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Abstract

The candidate gene approach has been a pioneer in the field of genetic epidemiology, identifying risk alleles and
their association with clinical traits. With the advent of rapidly changing technology, there has been an explosion of
in silico tools available to researchers, giving them fast, efficient resources and reliable strategies important to find
casual gene variants for candidate or genome wide association studies (GWAS). In this review, following a
description of candidate gene prioritisation, we summarise the approaches to single nucleotide polymorphism
(SNP) prioritisation and discuss the tools available to assess functional relevance of the risk variant with
consideration to its genomic location. The strategy and the tools discussed are applicable to any study
investigating genetic risk factors associated with a particular disease. Some of the tools are also applicable for the
functional validation of variants relevant to the era of GWAS and next generation sequencing (NGS).
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Introduction

Candidate gene studies have been at the forefront of gen-
etic association studies i.e. identifying risk variants associ-
ated with a particular disease. Candidate gene studies are
relatively cheap and quick to perform, and are focused on
the selection of genes that have been in some way related
to the disease previously and thus come with prior know-
ledge about gene function. The candidate gene approach
begins with selection of a putative candidate gene based
on its relevance in the mechanism of the disease (trait)
being investigated [1]. This is followed by assessing and
selecting polymorphisms, usually the tag Single Nucleo-
tidePolymorphim (SNPs) (described later in this review)
and/or having a functional consequence, either by affect-
ing gene regulation or its protein product [1,2]. Finally,
the gene variant is verified for disease (trait) association by
observing its occurrence in random test subjects (cases)
having the disease and the selected control subjects which
do not; and is then evaluated for its association with dis-
ease prognosis and diagnosis and its future potential as a
biomarker. This makes the knowledge derived from
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candidate gene studies valuable and clinically relevant as a
potential disease diagnostic tool and for personalised
medicine initiatives in future treatments of genetic disor-
ders [3].

Candidate gene association studies have been criticised
on some aspects, but these can be duly overcome by the
range of new tools and resources developed to this end.
One such aspect is non-replication of results. One of the
major issues for non-replication of the results involves
population stratification, which can easily be circum-
vented by considering a replication study using an in-
dependent and random cohort of test and control
populations, which reduces the chance of occurrence of a
similar admixture showing similar patterns of variations
[4]. The many collaborative projects taking place in recent
years, such as the international HapMap project (http://
hapmap.ncbi.nlm.nih.gov/) [5] and 1000 genomes project
(http://www.1000genomes.org/) [6], provide researchers
with allele frequencies of SNPs and their correlation pat-
tern (haplotypes) to analyse population stratification be-
fore pooling data from different populations. Another
aspect is the mild uncertainty about if the results portray
disease susceptibility of a common variant, or do they just
represent certain ancestral differences existing by chance
between the mixes of test or control populations.
Additionally, the multiple comparisons issue due to
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accounting for the same SNP in various tests can lead to
false discovery rates. This can be addressed in two ways,
first by computing Bonferroni adjustments of the signifi-
cance criterion (alpha) according to the number of genes/
SNPs/haplotypes (described later in this review) examined
and second by performing permutation analysis of the as-
sociation with allelic variation in the associating haplotype
block. Although some argue that candidate gene studies
must still meet statistical criteria for genome-wide signifi-
cance, such a conservative threshold seems overly strin-
gent, particularly in the context of a disorder with no
(known) major gene effects. One of the other reasons for
identifying a number of false positive findings could in-
volve systemic genotyping errors, lack of statistical power
due to smaller samples. In other instances, false negative
findings (type II error) could be the reason for non-
replication [7,8]. False negative findings can be attributed
to under evaluation of gene-gene interactions and gene
environment interactions [7] and/or because of missing
some causative polymorphisms during linkage disequilib-
rium (LD) considerations [9]. In silico initiatives which
take into account LD and compile tag SNPs and haplo-
types can be very helpful in circumventing this.

Considering these aspects along with cumulative effect
of multiple loci and complex disease heterogeneity, a fine
tuning of the candidate gene approach has been sorted
after [8,9]. Completion of the first phase of the 1000 gen-
ome sequencing project has further provided new avenues
for reconsidering candidate gene association approaches
to dissect the complexity of many genetic disorders. One
major step in this regard could be a careful and thorough
selection of candidate genes and variations forming the
basis towards association-analysis. This support is avail-
able through various targeted in silico tools to evaluate all
aspects of the candidate gene and the prioritised SNPs in
a strategic manner.

This review intends to summarize current bioinformat-
ics tools and literature available for the purpose of
selecting a candidate gene for disease association studies
and the genetic variants such as SNPs, from these candi-
date genes de novo, or from within a linkage peak. Some
of these in silico methods are applicable to the functional
analysis of data generated through various candidate gene
association studies or for variants identified through post-
GWAS fine mapping studies and/or next-generation
sequencing,.

Selection of a candidate gene and retrieval of relevant
sequence information

Recent data mining software advancements have catered
substantially to growing research needs making it much
easier to cope with the initial phase of searching through
the enormous amounts of literature present online and
keeping constantly updated in order to intelligently select
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a candidate gene. Tools provided by iHOP Web servi-
ces (http://www.ihop-net.org/UniPub/iHOP/) [10] enab-
les general literature mining and PubCrawler (http://
pubcrawler.gen.tcd.ie/) [11] enables keeping track of daily
updates. A commercial tool from Biovista - BioLab Expe-
riment Assistant (http://www.biovista.com/bea/) [12] is
uniquely designed around providing the user search cap-
abilities to find concepts of interest (such as drugs, genes,
molecules etc.) and review their interconnections visually,
facilitating fine tuning of research strategy before getting
down to reading literature. Ingenuity™ Knowledge Base
(http://www.ingenuity.com) is a depot of manually re-
viewed, enriched and sorted information of biological in-
teractions and functional annotations, provided to the user
through powered products like IPA®, iReport® in a con-
textual interface, also linking out to the original articles.

Analysing participating pathways is an important aspect
of any gene’s functional analysis strategy. In this view,
REACTOME (http://www.reactome.org) [13] is a cross
referenced, manually curated and peer reviewed pathway
database. LitInspector (http://www.litinspector.org) [14]
and NetPath (http://www.netpath.org/index.html) [15]
allow one to access curated signal transduction related lit-
erature and interaction pathways respectively. Predictive
Networks (http://predictivenetworks.org/) [16] integrates
gene interactions and networks information from PubMed
literature and other online biological databases and pre-
sents it in an accessible and efficient user interface. Two
other noteworthy commercial tools are GeneGo and
Ingenuity IPA. GeneGo (http://www.genego.com/) tech-
nology facilitates pathway analysis to find interacting
molecules and subsequent interactions relevant to the in-
vestigated trait or disease. Ingenuity IPA also considers
pathway analysis in its package. Another website Topp
Gene suite (http://toppgene.cchmc.org/) [17], provides
tools for functional enrichment of genes based on a train-
ing gene set (to be provided by user), and also for includ-
ing protein networks and neighbouring genes of the locus
in analysis.

Finding candidate genes for further investigation, also
defined as gene prioritisation has been covered in detail
elsewhere [18]. The hosted web portal — Gene Prio-
ritization Portal (http://www.esat.kuleuven.be/gpp), links
out to 33 current computational tools for this purpose,
such as GeneRank, GeneWanderer, Caesar, SNPs3D and
GeneDistiller among many others. This resource com-
pares many online computational tools and thus, provides
an efficient and comprehensive guide to help the user de-
velop a suitable gene prioritisation strategy, and is highly
recommended.

