A1A1B1B1, A1A3B1B1 and

A2A2B1B1. As a random sample has few individuals car-
rying these genotypes, it has reduced accuracy in esti-
mation of their corresponding true genotypic values
to which the model parameters δ111, (δ111a21) and
(δ111δ211) are related.

Discussion
In this study, we introduced three genotype coding
schemes to build F∞ models for multi-allele markers.
The relationship between the model parameters and the
expected genotypic values were established in some fully
parameterized as well as reduced one-locus and two-
locus F∞ models. Our results showed that the relation-
ships between the model parameters and the expected
genotypic values could become more intricate in the
multi-allele case than that in the biallelic case, even
though the extension of the coding schemes from bialle-
lic to multiple alleles appears straightforward. We built
the relationships between different model parameters
mainly through their coding variables of marker geno-
types, which simplified the tedious derivation process
comparing with the classical matrix approach. The F∞
models we proposed can be used directly for association
testing of multi-allele markers and their possible interac-
tions with quantitative traits using random unrelated
samples. These F∞ models could also be applied to test
for the risk haplotypes and their interactions when
incorporated with the likelihood approach (e.g., [20]), or
analyze family data by combining them with the likeli-
hood to account for the transmission probability of
alleles from parents to their offspring. Although our dis-
cussion focused on genetic modeling of quantitative
traits, the results can be extended to other phenotypic
traits such as binary outcomes in case-control studies
using logistic regression models or time-to-event data
using the Cox proportional hazard models.
Throughout the paper, we assumed that all the possi-

ble genotypes are available from the sampled individuals.
If certain genotypes are not observable, then the
expected genotypic values on these genotypes will not
be estimable by themselves, which could change the
interpretation of the model parameters as well. The
models we have presented can also be modified to han-
dle the situation when some individuals have missing
genotypes at certain marker loci. When the missing gen-
otypes at a marker locus have both alleles missing at the
same time, we can simply introduce an indicator vari-
able to code for the missing genotype at the marker.
The regression coefficient of this indicator variable for
this missing genotype can usually be interpreted as the
difference between the expected genotypic value with
missing genotype at the marker locus and the intercept
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of the model, while the other regression coefficients
would keep the same interpretation as before.
It has to be pointed out that the relationships

between the model parameters and the expected geno-
typic values are based on the assumption that the
models can correctly specify the structure of the
expected genotypic values. When a fully parameterized
model is applied, the definition of its model para-
meters do not depend on the allele frequencies, HWD
among alleles within a locus, or LD structure between
alleles at different loci. In fitting a reduced model,
however, a simplified model may not be totally correct
in modeling all the expected genotypic values. In this
case, depending on how accurate the simplified model
is on approximating the expected genotypic values, the
allele frequencies, HWD and LD structure between
marker alleles could affect the definition and LSE of its
model parameters. In the presence of environmental
variation on the phenotypic values, regardless of
whether a fully parameterized or reduced model is
applied, the allele frequencies, HWD or LD between
marker alleles may affect the LSE of the model para-
meters and the power in detection of the associated
marker alleles as shown in our simulation studies.
All the models we have discussed so far are F∞ mod-

els. Statistically, these F∞ models are fixed-effect models
which focus on modeling the expected genotypic values
directly. On the other hand, the Fisher’s ANOVA mod-
els, which target on evaluation of the variations contrib-
uted by various allelic effects and interactions, can be
treated as random-effect models (see [21]) in which the
expected genotypic values come from a discrete random
variable G(g) = E(G|g) with its limited genotypes g being
randomly sampled from a study population. Both the F∞
and the Fisher type models form basis in the analysis of
quantitative traits and they provide different perspectives
in assessing the genetic effects of QTL and markers. For
biallelic markers, we proposed in [10] a ‘mean corrected’
Fisher (mc-Fisher) model for decomposition of the gen-
otypic variances. In the multi-allele marker case, we can
also construct similar mc-Fisher models by applying
mean corrections on all the indicator variables of the
paternal and maternal alleles in the allele coding F∞
models. For example, based on the allele coding model
(4), we can construct its corresponding mc-Fisher model
by replacing the coding variables wj and vjk with
w̄j = wj − 2pj and v̄jk = (z1j − pj)(z2k − pk) = vjk − (pjwk + pkwj)

