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Abstract

Background: Map-based cloning of quantitative trait loci (QTLs) in polyploidy crop species remains a challenge
due to the complexity of their genome structures. QTLs for seed weight in B. napus have been identified, but
information on candidate genes for identified QTLs of this important trait is still rare.

Results: In this study, a whole genome genetic linkage map for B. napus was constructed using simple sequence
repeat (SSR) markers that covered a genetic distance of 2,126.4 cM with an average distance of 5.36 cM between
markers. A procedure was developed to establish colinearity of SSR loci on B. napus with its two progenitor diploid
species B. rapa and B. oleracea through extensive bioinformatics analysis. With the aid of B. rapa and B. oleracea
genome sequences, the 421 homologous colinear loci deduced from the SSR loci of B. napus were shown to
correspond to 398 homologous loci in Arabidopsis thaliana. Through comparative mapping of Arabidopsis and the
three Brassica species, 227 homologous genes for seed size/weight were mapped on the B. napus genetic map,
establishing the genetic bases for the important agronomic trait in this amphidiploid species. Furthermore,
12 candidate genes underlying 8 QTLs for seed weight were identified, and a gene-specific marker for BnAP2 was
developed through molecular cloning using the seed weight/size gene distribution map in B. napus.

Conclusions: Our study showed that it is feasible to identify candidate genes of QTLs using a SSR-based B. napus
genetic map through comparative mapping among Arabidopsis and B. napus and its two progenitor species B. rapa
and B. oleracea. Identification of candidate genes for seed weight in amphidiploid B. napus will accelerate the
process of isolating the mapped QTLs for this important trait, and this approach may be useful for QTL
identification of other traits of agronomic significance.
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Background
Rapeseed (Brassica napus L., AACC, 2n=38) is one of
the world’s most important oil crops and provides not
only edible oil for human diets, but also protein-rich
feed for animals and raw materials for industrial
processes such as biodiesel production. B. napus is an
amphidiploid species derived from the hybridization of
its two diploid progenitor species, B. rapa (AA, 2n=20)

and B. oleracea (CC, 2n=18) [1]. Studies have shown that
Arabidopsis thaliana, B. napus, B. rapa and B. oleracea
have a common ancestor [2-6].
Seed weight is one of the three yield components (sili-

ques per plant, seeds per silique and seed weight) of
plant productivity of rapeseed and is also related to oil
and protein content [7-9]. Extensive efforts have been
made in mapping of the QTLs for seed size/weight in
crop species [10-14], and genes governing seed size/
weight have been cloned in model plants Arabidopsis
and rice through mutant analysis and map-based cloning
[15-18]. However, molecular cloning of seed size/weight
genes in other crops, such as rapeseed, wheat and
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soybean lags behind due to the more complicated gen-
ome structures of these crops and limited availability of
genome sequence information.
Quantitative genetic analysis in B. napus showed that

seed weight has a relatively high heritability and may pri-
marily be controlled by genes with additive effects
[11,14,19-21]. Quijada et al. [22] detected three QTLs
(located on N7, N17 and N19, respectively) for seed
weight in different populations and environments, but
no common QTL was identified. Udall et al. [23] found
6, 4 and 5 QTLs of seed weight in Hua DH, SYN DH
and testcross populations, respectively, with only one
QTL (located on N14) detected in all populations and
environments. Shi et al. [21] mapped 159 QTLs of seed
weight in TN DH and RC-F2 populations across 10
environments with only one major QTL (qSW.A7-2)
identified in all environments. In our previous study
[11], 9 QTLs for seed weight in a doubled haploid (DH)
population of B. napus were identified, among which
two major QTLs, TSWA7a and TSWA7b, were stably
detected across years. Interestingly, seed weight QTLs
on A7 were repeatedly detected in other studies with
diverse genetic materials [11,14,21,24]. However, little is
known about the candidate genes for those mapped
QTLs, and so far only two genes, BnMINI3a and
BnTTG2a, were assigned as the candidate genes for
TSWA5b and TSWA5c [11]. It is thus crucial to develop
procedures that can accelerate the process of mapped-
based cloning by identification of candidate genes of
those QTLs.
Comparative mapping among related species is a

powerful tool for genetic studies by offering the possibil-
ity of transferring genomic information from well-
studied species to more genetically complicated ones.
This advantage is particularly obvious in Brassicaceae,
because Arabidpsis thaliana, as a model plant for dicots,
has completed genome sequence [25], and a wealth of
functional genomics information. Much effort has been
focused on the comparative analysis between Brassica
species and A. thaliana. Several comparative maps in
Brassicaceae have been constructed based on RFLP
markers, cDNA clones from Brassica species [2,26-32].
Other types of markers, such as IP (intron polymorph-
ism) markers from Arabidopsis [33], and gene specific
markers based on Arabidopsis sequences were also used
[34]. So far, no comparative mapping with Arabidopsis
has been conducted with genetic maps based on SSR
markers or other unknown sequence markers.
Wang et al. [32] constructed an integrated linkage

map of B. napus using mainly SSR markers with the aid
of other type of markers including RFLP, and then
attempted to identify homologous loci in Arabidopsis to
these SSR markers. However, <2% of the primer pairs
had homology in Arabidopsis, of which only 50% agreed

with those identified using the corresponding SSR clone
sequences. In such a case, it was difficult for compara-
tive studies within Brassicaceae only based on the SSR
marker primer sequences [32]. On the other hand, in a
comparative study based on 6, 5 and 6 BACs’ sequences
from B. napus, B. rapa, and B. oleracea, respectively, it
was found that most homologous loci in A and C gen-
omes of B. napus, B. rapa and B. oleracea have colinear
relationship with the same loci in Arabidopsis [35]. This
finding implies that using the SSR markers homologous
loci information in the B. rapa and B. oleracea genomes
may bridge the comparative analysis of B. napus and
Arabidopsis.
In order to transfer the gene information effectively

from Arabidopsis to B. napus, we developed a procedure
for comparative mapping among three Brassica species
(B. napus, B. rapa and B. oleracea) and Arabidopsis
based on a SSR linkage map in B. napus. By making use
of the map, we identified the putative genes involved in
seed weight/size regulation in B. rapa and B. oleracea,
and mapped these genes onto the SSR-based B. napus
genetic map. Such a seed weight/size gene distribution
map will allow us to pinpoint candidate genes under-
lying seed weight QTLs, thus facilitating the genetic and
molecular studies of seed weight control.