Functional analysis of a gene is incomplete without a
brief investigation for any existing disease associations.
OMIM®, Online Mendelian Inheritance in Man®
(http://www.ncbi.nlm.nih.gov/omim) [19] is a database
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helpful to establish and/or investigate disease associa-
tions of gene of interest as it aims to lists all known
genotype to phenotype correlations. PhenoPred (http://
www.phenopred.org/) [20] is another useful starting re-
source for crosschecking for gene-disease association to
set the stage and establishing a gene’s clinical relevance.
An example of a disease specific web tool is Oncomine
(https://www.oncomine.org) [21] providing an elaborate
resource to cancer biologists interested in accessing can-
cer transcriptome data from large number of datasets col-
lected, standardised and analysed as part of the Oncomine
project. An elaborate description, comparison and usage
strategy of tools currently available for the purpose of in
silico gene function prediction relevant to cancer study,
with their efficacy in suitably classifying uncharacterised
cancer genes based on current knowledge from online da-
tabases has been given by Hu et al. [22].

Once a thorough assessment of literature and a holistic
view of interacting pathways to the gene of interest have
been considered, one is ready to focus on the gene com-
position and sequence. A gene locus can be analysed for
various attributes. Many popular, consistently well up-
dated and publically available databases provide genetic
and functional information of a gene and its locus, which
are advantageous to consider during SNP selection. Prior
knowledge of the gene’s functional and structural elements
within and those in its periphery can elicit a better under-
standing of the putative function of the gene variants.
Comprehensive sites such as Entrez Gene (http://www.
ncbi.nlm.nih.gov/Entrez) [23] and Ensembl (http://www.
ensembl.org) [24] host an organised, collective resource
linking out to various tools providing general information
on gene structure, expression, splice variants encoded pro-
teins, regulatory elements, SNPs and the like. Assessing
splicing variants is of extreme importance when dealing
with eukaryotic genomes, primarily due to their direct re-
lation with candidate gene transcription, and also the
acute sensitivity of splicing sites to SNP variations. Such
an example has been elucidated in our recent study of the
Kallikrein15 (KLK15) gene locus, where a SNP (rs266851)
closely located (15 kb downstream) to a novel exon, ren-
ders increased susceptibility to ovarian cancer survival
and is predicted to play a role in alternative mRNA spli-
cing [25]. Another incidence is of a fairly common in-
tronic KLF6 gene polymorphism, called IVS1 -27 G > A,
ie. the IVSAA allele giving rise to an additional DNA
binding site and increased expression of three alternative
spliced transcripts of the gene [26]. Aceview (www.ncbi.
nlm.nih.gov/IEB/Research/Acembly/) [27] provides an
extensive annotated evaluation of cDNA supported tran-
scriptome complete with data on mRNA and existing
splice variants in the genome. The UCSC Genome
Browser (http://genome.ucsc.edu/) [28] is an extremely ef-
ficient and popular tool, and extends to gauging genetic
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sequence information of gene loci in much detail. It pro-
vides, in numerous tracks, options to view transcript vari-
ants, repeats, evolutionary conservation and many other
genetic modules which might be present in the gene of
interest, and are relevant to the candidate SNPs under in-
vestigation. It also links to The Encyclopedia of DNA ele-
ments (ENCODE) (http://genome.ucsc.edu/ENCODE/)
[29] which is a regularly updated database of functional
and regulatory elements as found in the human and
mouse genomes.

To assist in probing the functional importance of candi-
date genes while prioritising them, the VISTA Genome
Browser (http://genome.lbl.gov/vista) [30] gives tools to
compare your sequence with curated whole genome as-
semblies for regulatory elements and transcription factor
binding sites (TFBS). It also links to VISTA Enhancer
browser (http://enhancer.lbl.gov/) [31], which is a data-
base of experimentally validated human enhancer ele-
ments, and to VISTA Region viewer (http://rviewer.lbl.
gov/) [32], a tool for prioritising genomic regions for fur-
ther studies. Another recommended tool is VarioWatch
(Previously GenoWatch) (http://genepipe.ncgm.sinica.edu.
tw/variowatch/main.do) [33] which retrieves comprehen-
sive gene information in a particular region, in real time
from various primary sources.

Various high-end computational resources developed in
the last decade are freely available online and are upda-
ted continuously, although some limitations exist. Tools
which rely on Gene Ontology (GO) to characterise infor-
mation are limited because the GO annotation is an on-
going process, and cannot provide a full picture. Also, it
shows a bias towards well known, better characterised dis-
eases and research terms, hence, making the search miss
on what could otherwise be functionally relevant to the
gene under investigation [34]. Thus tools which support
descriptive keyword search to identify desired genes are
more useful in some cases. Care should be taken to use
the most updated versions of tools available online, as
these have been fine tuned to have better accuracy rates,
are also backed by latest database resources such as the
1000 genomes project (in relation to genomic variants)
and the latest genome assembly which is currently GR-
Ch37/hgl9 which can be tracked for updates at the Gen-
ome Reference Consortium website (http://www.ncbi.nlm.
nih.gov/projects/genome/assembly/grc/).

A consolidated account of all the above mentioned re-
sources is provided in Additional file 1: Table S1.

Cataloguing SNPs in a candidate gene

Once the relevance of the candidate gene and the spread
of its functional elements (enhancer, promoter, intron,
exon, UTR etc.) have been noted, the next step is cata-
loguing the SNPs present in the candidate gene, in its regu-
latory sequences (Promoter, TF binding sites, non coding
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regions), and in its surrounding regions which might have
long distance effects on the gene function (eg. enhancers).
A demonstration of this step and its context can be found
in a recent review by us focussed on cataloguing all SNPs
important to the Kallikrein gene locus [35].

Some resources which facilitate scouring the gene locus
for submitted variants have been reviewed extensively by
Coassin et al. [36] such as NCBI's dbSNP (http://www.
ncbi.nlm.nih.gov/snp) [37,38]. PolyScan (http://genome.
wustl.edu/pub/software/polyscan/) [39] can be used to re-
process the results to improve detection. BioQ (http://
biog.saclab.net/) [40] enables one to track back to the ex-
perimental process flow and data source of the variant
data. dbSNP-Q (https://cgsmd.isi.edu/dbsnpq/) [41] pro-
vides a downloadable interface which can be used to
meaningfully analyse dbSNP data with custom designed
tables which use task based queries to select and display
relevant information. SNPper (http://snpper.chip.org/)
[42], one of the tools provided at the CHIP bioinformatic
tools website enables retrieval of SNP based on name or
gene association and compliments it with additional useful
tools such as FlankXtender to include sites flanking the
gene. Evaluating functional elements in the genome for
putative variations can be performed by RAVEN (Regula-
tory Analysis of Variation in ENhancers) (http://www.
cisreg.ca/) although the link is not currently functional
[43]. This is a web application specially designed to iden-
tify genetic variations in cis regulatory elements of the
candidate gene through combining consideration of tran-
scription, TEBS prediction and phylogenetic footprinting,
enabling researchers to isolate SNPs which might have a
direct consequence on transcriptional regulation of the
genomic site [43]. A database providing sequenced and
genotyped SNPs in genes implicated in cancer studies is
the SNP500Cancer (http://variantgps.nci.nih.gov/cgfseq/
pages/snp500.do) [44] hosted by the Variant GPS (http://
variantgps.nci.nih.gov/cgfseq/pages/home.do). ANNOVAR
(http://www.openbioinformatics.org/annovar/) [45] enables
mining through the data from high throughput experi-
ments and identifying, sorting, and prioritising candidate
SNPs (variants) in important genomic regions in its filter
based annotation. The SNPinfo Web Server (http://
snpinfo.niehs.nih.gov/) [46] provides many efficient, com-
prehensive and user friendly tools suited for various pur-
poses such as GenePipe (for Candidate gene selection),
GenomePipe (Functional SNP selection), LinkagePipe
(SNP selection in one genomic loci of interest), TagSNP,
FuncPred (querying SNP function prediction) and
SNPseq (viewing SNPs in their genomic region context,
with information on CpG sites), making this a one stop
website for initial SNP investigation from scratch. All
mentioned tools, which can be used for SNP cataloguing,
are detailed in Additional file 1: Table S1; which also
shows schematically the tools available and places the
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important step of choosing an SNP of interest in the con-
text of candidate gene association studies.