/
2 + pjpk,

respectively; where pj is the allele frequency of Aj. Then
the genetic additive and dominant variance components
VA and VD of G(g), which are defined as variations con-
tributed by the additive allelic effect and allelic interac-
tions respectively, can be estimated from w̄j’s and v̄jk’s

separately. As pointed out in [10], the mc-Fisher model
can provide an orthogonal partition of V(G) into the
sum of VA and VD under Hardy-Weinberg equilibrium,
and it can be fitted through the standard least-square
regression approach. Similar to the F∞ models, the defi-
nition of the model parameters in such a mc-Fisher
model also depend on the choice of the reference allele
‘Am’. But the estimates of the additive and dominant
variance components VA and VD do not depend on such
a choice. In addition, when a fully parameterized model
is applied, the mc-Fisher model is equivalent to its origi-
nal F∞ model in modeling the expected genotypic
values. Therefore, both models have the same residual
variance and the F-statistics in testing for the overall
effect of the marker locus. When reduced models are
applied, the mc-Fisher model could become inequivalent
to its original F∞ model especially when allelic interac-
tions are involved.
Of the three coding schemes that we have discussed,

the F∞ coding is perhaps the most widely used in cur-
rent genetic association studies of quantitative traits.
From what we have shown, the three coding schemes
can essentially lead to equivalent models and have the
same power in detection of various genetic effects. In
practice, just like the various existing coding schemes
such as ‘Reference’, ‘GLM’ and ‘Effect’ that are com-
monly used in the analysis of categorical covariates
[22], we usually only need to adopt one specific coding
scheme in building the regression models. Which cod-
ing scheme should be applied depends on how conve-
nient it can provide the statistical inferences on the
parameters of our research interests. In general, the
allele coding models can provide direct estimates of
certain substitution effects of alleles and allelic interac-
tions and, in the two-locus case, allele coding models
are perhaps the easiest among the three codings in
building the relationships between their model para-
meters and the expected genotypic values. Besides,
they are generically linked to the genetic variance com-
ponents as we have shown above. On the other hand,
the allele-count coding models are attractive in that it
often leads to simple comparisons among the three
genotypic groups with 0, 1 or 2 copies of a particular
allele. In the two-locus case, the allele-count coding
models also have the definition of their model para-
meters remain as simple as (if not simpler than) that
in the allele coding models even in the presence of
epistases. Meanwhile, both the allele and allele-count
coding show an advantage that their lower-order main
effects in the models can keep the same interpretation
regardless of whether there are epistases involved in
the model or not. In contrast, the F∞ coding models
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may have the definition of their lower-order main
effects vary depending on the absence or presence of
epistases in the models. Even though the one-locus F∞
coding model parameters are closely related to the
additive and dominance effects, the two-locus F∞ cod-
ing model parameters including the lower-order main
effects have more complicated interpretations than
that in the allele or allele-count coding models espe-
cially when epistases are involved.
The coding of marker genotypes are not limited to

the three allele-based coding schemes that we have
discussed. Application of a coding scheme could also
be subject to the number of individuals available in
each genotype group. For example, under the model
framework (7), the allele coding scheme typically cre-
ates wj(g), vj(g) for each allele type Aj, j = 1, ..., m.
When the group of a homozygous genotype AjAj

includes very few individuals for a particular allele Aj,
we may want to combine this genotypic group with
another genotype such as the one carrying one copy of
the allele Aj. Then we can replace the original wj(g)
and vj(g) by an allele presence-absence coding variable
dj(g) for this specific allele Aj while keeping two coding
variables wk(g), vk(g) for other alleles Ak, which leads to
a mixed use of the allele coding and this allele pre-
sence-absence coding variable. In certain situations,
the genotype-based coding could also be very useful as
it can provide direct tests on pair-wise comparisons of
certain genotypic values. Comparing with the geno-
type-based coding, the allele coding has the advantage
of further dissecting the genetic effects into the allelic
effects and allelic interactions, which allow us to spe-
cify reduced models with varying degrees of interac-
tions among the main allelic effects - a useful tool in
the model building procedures. Given a fixed coding,
the likelihood ratio test can be applied to compare a
full model with its reduced models. Statistical model
selection tools such as AIC and BIC criteria, which
provide a balance between the goodness of model fit-
ting to the data and the complexity of the models in
terms of the number of parameters, could also be used
to compare some non-nested reduced models or fra-
meworks. The current study focuses on establishing
the theoretical relationships between the model para-
meters and the expected genotypic values according to
different coding schemes under various model frame-
works. A power comparison of some reduced models
from different coding schemes under various scenarios
with respect to the allele frequencies and possible
HWD or LDs between marker alleles is beyond the
scope of this study and might be worth of further
exploration.