Methods
Plant materials and phenotypic evaluation
A DH population of 190 lines was produced from micro-
spore culture with a F1 cross between SW Hickory (a
spring-type B. napus variety) and JA177 (a winter-type
B. napus pure line), and named the SJ-DH population.
The population was used for genetic and QTL mapping.
Seed weight of each plant from the population was mea-
sured based on 500 fully developed seeds with three
replications. The average seed weight was converted to
1000-seed weight (TSW) for each individual plant. The
means of TSW of 10–15 plants from each plot were
used for trait evaluation of parents, F1 and SJ DH lines.
The detailed information for the production of the
population, field trials and sampling procedures for seed
weight measurement has been described previously [11].

Molecular marker, linkage map and QTL mapping
Primer sequences for SSR markers used for genetic map-
ping were described by Fan et al. [11] and the sequence
information of newly added SSR markers is provided in
Additional file 1: Table S1. Linkage analysis with all
markers was performed using MAPMAKER 3.0 [36]. A
minimum log likelihood of the odds (LOD) score of 11.0
and a maximum distance of 25 cM were used to group
loci into linkage groups (LGs). Genetic distances
between SSR loci were calculated using the Kosambi
mapping function. The nomenclature of LGs follows the
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rules proposed by the Multinational Brassica Genome
Project [37]. QTLs were detected using the composite
interval mapping (CIM) procedure with the software
QTL Cartographer V2.5 [38]. The parameters and meth-
ods for QTL mapping were described as Fan et al. [11].

Identification of homologous colinear loci in B. rapa and
B. oleracea genomes through e-PCR amplification with
SSR primers from B. napus
To align the SSR loci on each of the B. napus LGs to the
homologous loci in the B. rapa or B. oleracea genome,
electronic PCR (e-PCR) [39] was performed with the pri-
mers of the SSR markers mapped on the B. napus LGs
and the genomic sequences of B. rapa (version 1.1)
[6,40] and B. oleracea (version 2011-06-30) [41] as tem-
plates. The parameters for e-PCR were set to allow three
mismatches and one gap for a given primer pair. Amplicons
produced from the e-PCR then were analyzed to determine
their colinear relationship between the B. napus LGs and
the chromosomes of B. rapa/B. oleracea.
An amplicon is regarded as a putative homologous

colinear locus on the A- (B. rapa) or C- (B. oleracea) gen-
ome to the locus defined by the SSR marker used for the
amplification on a particular B. napus LG. A homologous
colinear locus was determined when only three or more
amplicons on a same chromosome of B. rapa/ B. oleracea
could be generated with the SSR primers from a single LG
of B. napus. Such a criterion would allow to reduce the
non-specific alignment among a LG in the genome of B.
rapa or B. oleracea, and to determine the orientation of a
linear fragment, which is required to establish the corre-
sponding linear relationship between a B. napus LG and a
B. rapa/B. oleracea chromosome.
To facilitate the process of identifying homologous

colinear loci, a Perl script called e-PCRmap (Additional
file 2) was written to analyze the results of e-PCR using
the following formula:

Mxy ¼
Xn

k¼1

Lyk

where L is the variable describing the status of e-PCR
amplification, while M is the number of markers that fall
onto the chromosomes of B. rapa and B. oleracea (with
successful amplification), x is the LG of B. napus, and y
is the chromosome of B. rapa and B. oleracea, k is the
marker index of each LG, and n is the markers number
of each LG. When a marker (k) on a LG (x) has one or
more amplifications on a particular chromosome (y), Lyk
is assigned 1, otherwise Lyk assigned 0. The formula cal-
culates how many possible amplicons are produced with
the primers for the SSR markers in a particular LG.
The script generates a list of possible homologous

colinear loci on the chromosomes of B. rapa or B.

oleracea for each linkage group of B. napus, the order of
the homologous colinear loci were the same to SSR loci
distribution on the LG. When a marker had multiple
amplification loci on a same chromosome, the accurate
position for a particular locus was determined manually
by referring to the physical positions of its upstream and
downstream amplicons.

Mapping Arabidopsis homologous loci onto B. napus
genome
The Perl script described above was used to extract the
sequences of effective amplicons in the B. rapa and B.
oleracea genomes. The amplicons’ sequences were used
as queries in searching for Arabidopsis homologues
using the BLASTn program [42] against TAIR10 [43]
with an E-value of 1.0 as an initial identification of hom-
ologous loci in Arabidopsis. The less stringent E-value
could allow more homologous loci included for the
identification of conserved blocks.
The positions and gene loci of best-hits in Arabidopsis

genome sequences database were collected and com-
paratively mapped onto the B. napus LGs. Identification
of the conserved Arabidopsis genomic blocks [5] on the
B. napus LGs was performed essentially as described by
Parkin et al. [30]. A conserved block contained a mini-
mum of three mapped SSR loci with at least two hom-
ologous loci from one of the 24 defined Arabidopsis
bocks [5] every 10 cM in the B. napus genetic map.