Selection of the tag SNPs for the association studies
Linkage disequilibrium is a phenomenon where alleles as-
sociate at different loci non-randomly; carrying with them
conserved combinations of SNPs. The most widely re-
cognised measure for LD is 7%, where r is the correlation
coefficient between two loci with alleles in association
[47]. A gene locus hosting SNPs demonstrating LD have a
higher propensity to be conserved in populations with
recombination occurring on either side of it [48]. Analysis
of LD within the candidate SNPs is a valued way of
narrowing down on the limits of the disease susceptible
genomic region [48]; because they will mostly be inherited
together and show similar frequencies in affected individ-
uals of a population. Such SNPs closely linked with each
other and demonstrating LD effects can be tagged and
represented by selected SNPs among them, referred to as
tag SNPs. LD and its evolutionary and medical importance
has been described in detail in several reviews [48,49].
Recently developed resources specific to LD analysis
are, DistiLD http://distildjensenlab.org/ [50], GLIDERS
(http://www.sanger.ac.uk/resources/software/gliders/) [51],
SNPAnalyser 2.0 (http://snp.istech21.com/snpanalyzer/2.0/)
[52] further elaborated in Additional file 1: Table S1. SNAP
(SNP Annotation and Proxy Search; http://www.broad.mit.
edu/mpg/snap/) [53] further includes data from the 1000
genomes project in its data pool and also provides graphical
representations of regional LD analysis. A web link to mul-
tiple LD tools can be found at http://www.genes.org.uk/
software/LD-software.shtml [54].

Haplotypes can be defined as evolutionary conserved
segments of DNA inherited together. It is at these re-
gions that tag SNPs and LD effects are observed; such
that genotyping one SNP in a locus can determine the
effects of many others. The international HapMap pro-
ject (http://hapmap.ncbi.nlm.nih.gov/) took the initiative
of genotyping sections of human populations worldwide
to bring the haplotype map, and accelerate the search
for Haplotypes and tag SNPs to narrow down on statisti-
cally significant, reviewed disease associated loci, while
understanding the patterns of genetic distribution in
humans from diverse regions [5]. It currently provides
this data to allow further analysis and interpretation
of GWAS results with the use of imputation. A resource
like Haploview (www.broad.mit.edu/mpg/haploview/)
[55] takes its data resource from HapMap project and
can assist greatly in LD analysis during gene and SNP
prioritisation.

Following the identification of candidate SNPs and a
peripheral analysis of their location in the genome, fo-
cussed computational tools designed to specifically under-
stand downstream effects of SNPs depending on their
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genomic context and placement can be considered, thus,
enabling in depth in silico analysis of the respective func-
tional changes they might bring in cellular processes.

Selection of candidate SNPs through function prediction
SNPs are classified according to their location in the gene
locus, which also most times dictates the functional down-
stream effects of the SNP [56] and will guide the selection
of appropriate computational tools towards its analysis.
SNPs within the coding region of the gene but not causing
any change in the formed protein, such that both alleles
still encode the same protein sequence, are classified as
synonymous SNPs. This is possible due to the degeneracy
of the genetic code; and it does not cause any direct func-
tional defects than from probable splicing variations. SNPs
in the coding region which leads to a change in the trans-
lated amino acids and thus in the encoded protein are
categorised as non-synonymous SNPs (nsSNPs), as
encoded protein sequences differ between both alleles.
While the functional role of non-synonymous SNPs is
relatively straight forward, SNPs located in regulatory and
intronic regions have recently gained importance upon
recognition of their potential to deregulate transcriptional
efficiency, gene expression and splicing [57-60]. Especially
SNPs in regions encoding microRNA and non-coding
RNAs can thus be considered for association studies [61].
An interesting tool to use in the start is the Variant Ef-
fect Predictor (http://www.ensembl.org/info/docs/vari-
ation/vep/index.html) [62] found within the Ensemble
periphery which predicts the functional effect of known
and unknown variants. Given below are detailed web tools
specific to analyse SNPs in coding regions and in regula-
tory regions.

Functional SNPs within the coding regions

A nsSNP affect protein sequence and structure, and can
affect its functionality depending on the position of the
change and the amino acid it replaces. Usually such
changes differ in the degree of deleterious effect they
cause, with highly deleterious SNPs already being filtered
out by nature through natural selection [63]. Thus, all
nsSNPs discovered through high throughput studies, can
be those with long ranging clinical implications to disease
causation, and even though occurring in low frequency,
are none the less quite important. For example,
rs17632542 in the KLK3 gene is implicated in high associ-
ation to prostate cancer susceptibility, and rs1126497 with
a C/T polymorphism in epithelial cell adhesion molecule
(EpCAM) in its exon 3 has been linked to increased risk
of breast cancer in chinese populations [64]. The know-
ledge of gain or loss of function attributed to a protein by
the incidence of a nsSNP can be acquired by further func-
tional analysis and experimental analysis. Analysis can
begin with annotating the resulting protein sequence and
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structure of the variant carrying the SNP. Then subse-
quent investigation into functional aspects such as its con-
formation, enzymatic sites and amino acid interactions
will reveal how the variation affects protein structure and
function of the resultant phenotype. Additional file 2:
Table S2 lists useful resources in this area.

Annotation of protein structure can be performed by re-
sources such as SNPs3D (http://www.snps3d.org/) [65].
LS-SNP/PDB (http://ls-snp.icm.jhu.edu/ls-snp-pdb/) [66]
lets one map the variations on 3D structures available in
Protein Data Bank. ModBase (http://modbase.compbio.
ucsf.edu) [67] goes one step further allowing comparative
annotated protein structure models, also linking out to
functional analysis of the SNP effect on protein. Data from
various algorithms and functional criteria applied to the
dbSNP dataset have been integrated by PolyDoms (http://
polydoms.cchmc.org) [68] to predict structural and func-
tional protein variations, also integrating data on path-
ways, interactions and allelic variations from various
sources [34]. UniProt (http://www.uniprot.org/) [69] pro-
vides a database for protein information while the direct
SNP effect on protein function can be studied using
SNPeffect (http://snpeffect.switchlab.org/) [70], and Pu-
pasuite (http://pupasuite.bioinfo.cipf.es/) [71]. These, apart
from providing other tools as discussed later, annotate
protein structures and facilitate checking the protein for
functional sites such as catalytic sites, DNA and protein
binding sites and also those harbouring post translational
modifications ([34] and references therein). Users should
note that knowing the methodology used by the software
is imperative to assess the accuracy and its relevance to
the case being investigated [36].

Recent advancements in forecasting the effects of amino
acid substitutions in protein sequence train computational
tools to learn and then predict downstream effects of pro-
tein variants. These programs are trained by using either
disease-associated alleles in databases or by experimentally
varying amino acid substitutions to check for functional
changes [34]. Many recent tools have been described and
compared in the review by Mah et al. [72], albeit in a dif-
ferent mode of classification. Mah et al. [73] classify avail-
able algorithms as sequence versus structure based
approaches, detailing advantage and drawbacks to both.
The sequence-based approach uses induction of single
base substitutions to predict effects on the function of
resulting proteins [74], for example as PoPMuSiC (http://
babylone.ulb.ac.be/popmusic/) [75] checks for structural
stability; Mutation Profiling (http://profile.mutdb.org/)
[76] predicts effects of amino acid substitutions, whereas,
the structure-based approach elucidates the altered
phenotype caused by the protein by predicting effects on
its 3D structure [72,77], and its major drawback is restrict-
ive data availability as structural information is not yet
available for many proteins [72]. PolyPhen-2 (http://
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genetics.bwh.harvard.edu/pph2/) [78] and SIFT (http://
siftjevi.org/) [79] are two sequence based resources for
predicting the functional effect of human SNPs under in-
vestigation. Polyphen is less dependent on the multiple
alignments used as input. If user alignments for a specific
dataset are not available for input, then Polyphen could
perhaps be preferred for this reason. On the other hand, if
own alignments can be produced then SIFT might be
preferable since its web interface allows one to specify the
alignment. PROVEAN (http://provean.jcvi.org/) [80] is a
tool which also takes in frame insertions, deletions and
multiple amino acid substitutions into consideration, be-
ing more relevant to variation analysis from next gener-
ation sequencing projects.