Conclusions
In summary, we introduced three allele-based coding
schemes to construct F∞ models for association test-
ing of multi-allele genetic markers with quantitative
traits. Depending upon whether certain allelic effects
or comparisons between genotypic groups are of the
main research interest, investigators may adopt one of
the three allele-based codings (i.e., allele, F∞ or allele-
count), or perhaps a genotype-based coding in build-
ing an F∞ model. Based on the F∞ model from a given
coding scheme, standard regression model fitting
tools can then be applied to estimate or test for var-
ious genetic effects. Understanding the definition of
model parameters from different coding schemes
under various model frameworks are crucial for con-
structing appropriate testing hypothesis and making
the correct statistical inferences in the genetic asso-
ciation studies.

Appendices
A. Estimability of parameters in model (8)
Let G = (G(g1), ...,G(gN))

T denote a vector of the
expected genotypic values of all the individuals in the
sample, and β∗ = (μ∗,α∗

1, . . . ,α
∗
m, δ

∗
1, . . . , δ

∗
m) be a vec-

tor of all the model parameters. We can rewrite model
(8) in a matrix form as G = Xb* +e, where e = (e1, ...,
eN) and the design matrix X is

X = [1NW1W2 · · · WmV1V2 · · · Vm] (18)

with Wj = (wj(g1), ..., wj(gN))
T and Vj = (vj(g1), ..., vj(gN))

T

for j = 1, ..., m. As every individual carries two and only
two alleles at the locus, we have

∑m
j=1 Wj = 2 · 1N, which

means that the first (m+1) column vectors 1N, W1, W2,
..., Wm of the design matrix X are linearly dependent. So,
rank(X) ≤ 2m; i.e., X is not a full column rank matrix.
From (7), we have Gjk = μ∗ + α∗

j + α∗
k for j ≠ k, and

Gjj = μ∗ + 2α∗
j + δ∗

j . If we write G0 = (G12, G13, ..., G1m,
G23, ..., GL-1, L, G11, ..., Gmm)

T, then this model gives

G0 = X0β
∗ =

[
1s XA 0s×m

1m 2 · Im×m Im×m

]
β∗

where s = m(m - 1)/2, and

XA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 . . . 0
1 0 1 . . . 0
...
...
...
. . .

...
1 0 0 . . . 1
0 1 1 . . . 0
...
...
...

...
0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Assume that the genotypes of the sampled individuals
cover all possible genotypes AjAk for j, k = 1, ..., m. Then the
design matrix X includes all the row vectors of X0, which
implies that rank(X) ≥ rank(X0). It is clear that rank(X0) = m
+ rank([1s XA]), and it can be shown that rank([1s XA]) =
rank(XA) = m when m ≥ 3. Therefore, rank(X) = 2m as m ≥
3. Note that when m = 2, we have s = 1 and rank(X) = 3.
From the linear models theory, we know that for a

vector l = (l0, ..., l2m)T Î R2m+1, a linear function lTb*
of b* is estimable if and only if λ⊥N (X), where
N (X) = {c ∈ R2m+1|Xc = 0} is the null space of the
design matrix X. It is also known that
N (X) ⊕ R(X) = R2m+1, where R(X) is a linear space
generated by the row vectors of X. Hence, we have
rank(N (X)) = (2m + 1) − rank(R(X)) = 1. Note that
c = (2,−1′

m, 0
′
m)

′ ∈ N (X) due to the linear dependency
among the column vectors 1N, W1, W2, ..., Wm in the
design matrix X. Therefore, for a vector l = (l0, l1, ...,
l2m)T Î R2m+1, the linear function lTb* is estimable if
and only if l ⊥ c, or equivalently, 2λ0 =

∑m
j=1 λj. As a

result, we know that in model (8) the functions of
model parameters Gjk = μ∗ + α∗

j + α∗
k for j ≠ k, and

Gjj = μ∗ + 2α∗
j + δ∗

j for j = 1, ..., m are estimable, and the

parameters δ∗
j = Gjj − (μ∗ + 2α∗

j ) = Gjj + Gkl − Gjl − Gjk

as j ≠ k, l and k ≠ l (or in abbreviation, j ≠ k, ≠ l) for j =
1, ..., m are also estimable. But the parameters μ* and
α∗
1, . . . ,α

∗
m themselves are not estimable.