Identification of putative seed size/weight genes in B.
napus
To identify and locate the putative seed size/weight genes
in B. napus, the homologous sequences of seed size/
weight genes in the databases of B. rapa and B. oleracea
[40,41] were first searched with the BLASTn [42] program
(E value <1E-20 when using Arabidopsis seed size genes as
query, and E value <1E-10 with the genes from other crops
as query). The resulting sequences from the search were
firstly mapped onto the chromosomes of B. rapa or B.
oleracea and then placed on the B. napus LGs based on
the homologous colinear relationships between B. napus
and B. rapa/B. oleracea.

Gene cloning
Standard molecular cloning procedures [44] were
followed to isolate the homologous genes of Arabidopsis
in the parental lines of the SJ DH population. The
genomic fragments corresponding to the AtAP2 gene
were amplified using the primer pairs of AP2F (5'-
ATGTGGGATCTAAACGACTCACCA-3') and AP2R (5'-
TCAAGAAGGTCTCATGAGAGAAGG-3'). The PCR
products from the parental lines were sequenced by the
BigDye Terminator Cycle Sequencing v3.1 (Applied Bio-
systems, Foster City, CA, USA), and the coding sequences
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Figure 1 (See legend on next page.)
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were predicted with the software SEQUENCHER 4.1.2
(Gene Codes Corporation, Ann Arbor, MI, USA).

Results
Construction of the genetic linkage map and mapping of
the QTLs for seed weight
Previously, we constructed a genetic map with 297 SSR
markers for the SJ DH population [11]. In the present
study, we expanded the SSR markers to 361 and re-
constructed the map. In total, 397 SSR loci and 6 gene-
specific markers were located to the new genetic map
with 19 linkage groups (LGs). The markers covered a
genetic distance of 2,126.4 cM (the previous map was
2,011.1 cM) with an average distance of 5.36 cM (the
previous map was 6.15 cM) between markers (Figures 1,
2; Additional files 3, 4, 5 and 6: Figure S1-S4; Additional
file 1: Table S1). The LGs corresponded to the 19 chro-
mosomes of B. napus including A1-A10 (A genome) and
C1-C9 (C genome) as determined by shared SSR mar-
kers in public genetic maps [37]. All SSR markers were
evenly distributed across the whole genome of B. napus
with 199 and 198 SSR loci on genome A and C, respect-
ively (Table 1).
With the newly integrated map, the QTLs for TSW in

the SJ DH population were re-scanned. A total of 12
QTLs of TSW were identified on 7 LGs (Additional file
7: Table S2), including three previously unidentified
QTLs on LG C2 were detected in the year 2007, due to
more molecular markers now available on the integrated
map, which resulted in a higher density and better reso-
lution in identification of subtle changes caused by geno-
typic effects. The distribution and effect of other QTLs,
including two major QTLs (TSWA7a and TSWA7b)
remained largely unchanged (Additional file 7: Table S2).

Comparative mapping of B. napus and Arabidopsis
mediated with B. rapa and B. oleracea genome sequences
With the primers (see Additional file 1: Table S1 for pri-
mer sequences) of the SSR markers mapped on the B.
napus LGs, electronic-PCR (e-PCR) was performed
using the genome sequence of B. rapa or B. oleracea as
templates to obtain fragments amplified in respective
genomes (amplicons). A computer program (e-PCRmap)
was developed to operate the e-PCR process. In total,

945 amplified loci were obtained in the B. rapa and B.
oleracea genomes with the primer sequences of 385
SSRs mapped on the SJ DH linkage map (Table 1 and
Additional file 1: Table S1). From these analyses, 421
homologous colinear loci (amplicons that can be matched
onto corresponding B. napus LGs) were identified
(Table 1). Due to the highly colinearity between the A-
and C- genome in B. napus, a SSR locus on a particular
LG on B. napus may produce amplicons in both the B.
rapa and B. oleracea genomes (Table 1; Additional files 3,
4, 5 and 6: Figure S1-S4).
Colinearity analysis between the B. napus LGs and the

B. rapa/B. oleracea chromosomes showed the following
three characteristics. First, some of B. napus LGs had
high colinearity with the corresponding chromosomes of
their progenitor species, B. rapa and B. oleracea, such as
the LGs A1/C1, A2/C2, A3/C3, A4/C4 of B. napus that
exhibited a sole colinear relationship with the chromo-
some A1, A2, A3, A4 in B. rapa and C1, C2, C3, C4 in
B. oleracea, respectively (Figures 1 and 2; Additional file
3: Figure S1 and Additional file 4: Figure S2). Second,
the LGs C6 and C7 of B. napus were colinear with the
chromosome C7 and C6 of B. oleracea, respectively
(Additional file 5: Figure S3). Such a corresponding rela-
tionship between LG C6 and chromosome C7 as well as
LG C7 and chromosome C6 is likely resulted from the
switched original labeling for B. napus linkage groups
[45,46], as pointed out by Panjabi et al. [33]. Third, some
of B. napus LG had a complex colinear relationship with
the progenitor species due to the translocations during
the evolution of the tetraploid species. Such a complex-
ity is characterized by that a single B. napus LG may
have syntenic segments from several chromosomes from
B. rapa and /or B. oleracea. For example, the B. rapa
chromosome A7 (BrA7) was found to have colinear
segments on B. napus LGs C6 and C7, while the BrA6
segments existed in both LGs A6 and C5, and the BoC8
in LGs A8, C8 and C9, respectively (Figures 1 and 2;
Additional file 5: Figure S3 and Additional file 6: Figure S4).
In addition, LG C5 contained a homologous segment of
BoC05 at its upper part and a homologous segment of
BoC06 at its lower part (Figure 2). It was worth pointing
out that B. napus LG C9 was largely colinear with BrA9,
BoC8 and partly BoC3 simultaneously, rather than with