Lately, variants affecting the post translational protein
modifications have received attention, in their potential
role in disease causation. Post translational modifications
can be reversible or irreversible changes made to a protein
after its translation, changing its function by changing pro-
tein structure and dynamics or by altering a binding site
on it, thus playing an important role in signal transduction
pathways and modulating a protein’s cellular role [81].
Close to 200 post translational modifications have been re-
cently discovered in the human cell, most of which either
facilitate binding of a chemical group to a protein or pro-
teolytic cleavage of the protein [82]. When a polymorphism
occurs in a post-translational target site, it can invariably
result in a host of downstream effects causing disease or its
susceptibility. NetPhos (http://www.cbs.dtu.dk/services/
NetPhos/) [83] is a tool which uses artificial neural net-
works to predict phosphorylation sites in submitted input
sequences, determining susceptible regions and facilitating
further checks for disease causation. A resource like
PROSITE (http://prosite.expasy.org/) [84] can be used to
predict the occurrence of these target sites in and near the
SNP, and can be used to analyse the functional repercus-
sion of the polymorphism proximity to the motif.

Keeping the wide range of available products in mind,
protein prediction tools should be assessed for the
method they follow to determine protein structure varia-
tions and the functional causal effect. This can be done
by reading their respective manuscripts in detail, and to
determine if that method suits, and is the best one for
the investigation.

Functional SNPs within the non-coding and

regulatory regions

Eukaryotic gene expression involves multiple steps: gene
transcription, processing of RNA through splicing mecha-
nisms, translation into a protein product, post-translational
modifications and subsequent protein activity. The majority
of gene expression regulation takes place within genetic
elements modulating it, like enhancers and silencers,
TFBS and splicing sites. The intricacies with which
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sequence variation give rise to gene expression defects have
been covered by Wang et al. [58]. Many computational
tools have been developed to aid investigation of SNP
effects in each of the above stages of gene expression
regulation.

a) SNPs in regulatory elements

SNPs within the regulatory elements of the gene can
disrupt gene expression by altering TEBS, influencing
the strength of enhancers and promoters, making
these SNPs of prime importance to be considered for
candidate gene association studies [84]. Below, we list
tools for general investigation of genomic region for
regulatory elements, in order to filter the genomic
regions hosting functional SNPs; and then we move to
list tools specifically investigating predicted influence
of candidate SNPs on any such region.

Putative genetic regulatory elements such as promoter
regions, TFBS, CpG islands over-seeing gene
expression, along with microRNA binding sites, are
extremely crucial locations where a SNP can cause
widespread expression variations and potential
disease causing effects, perhaps in a tissue specific
nature. Examples of such genetic alterations are
discussed by Werner et al. [85]. Information on the
spread of these regulatory modules can be obtained
from previously mentioned regular sequence data-
bases and software like UCSC genome browser, and
Pupasuite [71]. An initial DNAase hypersensitivity
check from ENCODE (if available for cell type) using
the UCSC genome browser can show open and closed
chromatin regions to verify the epigenetic context of
the locus. Open chromatin regions indicate exposed
regulatory sites hosting important functional elements
like transcription factors binding sites, enhancers and
ncRNAs [34,86]. Such regions which can be very
important in de-differentiation diseases like cancer
where epigenetic aberrations are frequent and could
have a potential causative nature [87].

Analysis of the regulatory regions involves starting
at a few well known websites to find TEBS such as
TEBIND (http://tfbind.hgc.jp/) [88], Matlnspector
(http://www.genomatix.de/matinspector.html) [89],
TESEARCH (http://www.cbrc.jp/research/db/TFSEA
RCH.html) [90], MAPPER (http://bio.chip.org/mapper)
[91] and also is-rSNP (http://www.genomics.csse.
unimelb.edu.au/product-is-rSNP.php) [92] and Regu
lomeDB (http://www.regulomedb.org/index) [93],
which scans SNP sites for significant potential
regulatory elements such as transcription factor
binding and histone modifications. FunciSND, a recent
tool available at http://bioconductor.org/ which is
itself a rich source of multi-purpose bioinformatic
tools, takes into account chromatin features along
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b)

with tag SNP and linked SNPs from the 1000
genomes project to spew out functionally important
SNPs specific to non-coding regions [94]. A rare
variant rs183373024, was recently explored using
FunciSNP and implicated in prostate cancer risk
based on its position in a transcription factor occupied
region; disrupting a FoxA1 binding site at 8q24 [95].
In certain hormone mediated diseases such as cancer,
hormone response elements have causal relations with
aberrant hormonal modulations [96]. Thus, promoter
regions of candidate genes can be analysed by tools
like Dragon ERE Finder (http://datam.i2r.a-star.edu.
sg/ereV3/index.html) [97] and JASPER (http://jaspar.
genereg.net/) [98] to characterise for the presence of
putative estrogen and androgen response elements
(EREs and AREs) respectively. CISTER (http://zlab.bu.
edu/~mfrith/cister.shtml) [99] can be used to check
for both elements. These tools and strategy were used
by Batra et al. [25] for a similar purpose.

A recent class of powerful functional elements, which
play an extensive role in the genomic regulation as a
part of epigenetic mechanisms in the cell, are
microRNAs [100]. Their deregulation has been impli-
cated in various diseases like Cancer, Schizophrenia
and Autism [101-103]. SNPs lying in miRNA binding
regions and interfering with its regulatory function,
also called MiRSNPs have also been reported to be
associated with risk and with drug resistance in some
instances [101]. mirBase (http://www.mirbase.org/)
[104] is a microRNA Database which finds targets
predicted by microCosm, TargetScan and Pictar
[105]. Mirsnpscore (http://www.bigr.medisin.ntnu.
no/mirsnpscore/) [106] is a database of SNPs pre-
dicted to influence microRNA efficacy by mapping
potential causative SNPs to microRNA target sites.
MirSNP  (http://cmbi.bjmu.edu.cn/mirsnp) [107]
provides a database of SNPs which are predicted to
enhance/create or decrease/break a miRNA-mRNA
binding site. Another tool to find microRNA
targets is microRNA.org (http://www.microrna.
org/) [108], which also provides experimentally
observed gene expression patterns. Two available
and well recommended resources for miRSNP
information and functional effect prediction in
diseases are PolymiRTS database (http://compbio.
uthsc.edu/miRSNP/) [109] and Patrocles (http://
www.patrocles.org/) [110]. A comparative strategy
of using more than one web tool can increase scope
of analysis and circumvent technical drawbacks of
the individual tools.

eQTL

Expression quantitative trait loci (eQTL) mapping is
a technique which uses results from two high
throughput techniques, i.e. genome wide gene expre-
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ssion analysis and the GWAS to define an association
between a particular genomic loci variant with a
changed gene expression pattern, thus, attributing
specific genetic regulatory roles to candidate SNPs in
the gene locus [111-114]. cis acting eQTLs are those
located near the target genes and have a direct
influence on its gene regulation, whereas trans acting
eQTLs are located away from the target region and
show an indirect remotely regulated gene expression
[115].