B. Estimability of parameters in model (9)
For model (9), we have its design matrix

W = [1NW1W2 · · · Wm−1V1V2 · · · Vm]

where Wj = (wj(g1), ..., wj(gN))
T and Vj = (vj(g1), ..., vj

(gN))
T for j = 1, ..., m. It can be shown that the W and the

design matrix X defined in (16) for model (8) have the
following relationship W = XT or X = WST, where

T =

⎡
⎣ Im 0
01×m 01×m

0 Im

⎤
⎦

and

ST =

⎡
⎣ Im d 0m×m

01×m 0 01×m

0m×m 0m×1 Im

⎤
⎦

with d = (2, -1, ..., -1)’ Î Rm. Let b = (μ, a1, ..., am-1,
δ1, ..., δm). Therefore, as (8) and (9) are two equivalent
models, we have G = Xb* = WSTb* = Wb, which yields

β =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ

α1
...

αm−1

δ1
...

δm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= STβ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ∗ + 2α∗
m

α∗
1 − α∗

m
...

α∗
m−1 − α∗

m
δ∗
1
...

δ∗
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From this relationship, we have δj = δ∗
j , j = 1, ..., m,

which are estimable as shown in Appendix A. Besides,
the intercept μ = μ∗ + 2α∗

m = Gjm + Gkm − Gjk and
αj = α∗

j − α∗
m = Gjk − Gkm, k ≠ j, j = 1, ..., m - 1, are also

estimable.

C. Relationships for fully parameterized two-locus models
(C.1) Relationships between parameters of the fully
parameterized two-locus model (13) and the expected
genotypic values are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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μ = Gm1m1m2m2

α1j = Gjm1m2m2 − μ = Gjm1m2m2 − Gm1m1m2m2

α2r = Gm1m1rm2 − μ = Gm1m1rm2 − Gm1m1m2m2

δ1jk = Gjkm2m2 − α1j − α1k − μ

= Gjkm2m2 − (Gjm1m2m2 + Gm1km2m2 )
+Gm1m1m2m2

δ2rs = Gm1m1rs − α2r − α2s − μ

= Gm1m1rs − (Gm1m1rm2 + Gm1m1sm2 )
+Gm1m1m2m2

(α1jα2r) = Gjm1rm2 − α1j − α2r − μ

= Gjm1rm2 − (Gjm1m2m2 + Gm1m1rm2 )
+Gm1m1m2m2

(δ1jkα2r) = Gjkrm2 − α1j − α1k − δ1jk
−α2r − (α1jα2r) − (α1kα2r) − μ

= Gjkrm2 − (Gjkm2m2 + Gjm1rm2

+Gkm1rm2 ) + (Gjm1m2m2 + Gkm1m2m2

+Gm1m1rm2 ) − Gm1m1m2m2

(α1jδ2rs) = Gjm1rs − α2r − α2s − δ2rs
−α1j − (α1jα2r) − (α1jα2s) − μ

= Gjm1rs − (Gm1m1rs + Gjm1rm2

+Gjm1sm2 ) + (Gjm1m2m2 + Gm1m1rm2

+Gm1m1sm2 ) − Gm1m1m1m2

(δ1jkδ2rs) = Gjkrs − α1j − α1k − δ1jk − α2r − α2s

−δ2rs − (α1jα2r) − (α1jα2s) − (α1kα2r)
−(α1kα2s) − (α1jδ2rs) − (α1kδ2rs)
−(δ1jkα2r) − (δ1jkα2s) − μ