(See figure on previous page.)
Figure 1 Seed weight/size gene distribution map of B. napus (A genome). Column a presents the genetic linkage groups of the SJ DH
population. The nomenclature of LGs follows the rules proposed by the Multinational Brassica Genome Project [37]. Each of the LGs is
represented with a vertical bar with the locus position (in cM) on the left and SSR loci names on the right. The QTLs information (peak, interval
and name) of TSW were on the left-hand of the LGs. Column b lists the homologous colinear loci in B. rapa or B. oleracea. The numbers
designate the physical position in B. rapa or B. oleracea chromosome with the length of amplification fragment. Column c is the Arabidopsis gene
codes corresponding to the homologous loci. Column d lists the homologous genes of seed size or weight identified in B. rapa and B. oleracea.
Genes that are in good fit into both Arabidopsis and B. rapa/B. oleracea physical positions are marked with asterisks. Numbers in brackets are the
tandem repeat times of the tandem repeated genes.
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Figure 2 (See legend on next page.)
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BoC9. The LG A9 was short and thus no corresponding
colinear segments could be matched with it. The short LG
A9 is likely due to the low polymorphism between the two
parental lines and thus fewer markers available for this
linkage group. Such a result was consistent with our
previous analysis [11].
By BLASTn analysis [42] against the Arabidopsis gen-

ome sequences (TAIR10) [43], the 421 homologous

colinear loci from the B. rapa and B. oleracea genomes
were aligned onto 398 homologous loci in Arabidopsis,
with 212 loci from B. rapa and 186 from B. oleracea,
respectively (Tables 1 and 2; Additional files 3, 4, 5 and
6: Figure S1-S4). These homologous loci were evenly
distributed in the A and C genomes of B. napus, with
208 loci in LG A1-A10, and 190 loci in LG C1-C9
(Table 2). There were 23 amplicons without matched

(See figure on previous page.)
Figure 2 Seed weight/size gene distribution map of B. napus (C genome). Column a presents the genetic linkage groups of the SJ DH
population. The nomenclature of LGs follows the rules proposed by the Multinational Brassica Genome Project [37]. Each of the LGs is
represented with a vertical bar with the locus position (in cM) on the left and SSR loci names on the right. The QTLs information (peak, interval
and name) of TSW were on the left-hand of the LGs. Column b lists the homologous colinear loci in B. rapa or B. oleracea. The numbers
designate the physical position in B. rapa or B. oleracea chromosome with the length of amplification fragment. Column c is the Arabidopsis gene
codes corresponding to the homologous loci. Column d lists the homologous genes of seed size or weight identified in B. rapa and B. oleracea.
Genes that are in good fit into both Arabidopsis and B. rapa/B. oleracea physical positions are marked with asterisks. Numbers in brackets are the
tandem repeat times of the tandem repeated genes.

Table 1 Number of e-PCR amplicons and corresponding homologous colinear loci in B. rapa (A genome) and B.
oleracea (C genome) for B. napus linkage groups

B. napus B. rapa B. oleracea

LG SSR loci Amplicons in B. rapa and B. oleracea Chr Homologous colinear loci Chr Homologous colinear loci

A1 19 35 A1 14 C1 13

A2 35 82 A2 18 C2 11

A3 39 71 A3 30 C3 15

C6 7

A4 13 27 A4 9 C4 5

A5 24 69 A5 12 C5 4

A6 6

A6 16 73 A6 13 C5 4

C6 7

A7 22 31 A7 10 C7 4

A8 10 23 A8 7 C3 3

C8 3

A9 5 13 A4 3 C4 3

A10 16 40 A10 12 C9 9

Subtotal 199 464 134 88

C1 24 69 A1 10 C1 13

C2 17 46 A2 11 C2 9

C3 39 67 A3 18 C3 23

C4 21 75 A4 2 C4 8

C5 21 45 A1 3 C5 4

A6 6 C6 5

C6 13 42 A7 3 C7 9

C7 16 39 A7 3 C6 10

C8 19 46 A9 11 C8 14

C9 28 52 A9 22 C3 3

C8 12

Subtotal 198 481 89 110

Total 397 945 223 198
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Table 2 Distribution of conserved Arabidopsis genomic blocks on B. napus genetic map based on homology analysis
between B. napus and B. rapa/B. oleracea