Software developed towards facilitating mining of
genetic expression and variant associations include
eQTL Explorer, eQTL Viewer, FastMap and Lirnet.
Bioinformatics concepts relating to eQTL have been
reviewed in [116]. eQTL Explorer (http://web.
bioinformatics.ic.ac.uk/eqtlexplorer/) [117] as an
addition to resources provided by previous softwares
like WebQTL [118] and QTL Express [119], enables
integrated visualization using a Java graphical
interfaces; extracts eQTL results from external
sources (multiple microarray experiments) and
presents them such that they can be compared among
each other, and with the pQTL (protein expression)
mapped to the genome. eQTL Viewer (http://statgen.
ncsu.edu/eQTLViewer/) [120] uses Scalable Vector
Graphics for visualisation and carries an added
advantage of biological annotations being present
dynamically on its interactive mapping results plot.
FastMap (http://comptox.unc.edu/fastmap.php) [121],
developed in 2009, enables a faster analysis of
expression and genotype data by organising SNPs into
a hamming distance based tree thus minimizing the
number of steps involved. In addition, it provides
permutation based significance testing of results.
Lirnet (http://www.cs.washington.edu/homes/suinlee/
lirnet/) [122] uses a learning strategy to overcome
problems of low population size and correlating SNP
effect on gene expression due to large genomic
regions being in LD for any given trait, i.e. it learns
the ‘regulatory potential’ of a SNP through a Bayesian
method from its previously known genomic context
(such as regulatory networks and features existing and
relevant to the gene) and gives an estimate of
likelihood of effecting gene expression.

Conclusion

Recent advances in high-throughput experimental tech-
nologies like whole-genome gene expression profiling,
the genome wide association studies (GWAS), next gener-
ation DNA, RNA sequencing and CHIP-seq scan the gen-
ome for disease associated genetic variants and add
knowledge to gene function, regulation, SNP prioritisation
resources [123,124]. They provide extensive whole gen-
ome data and high coverage genomic, transcriptomic,
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epigenomic, and proteomic information in numerous cell
types, classifying tissue specific behaviour, interactions and
cell functioning [124,125]. In present day context, candi-
date gene studies can utilize the current knowledge re-
sources made available by these initiatives to further
discovery, and validating these interactions to uncover a
myriad of susceptible disease associations. Applying the
candidate gene approach to next generation data is bound
to give rich dividends in terms of elucidation of complex
disease mechanisms, better prognosis and diagnosis of pa-
tients in a short time, and in an efficient way.

Additional files

Additional file 1: Table S1. List of useful web-tools for candidate gene
selection and SNP mapping [5,6,10-21,23,24,27-33,37,39-46,50-55,62].

Additional file 2: Table S2. SNP Effects and functional analysis
[28,62,65-71,75,76,78-80,83,84,88-94,97-99,105-110,117,120-122,126-139].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

JB conceived the idea. RP collated the information on all in silico tools and
associated websites with input from JB. RP and JB wrote the manuscript. JAC
critically reviewed the manuscript. All authors read and approved the final
manuscript.

Acknowledgements

The current work is supported by NHMRC Grant #1050742; NHMRC Grant
#1009458; NHMRC Principal Research Fellowship (J.A. Clements) and NHMRC
Early Career Fellowships (J. Batra). We acknowledge Amanda Spurdle for her
review of the manuscript and valuable feedback.

Received: 7 November 2012 Accepted: 15 April 2013
Published: 9 May 2013

References

1. Kwon JM, Goate AM: The candidate gene approach. Alcohol Res Health
2000, 24(3):164-168.

2. Collins FS, Guyer MS, Chakravarti A: Variations on a theme: cataloging
human DNA sequence variation. Science 1997, 278(5343):1580-1581.

3. Peters BJM, Rodin AS, De Boer A, Maitland-van der Zee A-H:
Methodological and statistical issues in pharmacogenomics. J Pharm
Pharmacol 2010, 62(2):161-166.

4. Burdick KE, DeRosse P, Kane JM, Lencz T, Malhotra AK: Genetic variation in
the MET proto-oncogene is associated with schizophrenia and general
cognitive ability. Am J Psychiatry 2010, 167(4):436-443.

5. Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu F, Yang H, Ch'ang L-Y,
Huang W, Liu B, Shen Y: The international HapMap project. Nature 2003,
426(6968):789-796.

6. NatureAn integrated map of genetic variation from 1,092 human
genomes. 2012, 491(7422):56-65.

7. Pharoah PDP, Dunning AM, Ponder BAJ, Easton DF: Association studies for
finding cancer-susceptibility genetic variants. Nat Rev Cancer 2004,
4(11):850-860.

8. Braem MGM, Schouten LJ, Peeters PHM, den Brandt PA, Onland-Moret NC:
Genetic susceptibility to sporadic ovarian cancer: A systematic review.
Biochimica et Biophysica Acta (BBA) - Rev Cancer 2011, 1816(2):132-146.

9. Tabor HK, Risch NJ, Myers RM: Candidate-gene approaches for studying
complex genetic traits: practical considerations. Nat Rev Genet 2002,
3(5):391-397.

10. Fernandez J, Hoffmann R, Valencia A: iHOP Web Services Family. In
Bioinformatics for personalized medicine. Edited by Freitas A, Navarro A. Berlin
Heidelberg: Springer; 2012:102-107. vol. 6620.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

Page 8 of 11

Hokamp K, Wolfe KH: PubCrawler: keeping up comfortably with PubMed
and GenBank. Nucleic Acids Res 2004, 32(suppl 2):W16-W19.

Mastellos D, Andronis C, Persidis A, Lambris JD: Novel biological networks
modulated by complement. Clin Immunol 2005, 115(3):225-235.

Croft D, OKelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati
P, Gopinath G, Jassal B, et al: Reactome: a database of reactions, pathways
and biological processes. Nucleic Acids Res 2011, 39(suppl 1):D691-D697.
Frisch M, Klocke B, Haltmeier M, Frech K: Litinspector: literature and signal
transduction pathway mining in PubMed abstracts. Nucleic Acids Res
2009, 37(suppl 2):W135-W140.

Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar G, Venugopal A,
Telikicherla D, Navarro JD, Mathivanan S, Pecquet C, et al: NetPath: a public
resource of curated signal transduction pathways. Genome Biol 2010, 11(1):R3.
Haibe-Kains B, Olsen C, Djebbari A, Bontempi G, Correll M, Bouton C,
Quackenbush J: Predictive networks: a flexible, open source, web
application for integration and analysis of human gene networks. Nucleic
Acids Res 2012, 40(D1):D866-D875.

Chen J, Bardes EE, Aronow BJ, Jegga AG: ToppGene Suite for gene list
enrichment analysis and candidate gene prioritization. Nucleic Acids Res
2009, 37(suppl 2:W305-W311.

Tranchevent L-C, Capdevila FB, Nitsch D, De Moor B, De Causmaecker P,
Moreau Y: A guide to web tools to prioritize candidate genes. Brief
Bioinform 2011, 12(1):22-32.

Amberger J, Bocchini C, Hamosh A: A new face and new challenges for
online Mendelian inheritance in man (OMIM®). Hum Mutat 2011,
32(5):564-567.

Radivojac P, Peng K, Clark WT, Peters BJ, Mohan A, Boyle SM, Mooney SD:
An integrated approach to inferring gene-disease associations in humans.
Proteins: Structure, Function, and Bioinformatics 2008, 72(3):1030-1037.
Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB,
Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, et al: Oncomine 3.0: genes,
pathways, and networks in a collection of 18,000 cancer gene expression
Profiles1. New York (NY): Neoplasia Press Inc; 2007.

Hu P, Bader G, Wigle DA, Emili A: Computational prediction of cancer-
gene function. Nat Rev Cancer 2007, 7(1):23-34.

Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Church DM,
DiCuccio M, Edgar R, Federhen S, Helmberg W, et al: Database resources of
the national center for biotechnology information. Nucleic Acids Res 2005,
33(suppl 1):D39-D45.

Hubbard TJP, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y,
Clapham P, Clarke L, et a: Ensembl 2009. Nucleic Acids Res 2009,

37(suppl 1):D690-D697.