= Gjkrs − (Gjm1rs + Gkm1rs + Gjkrm2

+Gjksm2 ) + (Gjkm2m2 + Gjm1rm2

+Gkm1rm2 + Gjm1sm2 + Gkm1sm2

+Gm1m1rs) − (Gjm1m2m2 + Gkm1m2m2

+Gm1m1rm2 + Gm1m1sm2 ) + Gm1m1m2m2

for j, k = 1, ..., m1 - 1; r, s = 1, ..., m2 - 1 and j ≥ k, r ≤ s.
(C.2) Relationships between parameters of the fully

parameterized two-locus model (14) and the expected
genotypic values are
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τ = μ +
∑m1−1

j=1 (α1j +
δ1jj
2 ) +

∑m2−1
r=1 (α2r +

δ2rr
2 )

+
∑m1−1

j=1

∑m2−1
r=1 [(α1jα2r) +

(α1jδ2rr)
2

+ (δ1jjα2r)
2 + (δ1jjδ2rr)

4 ]
= 1

4

∑m1−1
j=1

∑m2−1
r=1 Gjjrr +

(3−m2)
4

∑m1−1
j=1 Gjjm2m2

+ (3−m1)
4

∑m2−1
r=1 Gm1m1rr +

(3−m1)(3−m2)
4 Gm1m1m2m2

a1j = α1j +
δ1jj
2 +

∑m2−1
r=1 [(α1jα2r) +

(α1jδ2rr)
2

+ (δ1jjα2r)
2 + (δ1jjδ2rr)

4 ]
= 1

4

∑m2−1
r=1 (Gjjrr − Gm1m1rr)

+ (3−m2)
4 (Gjjm2m2 − Gm1m1m2m2)

a2r = α2r +
δ2rr
2 +

∑m1−1
j=1 [(α1jα2r) +

(α1jδ2rr)
2

+ (δ1jjα2r)
2 + (δ1jjδ2rr)

4 ]
= 1

4

∑m1−1
j=1 (Gjjrr − Gjjm2m2)

+ (3−m1)
4 (Gm1m1rr − Gm1m1m2m2 )

d1jj = − δ1jj
2 − ∑m2−1

r=1 [ (δ1jjα2r)
2 + (δ1jjδ2rr)

4 ]
= − 1

4

∑m2−1
r=1 (Gjjrr − 2Gjm1rr + Gm1m1rr)

− (3−m2)
4 (Gjjm2m2 − 2Gjm1m2m2 + Gm1m1m2m2)

d2rr = − δ2rr
2 − ∑m1−1

j=1 [ (α1jδ2rr)
2 + (δ1jjδ2rr)

4 ]
= − 1

4

∑m1−1
j=1 (Gjjrr − 2Gjjrm1 + Gjjm2m2 )

− (3−m1)
4 (Gm1m1rr − 2Gm1m1rm2 + Gm1m1m2m2 )

d1jk = δ1jk +
∑m2−1

r=1 [(δ1jkα2r) +
(δ1jkδ2rr)

2 ]
= 1

2

∑m2−1
r=1 (Gjkrr − Gjm1rr − Gkm1rr + Gm1m1rr)

+ (3−m2)
4 (Gjkm2m2 − Gjm1m2m2 − Gkm1m2m2

+Gm1m1m2m2 ), j < k

d2rs = δ2rs +
∑m1−1

j=1 [(α1jδ2rs) +
(δ1jjδ2rr)

2 ]
= 1

2

∑m1−1
j=1 (Gjjrs − Gjjrm2 − Gjjsm2 + Gjjm2m2)

+ (3−m1)
4 (Gm1m1rr − Gm1m1rm2 − Gm1m1sm2

+Gm1m1m2m2 ), r < s

(a1ja2r) = (α1jα2r) +
(α1jδ2rr)

2 + (δ1jjα2r)
2 + (δ1jjδ2rr)

4
= 1

4 (Gjjrr − Gm1m1rr − Gjjm2m2 + Gm1m1m2m2 )

(a1jd2rr) = − (α1jδ2rr)
2 − (δ1jjδ2rr)

4
= − 1

4(Gjjrr − 2Gjjrm2 + Gjjm2m2)

+1
4(Gm1m1rr − 2Gm1m1rm2 + Gm1m1m2m2)

(d1jja2r) = − (δ1jjα2r)
2 − (δ1jjδ2rr)

4

= − 1
4(Gjjrr − 2Gjm1rr + Gm1m1rr)

+1
4(Gjjm2m2 − 2Gjm1m2m2 + Gm1m1m2m2)