B. napus Chr a Locus in A. thaliana ND b Conserved
block c

LG AtC1 AtC2 AtC3 AtC4 AtC5 Total

A1 A1 2 1 10 13 1 2

C1 1 1 11 13

A2 A2 2 2 12 16 2 10

C2 2 2 7 11

A3 A3 1 4 9 4 12 30 6

C3 1 1 2 2 9 15

C6 1 1 3 5 2

A4 A4 1 4 1 3 9 3

C4 1 1 1 2 5

A5 A5 1 5 5 1 12 5

A6 5 1 6

C5 1 3 4

A6 A6 4 1 2 6 13 5

C5 2 2 4

C6 2 1 4 7

A7 A7 3 1 4 8 2 3

C7 2 1 3 1

A8 A8 3 2 5 2 3

C8 3 3

C3 2 2 1

A9 A4 3 3 1

C4 3 3

A10 A10 1 9 10 2 2

C9 1 7 8 1

Subtotal 39 20 42 33 74 B. rapa: 125 14 40

B. oleracea: 83

C1 C1 1 2 3 6 12 1 3

A1 1 1 4 4 10

C2 C2 1 6 7 2 2

A2 1 2 8 11

C3 C3 1 5 3 2 12 23 7

A3 6 4 1 7 18

C4 C4 5 2 1 8 3

A4 1 1 2

C5 C5 2 1 3 1 4

C6 1 3 1 5

A6 5 5 1

A1 3 3

C6 C7 3 2 3 8 1 2

A7 1 1 1 3

C7 C6 1 1 1 2 4 9 1 2

A7 1 1 1 3

C8 C8 5 1 7 13 1 3

A9 4 1 6 11
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Arabidopsis homologous loci (Table 2 and Additional
files 3, 4, 5 and 6: Figure S1-S4). In total, 71 Arabidopsis
conserved blocks were resolved in the B. napus genome
(Table 2 and Additional files 3, 4, 5 and 6: Figure S1-S4).
The conserved blocks covered 1,411.3 cM of B. napus
genetic linkage map, accounting for 66.4% of total length
of the genetic map (Additional file 8: Table S3).
Subsequently, a comparative map between Arabidopsis

genome and the B. napus map based on SSR markers
was constructed with the aid of B. rapa/B. oleracea
genome sequences (Additional files 3, 4, 5 and 6: Figure
S1-S4). In total, 385 SSR loci from B. napus exhibited
synteny to Arabidopsis genes, but 114 SSR loci did not
find any homologous regions in Arabidopsis (including
20 no amplification SSR loci). Altogether, 271 SSR
loci on B. napus LGs were identified homologous to
Arabidopsis (Additional files 3, 4, 5 and 6: Figure S1-S4;
Additional file 1: Table S1).

The comparative map can be used to identify candidate
genes of mapped QTLs
Previously, we identified several QTLs for seed weight
and fatty acid content with the SJ-DH population, and
cloned the candidate genes underlying the QTLs. Those
QTLs include two QTLs for seed weight on A5
(TSWA5b and TSWA5c), one for oleic acid content on
A5 (OLEA5), and two for linolenic acid content on A4
(LNAA4) and C4 (LNAC4), respectively [11,47]. To test
whether the comparative map could be used to target
the candidate genes for mapped QTLs, we searched for
the candidate genes underlying the mapped QTLs. It
was found that the F block on LG A5 contained a FAD2
gene for OLEA5 , the H/J blocks on LG A4 and C4 har-
bored a FAD3 gene for LNAA4 and LNAC4, respectively
(Figure 3A and 3C, column a). Similarly, the MINI3 gene
for TSWA5b, TTG2 gene for TSWA5c could be pre-
dicted (Figure 3B, column a). Above predictions were
exactly same as the previous analysis through homology
cloning (Figure 3, column b) [11,47], demonstrating that

the constructed comparative map can be effectively used
in identification of candidate genes of mapped QTLs.

Locating the putative homologous genes for seed
weight/size on B. napus genetic map by
comparative mapping
Sequence information was collected for 43 genes
involved in the regulation of seed/fruit size or weight
previously reported in tomato, maize, rice and Arabidopsis
(Table 3). The ORF sequences of the genes were used for
BLAST analysis against the B. rapa and B. oleracea
genome. In total, 286 corresponding genes/loci in the
two species were obtained with 132 from B. rapa and
154 from B. oleracea, respectively (Table 3; Additional
file 9: Table S4). Among the 286 loci, 244 corresponded
to the 35 seed size genes from Arabidopsis and the rest of
42 to the 8 genes from other species (Table 4; Additional
file 9: Table S4).
The copy numbers of the corresponding homologues

in B. rapa and B. oleracea genomes varied. On average,
one gene had 3 copies in the A genome and 3.6 copies
in the C genome (Table 3). B. rapa and B. oleracea
homologues for all genes were identified except for the
gene qSW5/GW5 from rice (Table 3).
Based on the colinear relationship between the A and

C genome in three species (Table 1), the homologous
genes were mapped onto the B. napus linkage map
except the genes that currently are located only in the
scaffolds of the B. rapa and B. oleracea genomes (Table 4;
Figures 1 and 2, column d). Because of the fact that the
LG C6 of B. napus was colinear with BoC7, and the LG
C7 was colinear with BoC6, the homologous genes from
BoC6 were placed on the LG C7 and BoC7 on LG C6,
respectively (Figure 2). In total, 227 homologous
genes of seed size/weight were finally positioned on the
B. napus linkage map, which distributed on all LGs ex-
cept A9 (Figures 1, 2; Table 4). Among the 185 Arabi-
dopsis homologous genes mapped, 100 genes fell in
conserved Arabidopsis genomic blocks and can be posi-
tioned exactly on the B. rapa/B. oleracea chromosomes

Table 2 Distribution of conserved Arabidopsis genomic blocks on B. napus genetic map based on homology analysis
between B. napus and B. rapa/B. oleracea (Continued)

C9 C8 3 8 1 12 5

A9 7 9 5 21 1

C3 3 3

Subtotal 37 41 48 18 46 B. rapa: 87 9 31

B. oleracea: 103

Total 76 61 90 51 120 398 23 71
a Chromosome of B. rapa (A-genome) or B. oleracea (C-genome).
b Not determined.
c The number of unique blocks in a given B. napus LG. The conserved blocks were named according to Schranz et al. [5] and identified by the method described
by Parkin et al. [30]. A conserved block contained a minimum of three mapped SSR loci with at least two homologous loci from one of the 24 defined
Arabidopsis bocks [5] every 10 cM in B. napus genetic map.
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Figure 3 (See legend on next page.)
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(Figures 1 and 2, genes with asterisk). There were 20
homologous genes with tandem repeats (TR), among
which three were from the homologous genes in crop
species and 17 from Arabidopsis. Seventeen TRs genes
were anchored onto the linkage map and the other
three located in scaffolds of B. rapa/B. oleracea
(Figures 1 and 2).