Batra J, Nagle C, O'Mara T, Higgins M, Dong Y, Tan O, Lose F, Skeie L,
Srinivasan S, Bolton K; et al: A Kallikrein 15 (KLK15) single nucleotide
polymorphism located close to a novel exon shows evidence of
association with poor ovarian cancer survival. BMC Cancer 2011, 11(1):119.
Narla G, DiFeo A, Reeves HL, Schaid DJ, Hirshfeld J, Hod E, Katz A, Isaacs WB,
Hebbring S, Komiya A, et al: A Germline DNA polymorphism enhances
alternative splicing of the KLF6 tumor suppressor gene and is associated
with increased prostate cancer risk. Cancer Res 2005, 65(4):1213-1222.
Thierry-Mieg D, Thierry-Mieg J: AceView: a comprehensive cDNA-
supported gene and transcripts annotation. Genome Biol 2006,

7(Suppl 1):S12.

Kuhn RM, Karolchik D, Zweig AS, Wang T, Smith KE, Rosenbloom KR, Rhead
B, Raney BJ, Pohl A, Pheasant M, et al- The UCSC genome browser
database: update 2009. Nucleic Acids Res 2009, 37(suppl 1).D0755-D761.
The EPC: A User's guide to the encyclopedia of DNA elements (ENCODE).
PLoS Biol 2011, 9(4):e1001046.

Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I: VISTA:
computational tools for comparative genomics. Nucleic Acids Res 2004,
32(suppl 2:W273-W279.

Visel A, Minovitsky S, Dubchak |, Pennacchio LA: VISTA enhancer browser—
a database of tissue-specific human enhancers. Nucleic Acids Res 2007,
35(suppl 1):088-D92.

Lukashin I, Novichkov P, Boffelli D, Paciorkowski AR, Minovitsky S, Yang S,
Dubchak I: VISTA region viewer (RViewer)—a computational system for
prioritizing genomic intervals for biomedical studies. Bioinformatics 2011,
27(18):2595-2597.

Chen Y-H, Liu C-K, Chang S-C, Lin Y-J, Tsai M-F, Chen Y-T, Yao A:
GenoWatch: a disease gene mining browser for association study.
Nucleic Acids Res 2008, 36(suppl 2):W336-W340.


http://www.biomedcentral.com/content/supplementary/1471-2156-14-39-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2156-14-39-S2.doc

Patnala et al. BMIC Genetics 2013, 14:39
http://www.biomedcentral.com/1471-2156/14/39

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Mooney SD, Krishnan VG, Evani US: Bioinformatic tools for identifying
disease gene and SNP candidates. In Genetic Variation. Edited by Barnes
MR, Breen G. Humana Press; 2010:307-319. vol. 628.

Batra J, O'Mara T, Patnala R, Lose F, Clements JA: Genetic polymorphisms
in the human tissue kallikrein (KLK) locus and their implication in various
malignant and non-malignant diseases. Biol Chem 2012, 393:1365.
Coassin S, Brandstatter A, Kronenberg F: Lost in the space of bioinformatic
tools: a constantly updated survival guide for genetic epidemiology. The
GenEpi toolbox. Atherosclerosis 2010, 209(2):321-335.

Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K:
dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001,
29(1):308-311.

Church DM, Lappalainen |, Sneddon TP, Hinton J, Maguire M, Lopez J,
Garner J, Paschall J, DiCuccio M, Yaschenko E, et al: Public data archives for
genomic structural variation. Nat Genet 2010, 42(10):813-814.

Chen K, McLellan MD, Ding L, Wendl MC, Kasai Y, Wilson RK, Mardis ER:
PolyScan: an automatic indel and SNP detection approach to the
analysis of human resequencing data. Genome Res 2007, 17(5):659-666.
Saccone SF, Quan J, Jones PL: BioQ: tracing experimental origins in public
genomic databases using a novel data provenance model. Bioinformatics
2012, 28(8):1189-1191.

Saccone SF, Quan J, Mehta G, Bolze R, Thomas P, Deelman E, Tischfield JA,
Rice JP: New tools and methods for direct programmatic access to the
dbSNP relational database. Nucleic Acids Res 2011, 39(suppl 1):D901-D907.
Riva A, Kohane IS: SNPper: retrieval and analysis of human SNPs.
Bioinformatics 2002, 18(12):1681-1685.

Andersen MC, Engstrém PG, Lithwick S, Arenillas D, Eriksson P, Lenhard B,
Wasserman WW, Odeberg J: In silico detection of sequence variations
modifying transcriptional regulation. PLoS Comput Biol 2008, 4(1):e5.
Packer BR, Yeager M, Staats B, Welch R, Crenshaw A, Kiley M, Eckert A,
Beerman M, Miller E, Bergen A, et al: SNP500Cancer: a public resource for
sequence validation and assay development for genetic variation in
candidate genes. Nucleic Acids Res 2004, 32(suppl 1):D528-D532.

Wang K, Li M, Hakonarson H: ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res 2010,
38(16).e164.

Xu Z, Taylor JA: SNPinfo: integrating GWAS and candidate gene
information into functional SNP selection for genetic association studies.
Nucleic Acids Res 2009, 37(suppl! 2):W600-W605.

Weiss KM, Clark AG: Linkage disequilibrium and the mapping of complex
human traits. Trends in Genetics 2002, 18(1):19-24.

Ardlie KG, Kruglyak L, Seielstad M: Patterns of linkage disequilibrium in the
human genome. Nat Rev Genet 2002, 3(4):299-309.

Slatkin M: Linkage disequilibrium [mdash] understanding the
evolutionary past and mapping the medical future. Nat Rev Genet 2008,
9(6):477-485.

Palleja A, Horn H, Eliasson S, Jensen LJ: DistiLD Database: diseases and
traits in linkage disequilibrium blocks. Nucleic Acids Res 2012,
40(D1):D1036-D1040.

Lawrence R, Day-Williams A, Mott R, Broxholme J, Cardon L, Zeggini E:
GLIDERS - A web-based search engine for genome-wide linkage
disequilibrium between HapMap SNPs. BMC Bioinforma 2009, 10(1):367.
Yoo J, Lee Y, Kim Y, Rha S, Kim Y: SNPAnalyzer 2.0: a web-based
integrated workbench for linkage disequilibrium analysis and association
analysis. BMC Bioinforma 2008, 9(1):290.

Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker
PIW: SNAP: a web-based tool for identification and annotation of proxy
SNPs using HapMap. Bioinformatics 2008, 24(24):2938-2939.

A compilation of some available software for linkage disequilibrium
analysis. http://www.genes.org.uk/software/LD-software.shtml.

Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of
LD and haplotype maps. Bioinformatics 2005, 21(2):263-265.

Jackson DG, Healy MD, Davison DB: Binformatics: not just for sequences
anymore. BIOSILICO 2003, 1(3):103-111.

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H,
Reynolds AP, Sandstrom R, Qu H, Brody J, et al: Systematic localization of
common disease-associated variation in regulatory DNA. Science 2012,
337(6099):1190-1195.

Wang X, Tomso DJ, Liu X, Bell DA: Single nucleotide polymorphism in
transcriptional regulatory regions and expression of environmentally
responsive genes. Toxicol Appl Pharmacol 2005, 207(2, Supplement):84-90.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Page 9 of 11

Prokunina L, Alarcén-Riquelme ME: Regulatory SNPs in complex diseases:
their identification and functional validation. Expert Reviews in Molecular
Medicine 2004, 6(10):1-15.

GuhaThakurta D, Xie T, Anand M, Edwards S, Li G, Wang S, Schadt E: Cis-
regulatory variations: a study of SNPs around genes showing cis-linkage
in segregating mouse populations. BMC Genomics 2006, 7(1):235.
Muinos-Gimeno M, Montfort M, Bayes M, Estivill X, Espinosa-Parrilla Y:
Design and evaluation of a panel of single-nucleotide polymorphisms in
microRNA genomic regions for association studies in human disease. Fur
J Hum Genet 2009, 18(2):218-226.

McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F: Deriving
the consequences of genomic variants with the Ensembl APl and SNP
Effect Predictor. Bioinformatics 2010, 26(16):2069-2070.

Cooper GM, Shendure J: Needles in stacks of needles: finding disease-
causal variants in a wealth of genomic data. Nat Rev Genet 2011,
12(9):628-640.