(a1jd2rs) = (α1jδ2rs) +
(δ1jjδ2rs)

2

= 1
2(Gjjrs − Gjjrm2 − Gjjsm2 + Gjjm2m2 )

− 1
2(Gm1m1rs − Gm1m1rm2 − Gm1m1sm2

+Gm1m1m2m2), r < s

(d1jka2r) = (δ1jkα2r) +
(δ1jjδ2rr)

2

= 1
2(Gjkrr − Gjm1rr − Gkm1rr + Gm1m1rr)

− 1
2(Gjkm2m2 − Gjm1m2m2 − Gkm1m2m2

+Gm1m1m2m2), j < k

(d1jjd2rs) = − (δ1jjδ2rs)
2 , r < s

(d1jkd2rr) = − (δ1jkδ2rr)
2 , j < k

(d1jjd2rr) =
(δ1jjδ2rr)

4

(d1jkd2rs) = (δ1jkδ2rs), j < k, r < s

for j, k = 1, ..., m1 - 1 and r, s = 1, ..., m2 - 1, where
the relationships between the parameters of model (14)
and model (13) are built based on the equivalency

between the two models. The relationships between the
parameters of model (14) and the expected genotypic
values can then be derived by replacing the parameters
of model (13) with the expected genotypic values from
the previous established results in (C.1).
(C.3) Relationships between parameters of the fully

parameterized two-locus model (15) and the expected
genotypic values are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π0 = μ = Gm1m1m2m2

π1j = α1j = Gjm1m2m2 − Gm1m1m2m2

π2r = α2r = Gm1m1rm2 − Gm1m1m2m2

η1jj = 2α1j + δ1jj = Gjjm2m2 − Gm1m1m2m2

η2rr = 2α2r + δ2rr = Gm1m1rr − Gm1m1m2m2

η1jk = δ1jk, j < k; η2rs = δ2rs, r < s
(π1jπ2r) = (α1jα2r) = Gjm1rm2

−(Gjm1m2m2 + Gm1m1rm2 ) + Gm1m1m2m2

(π1jη2rr) = 2(α1jα2r) + (α1jδ2rr) = Gjm1rr

−(Gjm1m2m2 + Gm1m1rr) + Gm1m1m2m2

(π1jη2rs) = (α1jδ2rs), r < s
(η1jjπ2r) = 2(α1jα2r) + (δ1jjα2r) = Gjjrm2

−(Gjjm2m2 + Gm1m1rm2 ) + Gm1m1m2m2

(η1jkπ2r) = (δ1jkα2r), j < k
(η1jjη2rr) = 4(α1jα2r) + 2(α1jδ2rr)

+2(δ1jjα2r) + (δ1jjδ2rr)
= Gjjrr − (Gjjm2m2 + Gm1m1rr)

+Gm1m1m2m2

(η1jjη2rs) = 2(α1jδ2rs) + (δ1jjδ2rs)
= Gjjrs − (Gm1m1rs + Gjjrm2 + Gjjsm2 )

+(Gm1m1rm2 + Gm1m1sm2 + Gjjm2m2 )
−Gm1m1m2m2 , r < s

(η1jkη2rr) = 2(δ1jkα2r) + (δ1jkδ2rr)
= Gjkrr − (Gjkm2m2 + Gjm1rr + Gkm1rr)

+(Gjm1m2m2 + Gkm1m2m2 + Gm1m1rr)
−Gm1m1m2m2 , j < k

(η1jkη2rs) = (δ1jkδ2rs), j < k, r < s

for j, k = 1, ..., m1 - 1 and r, s = 1, ..., m2 - 1, where
the relationships between the parameters of model (15)
and model (13) are built based on the equivalency
between the two models. The relationships between the
parameters of model (15) and the expected genotypic
values are then derived by replacing the parameters of
model (13) with the expected genotypic values from the
previous established results in (C.1).

Authors’ contributions
TW planned the study, conducted the derivation and wrote the manuscript.

Received: 31 May 2011 Accepted: 21 September 2011
Published: 21 September 2011

References
1. Fisher RA: The correlation between relatives on the supposition of

Mendelian inheritance. Trans Roy Soc Edinburgh 1918, 52:399-433.