Identification of the candidate genes underlying QTLs for
seed weight in B. napus
The seed size/weight gene distribution map was used to
identify candidate genes for the TSW QTLs by aligning
the seed weight genes with the TSW QTL loci on the B.
napus genetic map (Figures 1 and 2). On LG A1, TTG2
and GS5 were the nearest genes on each side of TSWA1
(Figure 1 and Additional file 9: Table S4); GW2 was

located at the same position of TSWA2 (Figure 1 and
Additional file 9: Table S4); CKI1 and MN1 were nearby
the peak of TSWA4 (Figure 1 and Additional file 9: Table
S4). MINI3 and FIE were located nearby previously
mapped TSWA5a and TSWA5b. The MINI3 gene was
located in the confidence interval of TSWA5b, consistent
to our previous results [11], while the FIE gene fell into
the confidence interval of TSWA5a (Figure 1 and Add-
itional file 9: Table S4). Three genes, AHP3, AHP5 and
MEA, were located in the same confidence interval of
TSWA10 (Figure 1 and Additional file 9: Table S4). In
addition, AGL62, GS3 and GASA4 were located on the
peaks or in the confidence intervals of three newly iden-
tified QTLs, TSWC2a, TSWC2b and TSWC2c, respect-
ively (Figure 2 and Additional file 9: Table S4). Together,
above analysis clearly pinpointed the potential target

(See figure on previous page.)
Figure 3 Candidate genes underlying the QTLs identified through comparative mapping. Candidate genes for mapped QTLs on LGs A4
(A), A5 (B) and C4 (C) are predicted with conserved Arabidopsis blocks mapped on B. napus map. Column a illustrates the prediction of the
candidate genes. Previously mapped QTLs [11,47] are indicated on the right-hand side of the respective LG and the conserved Arabidopsis blocks
(color bars with their names (letters) inside) on the left. The homologous loci in B. rapa/B. oleracea and Arabidopsis are listed next to the
conserved blocks. Red arrows indicate the positions of the predicted candidate genes. Column b presents LGs A4 (A), A5 (B) and C4 (C) with
newly added gene-specific markers.

Table 3 Genes involved in seed size/weight regulation and their homologues in B. rapa and B. oleracea

Gene Species Ref. Copy number Gene Species Ref. Copy number

B. rapa B. oleracea B. rapa B. oleracea

fw2.2 Tomato [48] 6 4 AGL61 Arabidopsis [49] 5 4

MN1 Maize [50] 1 2 AGL62 Arabidopsis [51] 8 7

CR4 Maize [52] 1 1 AHP1 Arabidopsis [53] 1 1

GW2 Rice [54] 2 3 AHP2 Arabidopsis [53] 4 8

GS3 Rice [55] 0 2 AHP3 Arabidopsis [53] 4 7

GW5 Rice [56,57] 0 0 AHP4 Arabidopsis [53] 3 2

GS5 Rice [18] 5 5 AHP5 Arabidopsis [53] 1 1

GIF1 Rice [58] 3 7 AHP6 Arabidopsis [53] 0 1

MINI3 Arabidopsis [59] 4 7 ANT Arabidopsis [60] 6 5

AP2 Arabidopsis [61] 3 2 CKI1 Arabidopsis [62] 2 2

IKU1 Arabidopsis [63] 3 3 DDM1 Arabidopsis [64] 2 8

IKU2 Arabidopsis [59] 1 3 EMS1 Arabidopsis [65] 2 1

SHB1 Arabidopsis [66] 4 6 FIS3 Arabidopsis [67] 5 6

ARF2 Arabidopsis [68] 8 4 FIS2 Arabidopsis [69] 0 1

TTG2 Arabidopsis [70] 7 8 GASA4 Arabidopsis [71] 2 2

AHK1 Arabidopsis [72] 1 1 FIS1 Arabidopsis [67] 1 2

AHK2 Arabidopsis [72] 2 2 MET1 Arabidopsis [73] 3 3

AHK3 Arabidopsis [72] 3 4 MSI1 Arabidopsis [67] 6 7

AHK4 Arabidopsis [72] 4 3 RGE1 Arabidopsis [74] 2 2

AHK5 Arabidopsis [72] 6 5 SHK1 Arabidopsis [75] 4 5

KLU Arabidopsis [9] 3 3 DA1 Arabidopsis [76] 2 2

AGL80 Arabidopsis [77] 2 2

Total 43 132 154
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genes for the mapped QTLs, providing valuable clues for
a further comparison of sequence differences between
two parental lines.
However, for the two major QTLs, TSWA7a and

TSWA7b, no known information about candidate genes
could be inferred from the map, suggesting that those
QTLs may be unique in B. napus or B. rapa genome.
The only one seed size/weight gene, DDM1, on LG A7
was far away from these two QTLs, thus unlikely the
candidate gene for the two QTLs (Figure 1).