Jiang L, Zhang C, Li Y, Yu X, Zheng J, Zou P, Li Y, Bin X, Lu J, Zhou Y: A
non-synonymous polymorphism Thr115Met in the EpCAM gene is
associated with an increased risk of breast cancer in Chinese population.
Breast Cancer Res Treat 2011, 126(2):487-495.

Yue P, Melamud E, Moult J: SNPs3D: candidate gene and SNP selection
for association studies. BMC Bioinformatics 2006, 7(1):1-15.

Ryan M, Diekhans M, Lien S, Liu Y, Karchin R: LS-SNP/PDB: annotated non-
synonymous SNPs mapped to Protein Data Bank structures.
Bioinformatics 2009, 25(11):1431-1432.

Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger
A, Braberg H, Yang Z, Meng EC, Pettersen EF, Huang CC, et al:
ModBase, a database of annotated comparative protein structure
models, and associated resources. Nucleic Acids Res 2011, 39(suppl
1):D465-D474.

Jegga AG, Gowrisankar S, Chen J, Aronow BJ: PolyDoms: a whole genome
database for the identification of non-synonymous coding SNPs with
the potential to impact disease. Nucleic Acids Res 2007,

35(suppl 1):D700-D706.

Consortium TU: Reorganizing the protein space at the universal protein
resource (UniProt). Nucleic Acids Res 2012, 40(D1).D71-D75.

De Baets G, Van Durme J, Reumers J, Maurer-Stroh S, Vanhee P, Dopazo J,
Schymkowitz J, Rousseau F: SNPeffect 4.0: on-line prediction of molecular
and structural effects of protein-coding variants. Nucleic Acids Res 2012,
40(D1):0935-D939.

Conde L, Vaquerizas JM, Dopazo H, Arbiza L, Reumers J, Rousseau F,
Schymkowitz J, Dopazo J: PupaSuite: finding functional single nucleotide
polymorphisms for large-scale genotyping purposes. Nucleic Acids Res
2006, 34(suppl 2):W621-W625.

Mah JTL, Low ESH, Lee E: In silico SNP analysis and bioinformatics tools: a
review of the state of the art to aid drug discovery. Drug Discov Today
2011, 16(17-18):800-809.

Mah JTL, Low ESH, Lee E: In silico SNP analysis and bioinformatics tools: a
review of the state of the art to aid drug discovery. Drug discovery today
2011, 16(17):800-809.

Miller MP, Kumar S: Understanding human disease mutations through the
use of interspecific genetic variation. Hum Mol Genet 2001,
10(21):2319-2328.

Kwasigroch JM, Gilis D, Dehouck Y, Rooman M: PoPMuSiC, rationally
designing point mutations in protein structures. Bioinformatics 2002,
18(12):1701-1702.

Mort M, Evani US, Krishnan VG, Kamati KK, Baenziger PH, Bagchi A, Peters BJ,
Sathyesh R, Li B, Sun Y, et al: In silico functional profiling of human
disease-associated and polymorphic amino acid substitutions. Hum
Mutat 2010, 31(3):335-346.

Sunyaev S, Ramensky V, Bork P: Towards a structural basis of human non-
synonymous single nucleotide polymorphisms. Trends in Genetics 2000,
16(5):198-200.

Adzhubei 1A, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,
Kondrashov AS, Sunyaev SR: A method and server for predicting
damaging missense mutations. Nat Meth 2010, 7(4):248-249.

Kumar P, Henikoff S, Ng PC: Predicting the effects of coding non-
synonymous variants on protein function using the SIFT algorithm. Nat
Protocols 2009, 4(8):1073-1081.

Choi Y, Sims GE, Murphy S, Miller JR, Chan AP: Predicting the functional effect
of amino acid substitutions and Indels. PLoS ONE 2012, 7(10):e46688.


http://www.genes.org.uk/software/LD-software.shtml

Patnala et al. BMIC Genetics 2013, 14:39
http://www.biomedcentral.com/1471-2156/14/39

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

102.

103.

Li S, lakoucheva LM, Mooney SD, Radivojac P: Loss of post-translational
modification sites in disease. In Pac Symp Biocomput. World Scientific;
2010:337-347.

Mann M, Jensen ON: Proteomic analysis of post-translational
modifications. Nat Biotech 2003, 21(3):255-261.

Blom N, Gammeltoft S, Brunak S: Sequence and structure-based
prediction of eukaryotic protein phosphorylation sites. J Mol Biol 1999,
294(5):1351-1362.

Sigrist CJA, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A,
Hulo N: PROSITE, a protein domain database for functional characterization
and annotation. Nucleic Acids Res 2010, 38(suppl 1):D161-D166.

Werner T: Functional in silico analysis of Non-coding SNPs, Bioinformatics for
geneticists. Chichester, UK: John Wiley & Sons, Ltd; 2003:273-287.

Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS,
Crawford GE: High-resolution mapping and characterization of open
chromatin across the genome. Cell 2008, 132(2):311-322.

Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M: Open chromatin in
pluripotency and reprogramming. Nat Rev Mol Cell Biol 2011, 12(1):36-47.
Tsunoda T, Takagi T: Estimating transcription factor bindability on DNA.
Bioinformatics 1999, 15(7):622-630.

Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch
M, Bayerlein M, Werner T: Matlnspector and beyond: promoter analysis
based on transcription factor binding sites. Bioinformatics 2005,
21(13):2933-2942.

Heinemeyer T, Wingender E, Reuter |, Hermjakob H, Kel AE, Kel OV, Ignatieva
EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, et al: Databases on
transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids
Res 1998, 26(1):362-367.

Marinescu VD, Kohane IS, Riva A: The MAPPER database: a multi-genome
catalog of putative transcription factor binding sites. Nucleic Acids Res
2005, 33(suppl 1:D91-D97.

Macintyre G, Bailey J, Haviv |, Kowalczyk A: Is-rSNP: a novel technique for
in silico regulatory SNP detection. Bioinformatics 2010, 26(18):i524-i530.
Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M,
Karczewski KJ, Park J, Hitz BC, Weng S, et al: Annotation of functional
variation in personal genomes using RegulomeDB. Genome Res 2012,
22(9):1790-1797.

Coetzee SG, Rhie SK, Berman BP, Coetzee GA, Noushmehr H: FunciSNP: an
R/bioconductor tool integrating functional non-coding data sets with
genetic association studies to identify candidate regulatory SNPs. Nucleic
Acids Res 2012, 40(18):e139.

Hazelett DJ, Coetzee SG, Coetzee GA: A rare variant, which destroys a
FoxAT1 site at 8q24, is associated with prostate cancer risk. Cell Cycle
2013, 12(2):379-380.

Risch HA: Hormonal etiology of epithelial ovarian cancer, with a
hypothesis concerning the role of androgens and progesterone. J Nat/
Cancer Inst 1998, 90(23):1774-1786.

Bajic VB, Tan SL, Chong A, Tang S, Strom A, Gustafsson J-A, Lin C-Y, Liu ET:
Dragon ERE Finder version 2: a tool for accurate detection and analysis
of estrogen response elements in vertebrate genomes. Nucleic Acids Res
2003, 31(13):3605-3607.

Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E,
Yusuf D, Lenhard B, Wasserman WW, Sandelin A: JASPAR 2010: the greatly
expanded open-access database of transcription factor binding profiles.
Nucleic Acids Res 2010, 38(suppl 1):D105-D110.

Frith MC, Hansen U, Weng Z: Detection of cis -element clusters in higher
eukaryotic DNA. Bioinform 2001, 17(10):878-889.

Freedman ML, Monteiro ANA, Gayther SA, Coetzee GA, Risch A, Plass C,
Casey G, De Biasi M, Carlson C, Duggan D, et al: Principles for the post-
GWAS functional characterization of cancer risk loci. Nat Genet 2011,
43(6):513-518.