Wang BMC Genetics 2011, 12:82
http://www.biomedcentral.com/1471-2156/12/82

Page 20 of 21



2. Cockerham CC: An extension of the concept of partitioning hereditary
variance for analysis of covariances among relatives when epistasis is
present. Genetics 1954, 39:859-882.

3. Cockerham CC: Estimation of genetic variances. In Statistical Genetics and
Plant Breeding Natl Acad Sci Natl Res. Edited by: Henson WD, Robinson HF.
Council publ No. 982. Washington, D.C.; 1963:53-94.

4. Weir BS, Cockerham C: Two-locus theory in quantitative genetics. In
Proceedings of the international conference on quantitative genetics. Edited
by: Pollack EBT Kempthorne O. Iowa State University Press; 1977:247-269.

5. Kempthorne O: An introduction to Genetic Statistics New Haven: Iowa State
University Press, Ames; 1969.

6. Wang T, Zeng ZB: Models and partition of variance for quantitative trait
loci with epistasis and linkage disequilibrium. BMC Genetics 2006, 7:Article
9.

7. Hansen TF, Wagner GP: Modeling genetic architecture: a multilinear
theory of gene interaction. Theor Popul Biol 2001, 59:61-86.

8. Alvarez-Castro JM, Carlborg O: A unified model for functional and
statistical epistasis and its application in quantitative trait Loci analysis.
Genetics 2007, 176(2):1151-1167.

9. Zeng ZB, Wang T, Zou W: Modeling quantitative trait Loci and
interpretation of models. Genetics 2005, 169(3):1711-1725.

10. Wang T, Zeng ZB: Contribution of genetic effects to genetic variance
components with epistasis and linkage disequilibrium. BMC Genetics
2009, 10:Article 52.

11. Yang RC, Alvarez-Castro JM: Functional and statistical genetic effects with
multiple alleles. Current Topics in Genetics 2008, 3:49-62.

12. Lynch M, Walsh B: Genetics and Analysis of Quantitative Traits Sunderland,
MA: Sinauer; 1998.

13. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG:
Testing association of statistically inferred haplotypes with discrete and
continuous traits in samples of unrelated individuals. Hum Hered 2002,
53(2):79-91.

14. Searle SR: Linear Models John Wiley & Sons Inc., New York, NY; 1971.
15. Ravishanker N, Dey DK: A First Course in Linear Model Theory Chapman &

Hall, CRC, Boca Raton, Florida; 2002.
16. Van Der Veen JH: Tests of non-allelic interaction and linkage for

quantitative characters in generations derived from two diploid pure
lines. Genetica 1959, 30:201-232.

17. Mather K, Jinks JL: Biometrical Genetics. 3 edition. Landon: Chapman and
Hall; 1982.

18. Falconer DS, Mackay TFC: Introduction to Quantitative Genetics. fourth
edition. Harlow, UK: Longman; 1996.

19. Hayman BI, Mather KM: The description of genetic interactions in
continuous variation. Biometrics 1955, 11:69-82.

20. Liu T, Johnson JA, Casella G, Wu R: Sequencing complex diseases with
HapMap. Genetics 2004, 168:503-511.

21. Searle SR, Casella G, McCulloch CE: Variance Components John Wiley & Sons,
NIC, Hoboken, NJ; 1992.

22. Stokes ME, Davis CS, Koch GG: Categorical Data Analysis using the SAS
System. 2 edition. SAS Institute Inc., Cary, NC; 2001.

doi:10.1186/1471-2156-12-82
Cite this article as: Wang: On coding genotypes for genetic markers
with multiple alleles in genetic association study of quantitative traits.
BMC Genetics 2011 12:82.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Wang BMC Genetics 2011, 12:82
http://www.biomedcentral.com/1471-2156/12/82

Page 21 of 21

http://www.ncbi.nlm.nih.gov/pubmed/17247525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17247525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17247525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11243929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11243929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17409082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17409082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15654105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15654105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12037407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12037407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13841036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13841036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13841036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15454560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15454560?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Fully parameterized one-locus models
	Reduced one-locus models
	Extension to two-locus models

	Simulation Examples
	Discussion
	Conclusions
	Appendices
	A. Estimability of parameters in model (8)
	B. Estimability of parameters in model (9)
	C. Relationships for fully parameterized two-locus models

	Authors' contributions
	References