Molecular cloning of BnAP2 gene and development of
gene-specific marker
The Arabidopsis AP2 (AtAP2, AT4G36920) gene has
been reported to affect seed size [61]. AtAP2 was located
on the U-block of LG A1 in the comparative map
(Figure 4A). Although no mapped QTL is matched to
the predicted AP2 gene, we reasoned that it is possible
to find polymorphism of the locus between the two
parental lines. To test this hypothesis, we set out to
clone the homologous gene of AtAP2 in B. napus. We
searched for the homologous sequences in B. rapa
genome with BLASTn by using AT4G36920 as a query.
Primers were designed based on the retrieved sequence
of BrAP2 gene in B. rapa and the BnAP2 gene was
cloned in the two parental lines of the SJ DH population,
respectively (Figure 4B and 4C; Additional file 10: Figure
S5). Sequence analysis showed that the allele in SW
Hickory contained a 290bp insertion compared to JA177
(Figure 4C and Additional file 10: Figure S5). A BnAP2
gene-specific marker was developed based on the

polymorphism between the two parents and used to
map the gene in the SJ-DH population again. Genetic
linkage analysis eventually mapped the BnAP2 gene-
specific marker onto the U block on LG A1, consistent
with the predicted result on the comparative map
(Figure 4A).

Discussion
In this study, we developed a procedure for comparative
mapping between B. napus and Arabidopsis with SSR
markers with the aid of B. rapa and B. oleracea genome
sequences. To the best of our knowledge, this is the first
report to construct a comparative map among Arabidop-
sis and three Brassica species with a SSR-based genetic
map (Additional files 3, 4, 5 and 6: Figure S1-S4;
Additional file 1: Table S1). The SSR markers have been
widely used as a preferable type of molecular marker in
genetic mapping in Brassica species. However, it was
difficult to use a SSR map for comparative mapping with
Arabidopsis directly. First, individual SSR primer pairs
only have limited sequence information, which renders a
direct alignment with Arabidopsis genome ineffective.
For example, in a study to construct a mainly SSR-based
integrated map in B. napus, Wang et al. [32] found that
<2% of the primer pairs could identify homologous
regions to Arabidopsis, of which only 50% agreed with
those identified using the corresponding SSR clone
sequences. Second, high homology between the A and C
genomes often results in multiple polymorphic loci in B.
napus for a single Arabidopsis gene, which further
complicates the comparative analysis between B. napus
and Arabidopsis. In this study, we circumvented the
two difficulties by making use of recently released
genomic sequences of B. rapa and B. oleracea. Through
anchoring the SSR loci on B. napus LGs to the B. rapa/
B. oleracea genome by e-PCR, we were able to match
the B. napus SSR loci with their Arabidopsis homo-
logues, thus making such a comparative mapping
feasible. By overcoming the difficulties in comparative
mapping using a SSR-based genetic map of B. napus
and Arabidopsis genomic sequences, this procedure
thus proved a novel idea for a comprehensive comparison
among Arabidopsis, B. napus and its two progenitor
species, B. rapa and B. oleracea.
To make use of the information derived the SSR loci

as much as possible, a less stringent E-value was initially
used in this study to identify more putative homologous
loci. As indicated by Lukens et al. [29], a less stringent
cutoff could result in more non-specific region of hom-
ology. However, since our major purpose in this study
was to establish colinear relationships between B. napus
and Arabidopsis through the conserved blocks, such
non-specific homology regions in the initial screening
will be re-examined. With the criterion for identification

Table 4 Number of homologous genes for seed
size/weight in B. napus

LG Gene origin LG Gene origin

Arabidopsis Other
species

Arabidopsis Other
species

A1 8 2 C1 12 1

A2 8 2 C2 8 2

A3 14 1 C3 16 4

A4 8 2 C4 10 3

A5 15 2 C5 14 3

A6 14 4 C6 (BoC7) a 7 3

A7 1 0 C7 (BoC6) b 19 1

A8 9 0 C8 12 4

A9 14 4 C9 8 0

A10 10 0

Scaffold 13 1 Scaffold 24 3

Total 114 18 Total 130 24
a The homologous gene number was calculated based on the distribution on
BoC7 because the LG C6 of B. napus has a high colinearity with BoC7.
b The homologous gene number was calculated based on the distribution on
BoC6 because the LG C7 of B. napus has a high colinearity with BoC6.
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Figure 4 Cloning of the BnAP2 gene with the aid of the comparative map. A) Localization of the BnAP2 gene and its allele-specific marker
on LG A1. The red arrow on the left panel marks the AP2 position as predicted in conserved block U. The right panel is a reconstructed LG A1
with the BnAP2 allele-specific marker. B) PCR products amplified from the parental lines and their F1. The PCR products are separated by
electrophoresis in 1.0% agarose gels and stained with ethidium bromide. C) Sequence difference of the BnAP2 gene sequences between the two
parental lines. There is a 290bp insertion in SW Hickory.
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of conserved blocks, such non-specific loci will not affect
the determination of the conserved blocks. This is evi-
dent through the data listed in Additional file 1: Table S1,
in which about 66% of the loci under the less stringent
(E-value >1E-05) cutoff eventually were linked to a per-
spective block, indicating that some weak but biologically
relevant sequence relationships could be revealed with
such a procedure, which reduces the loss of valuable
information from the SSR loci on the B. napus map.
The establishment of such a comparative map offers

an effective way to transfer the gene information from
model plant Arabidopsis to B. napus, an amphidiploid
crop species, as demonstrated by mapping the seed size/
weight genes on the B. napus genetic map (Figures 1
and 2). Furthermore, we identified candidate genes for
eight TSW QTLs through the mapping (Figures 1 and 2;
Additional files 3, 4, 5 and 6: Figure S1-S4). Together,
the seed distribution map and the identified candidate
genes for mapped TSW QTLs provide valuable informa-
tion about the genetic control of seed weight in B.
napus. Although such a list of seed size/weight genes
could be further expanded by including other genes
related to the process of seed development, our results
do exemplify the universal usefulness of such an ap-
proach. A flow diagram for the process is presented in
Additional file 11: Figure S6.
Mapping of the seed weight related genes and the