. Mishra PJ, Mishra PJ, Banerjee D, Bertino JR: MiRSNPs or MiR-

polymorphisms, new players in microRNA mediated regulation of the
cell: Introducing microRNA pharmacogenomics. Cell Cycle 2008,
7(7):853-858.

Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA, Sommer SS, Rossi JJ: SNPs in
human miRNA genes affect biogenesis and function. RNA 2009,
15(9):1640-1651.

Davis-Dusenbery BN, Hata A: MicroRNA in cancer: the involvement of
aberrant MicroRNA biogenesis regulatory pathways. Genes & Cancer 2010,
1(11):1100-1114.

104.

105.

106.

107.

109.

110.

118.
119.

120.

121.

126.

128.

129.

Page 10 of 11

Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource:
targets and expression. Nucleic Acids Res 2008, 36(suppl 1):.D149-D153.
Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation
and deep-sequencing data. Nucleic Acids Res 2011, 39(suppl 1):D152-D157.
Thomas LF, Saito T, Seetrom P: Inferring causative variants in microRNA
target sites. Nucleic Acids Res 2011, 39(16):e109.

Liu G, Zhang F, Li T, Lu M, Wang L, Yue W, Zhang D: MirSNP, a database of
polymorphisms altering miRNA target sites, identifies miRNA-related
SNPs in GWAS SNPs and eQTLs. BMIC Genom 2012, 13(1):661.

. Betel D, Koppal A, Agius P, Sander C, Leslie C: Comprehensive modeling of

microRNA targets predicts functional non-conserved and non-canonical
sites. Genome Biol 2010, 11(8):R90.

Ziebarth JD, Bhattacharya A, Chen A, Cui Y: PolymiRTS Database 2.0:
linking polymorphisms in microRNA target sites with human diseases
and complex traits. Nucleic Acids Res 2012, 40(D1):D216-D221.

Hiard S, Charlier C, Coppieters W, Georges M, Baurain D: Patrocles: a
database of polymorphic miRNA-mediated gene regulation in
vertebrates. Nucleic Acids Res 2010, 38(suppl 1):D640-D651.

. Gilad Y, Rifkin SA, Pritchard JK: Revealing the architecture of gene

regulation: the promise of eQTL studies. Trends Genet 2008, 24(8):408-415.

. Jansen RC, Nap J-P: Genetical genomics: the added value from

segregation. Trends Genet 2001, 17(7):388-391.

. Jansen RC: Studying complex biological systems using multifactorial

perturbation. Nat Rev Genet 2003, 4(2):145-151.

. Wu C, Delano DL, Mitro N, Su SV, Janes J, McClurg P, Batalov S, Welch GL,

Zhang J, Orth AP, et al: Gene Set enrichment in eQTL data identifies
novel annotations and pathway regulators. PLoS Genet 2008,
4(5):e1000070.

. Wittkopp PJ: Genomic sources of regulatory variation in cis and in trans.

Cell Mol Life Sci 2005, 62(16):1779-1783.

. Li H, Deng H: Systems genetics, bioinformatics and eQTL mapping.

Genetica 2010, 138(9):915-924.

. Mueller M, Goel A, Thimma M, Dickens NJ, Aitman TJ, Mangion J: eQTL

Explorer: integrated mining of combined genetic linkage and expression
experiments. Bioinform 2006, 22(4):509-511.

Wang J, Williams R, Manly K: WebQTL. Neuroinform 2003, 1(4):299-308.
Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM: QTL Express:
mapping quantitative trait loci in simple and complex pedigrees.
Bioinform 2002, 18(2):339-340.

Zou W, Aylor D, Zeng Z-B: eQTL Viewer: visualizing how sequence
variation affects genome-wide transcription. BMC Bioinform 2007, 8(1):7.
Gatti DM, Shabalin AA, Lam T-C, Wright FA, Rusyn I, Nobel AB: FastMap:
Fast eQTL mapping in homozygous populations. Bioinform 2009,
25(4):482-489.

. Lee S-I, Dudley AM, Drubin D, Silver PA, Krogan NJ, Pe’er D, Koller D:

Learning a prior on regulatory potential from eQTL data. PLoS Genet
2009, 5(1):21000358.

. Giacomini KM, Brett CM, Altman RB, Benowitz NL, Dolan ME, Flockhart DA,

Johnson JA, Hayes DF, Klein T, Krauss RM, et al: The Pharmacogenetics
research network: from SNP discovery to clinical drug response. Clin
Pharmacol Ther 2007, 81(3):328-345.

. Hawkins RD, Hon GC, Ren B: Next-generation genomics: an integrative

approach. Nat Rev Genet 2010, 11(7):476-486.

. Horgan R, Kenny L: ‘Omic’technologies: genomics, transcriptomics,

proteomics and metabolomics. The Obstetrician & Gynaecologist 2011,
13(3):189-195.

Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR: ESEfinder: a web
resource to identify exonic splicing enhancers. Nucleic Acids Res 2003,
31(13):3568-3571.

. Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR: An increased

specificity score matrix for the prediction of SF2/ASF-specific exonic
splicing enhancers. Hum Mol Genet 2006, 15(16):2490-2508.

Goren A, Ram O, Amit M, Keren H, Lev-Maor G, Vig |, Pupko T, Ast G:
Comparative analysis identifies exonic splicing regulatory sequences the
complex definition of enhancers and silencers. Mol Cell 2006,
22(6):769-781.

Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB: Systematic
identification and analysis of exonic splicing silencers. Cell 2004,
119(6):831-845.

. Zhang XH-F, Chasin LA: Computational definition of sequence motifs

governing constitutive exon splicing. Genes Dev 2004, 18(11):1241-1250.



Patnala et al. BMIC Genetics 2013, 14:39
http://www.biomedcentral.com/1471-2156/14/39

131. Fairbrother WG, Yeh R-F, Sharp PA, Burge CB: Predictive identification of
exonic splicing enhancers in human genes. Science 2002,
297(5583):1007-1013.

132. Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud
C: Human splicing finder: an online bioinformatics tool to predict
splicing signals. Nucleic Acids Res 2009, 37(9):e67.

133. Ok Yang J, Kim W-Y, Bhak J: ssSNPTarget: genome-wide splice-site single

nucleotide polymorphism database. Hum Mutat 2009, 30(12):E1010-E1020.

134. Ahmed F, Kumar M, Raghava GPS: Prediction of polyadenylation signals in
human DNA sequences using nucleotide frequencies. In Silico Biol 2009,
9(3):135-148.

135. Tabaska JE, Zhang MQ: Detection of polyadenylation signals in human
DNA sequences. Gene 1999, 231(1-2):77-86.

136. Zuker M: Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res 2003, 31(13):3406-3415.

137. Reeder J, Steffen P, Giegerich R: pknotsRG: RNA pseudoknot folding
including near-optimal structures and sliding windows. Nucleic Acids Res
2007, 35(suppl 2:W320-W324.

138. Reeder J, Hochsmann M, Rehmsmeier M, Voss B, Giegerich R: Beyond
Mfold: Recent advances in RNA bioinformatics. J Biotechnol 2006,
124(1):41-55.

139. Lambert A, Fontaine J-F, Legendre M, Leclerc F, Permal E, Major F, Putzer H,
Delfour O, Michot B, Gautheret D: The ERPIN server: an interface to
profile-based RNA motif identification. Nucleic Acids Res 2004, 32(suppl 2):
W160-W165.

doi:10.1186/1471-2156-14-39
Cite this article as: Patnala et al.: Candidate gene association studies: a
comprehensive guide to useful in silico tools. BMC Genetics 2013 14:39.

Page 11 of 11

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Review
	Introduction
	Selection of a candidate gene and retrieval of relevant sequence information
	Cataloguing SNPs in a candidate gene

	Selection of the tag SNPs for the association studies
	Selection of candidate SNPs through function prediction
	Functional SNPs within the coding regions
	Functional SNPs within the non-coding and �regulatory regions

	Conclusion
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