candidate genes for TSW QTLs could accelerate the
molecular cloning and functional characterization of the
QTLs. As shown in Figure 3, the prediction of the candi-
date genes for several mapped QTLs is accurate. Such a
process will allow us to isolate the potential candidate
genes for a particular QTL by homologous cloning strat-
egy rather than tedious and time-consuming traditional
map-based cloning procedure. On the other hand, by
cloning some of predicted potential candidate genes that
were even not located in the genetic map, for example
AP2 in this study, it is possible to uncover the poly-
morphic alleles in two parental lines without QTL map-
ping information (Figure 4). By doing so, we were able
to develop an allele-specific marker for one of locus of
the AP2 gene in B. napus and place the marker on the
corresponding LG (Figure 4). There are three and two
copies of the AtAP2 homologues identified in B. rapa
(including one copy located on a scaffold) and B. olera-
cea, respectively (Table 3; Additional file 9: Table S4).
Consistently, there are four copies mapped on LGs A1,
A3, C1 and C7 of the B. napus genetic map, respectively
(Figures 1 and 2). Although the exact molecular signifi-
cance of the insertion in the cloned BnAP2 allele of SW
Hickory is yet to be established, identification of the
polymorphic locus between the two parental lines lays
foundation for further functional characterization of all
the AP2 alleles in the B. napus genome.

The seed weight genetic map revealed the complexity
of the genetic control of seed weight in amphidiploid
rapeseed. For example, a single TSW QTL may have one
or multiple candidate gene(s), such as TSWA2 (with only
one gene, GW2, located) and TSWA1 (with 6 genes
located) (Figure 1 and Additional file 9: Table S4). Map-
ping of these candidate genes could apparently narrow
down the range of the potential target genes. Of course,
even though potential candidate genes are mapped to a
locus, this does not imply that they control the trait. The
QTL may result from variation in other novel genes
which have not been studied in model systems.
It is interesting to notice that some genes showing

major effects on seed size/weight in rice and Arabidopsis,
such as GS3, GS5, GW2 and MINI3, TTG2, ARF2, IKU2,
were located on the minor QTLs regions, or even not in
the confidence intervals of previously mapped TSW
QTLs (Figures 1 and 2; Additional file 9: Table S4). In
addition, no homologue of qSW5/GW5, an important rice
seed size gene [56,57] could be identified in both the A-
and C- genome (Table 3). A more comprehensive evalu-
ation of B. napus germplasm is needed to understand
whether these genes may exhibit different effects on the
studied trait in various species. On the other hand, no
candidate genes for two previously mapped major QTLs,
TSWA7a and TSWA7b were identified, suggesting that
the two QTLs may represent novel determinants for seed
weight in amphidiploid B. napus.

Conclusions
We developed a procedure for comparative mapping
between B. napus and A. thaliana with SSR markers
with the aid of B. rapa and B. oleracea genome
sequences. Such a SSR-based genetic map can be used
to pinpoint the candidate genes for QTLs important in
crop improvement. The procedure may also find wide
applicability in Brassicaceae and other crop species, as
candidate genes for QTLs in other pathways could be
identified through a similar approach.
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Additional file 1: Table S1. Genetic linkage groups of B. napus, SSR
marker primer sequences, amplification copy numbers, amplicon position
in B. rapa/B. oleracea and homologous colinear locus in Arabidopsis.

Additional file 2: The Perl script of e-PCRmap computer program.

Additional file 3: Figure S1. Comparative map of B. napus with A.
thaliana (LGs A1, A2, C1 and C2). Column a presents the genetic linkage
groups (LGs) of the SJ DH population. LGs are represented by vertical
bars with the loci position (in cM) indicated on the left and SSR loci
names on the right. Column b and c list the homologous colinear loci in
B. rapa and B. oleracea, respectively. The number means the physical
position in B. rapa or B. oleracea chromosome with the length of
amplification fragment. Column d and e are Arabidopsis gene codes
corresponding to the homologous loci. Column f is the Arabidopsis
conserved blocks identified in B. napus, which is nomenclatured

Cai et al. BMC Genetics 2012, 13:105 Page 14 of 17
http://www.biomedcentral.com/1471-2156/13/105



according to Schranz et al. [5] and colored differently based on the A.
thaliana (At) chromosome positions defined by Parkin et al. [30].
Inversions in the linkage groups relative to Arabidopsis are indicated by
arrows. Column g lists the homologous genes of seed size or weight in
B. rapa and B. oleracea. Genes with asterisk indicate that they are in good
fit into both Arabidopsis and B. rapa/B. oleracea physical positions, and
genes with brackets are the tandem repeats (TR) of homologous genes
with the tandem repeat times in brackets.

Additional file 4: Figure S2. Comparative map of B. napus with
A. thaliana (LGs A3, A4 C3 and C4).

Additional file 5: Figure S3. Comparative map of B. napus with
A. thaliana (LGs A5-A7 and C5-C7).

Additional file 6: Figure S4. Comparative map of B. napus with
A. thaliana (LGs A8-A10, C8 and C9).

Additional file 7: Table S2. QTLs for TSW in the SJ DH population
detected previously and re-scanned in the present study.

Additional file 8: Table S3. Distribution of conserved Arabidopsis
genomic blocks in B. napus genome.

Additional file 9: Table S4. Homologous genes of seed size/weight in
B. rapa and B. oleracea chromosomes and scaffolds.

Additional file 10: Figure S5. Comparative analysis of AP2 genomic
sequences of SW Hickory and JA177 with Arabidopsis.

Additional file 11: Figure S6. A flow diagram for construction of a
comparative map between B. napus with Arabidopsis based on the B.
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genes for QTLs mapped on the map.
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