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Abstract

Background: Complex binary traits are influenced by many factors including the main effects of many quantitative
trait loci (QTLs), the epistatic effects involving more than one QTLs, environmental effects and the effects of gene-
environment interactions. Although a number of QTL mapping methods for binary traits have been developed,
there still lacks an efficient and powerful method that can handle both main and epistatic effects of a relatively
large number of possible QTLs.

Results: In this paper, we use a Bayesian logistic regression model as the QTL model for binary traits that includes
both main and epistatic effects. Our logistic regression model employs hierarchical priors for regression coefficients
similar to the ones used in the Bayesian LASSO linear model for multiple QTL mapping for continuous traits. We
develop efficient empirical Bayesian algorithms to infer the logistic regression model. Our simulation study shows
that our algorithms can easily handle a QTL model with a large number of main and epistatic effects on a personal
computer, and outperform five other methods examined including the LASSO, HyperLasso, BhGLM, RVM and the
single-QTL mapping method based on logistic regression in terms of power of detection and false positive rate.
The utility of our algorithms is also demonstrated through analysis of a real data set. A software package
implementing the empirical Bayesian algorithms in this paper is freely available upon request.

Conclusions: The EBLASSO logistic regression method can handle a large number of effects possibly including the
main and epistatic QTL effects, environmental effects and the effects of gene-environment interactions. It will be a
very useful tool for multiple QTLs mapping for complex binary traits.
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Background
Quantitative traits are usually influenced by multiple quan-
titative trait loci (QTLs), environmental factors and their
interactions [1]. Although complex binary traits only show
binary phenotypic variation different from the continuous
variation in quantitative traits, they do not follow a simple
Mendelian pattern of inheritance and also have a polygenic
basis similar to that of quantitative traits. Therefore, like
QTL mapping for quantitative traits, mapping for complex
binary traits aims to identify multiple genomic loci that are
associated with the trait and to estimate the genetic effects
of these loci possibly including any of the following effects:
main effects, gene-gene interactions (epistatic effects) and
effects of gene-environment interactions.
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A number of statistical methods have been developed to
identify QTLs for binary traits in experimental crosses.
Single-QTL mapping methods [2-8] analyze the associ-
ation between each individual genetic locus and the trait
independently. However, single-QTL mapping method
can only find the main effect of a QTL and cannot detect
epistatic effects involving more than one locus. Moreover,
it has been shown both theoretically and empirically that
multiple-QTL methods can improve power in detecting
QTLs and eliminate possible biases in the estimates of
QTL locations and genetic effects introduced by a single-
QTL model [9,10]. Therefore, several multiple QTL map-
ping for binary traits have been developed. These include
Bayesian methods [11-16] that rely on Markov Chain
Monte Carlo (MCMC) simulation to infer a multiple QTL
threshold model for binary, ordinal or longitudinal traits,
the multiple-interval mapping (MIM) methods [17,18]
that use the expectation-maximization (EM) algorithm to
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infer the threshold model or a generalized linear model
for binary or ordinal traits, and a method [19] that
employs a probability model based on classical transmis-
sion genetics to identify binary trait loci. However, all
these methods require large computation when the QTL
model includes a relatively large number of loci.
Since hundreds or thousands of genomic loci or

markers are usually genotyped and involved in QTL
mapping studies, including all these markers and their
possible interactions in a single model for multiple-QTL
mapping leads to a huge number of model variables, typ-
ically much larger than the sample size. This not only
entails huge computation that is not affordable to
existing QTL mapping methods mentioned earlier but
also may reduce power of detection and/or increase false
discover rate. Two techniques have been proposed to
handle the second problem: variable or model section
and shrinkage. More specifically, model selection using
the Akaike or Bayesian information criterion (AIC or
BIC) and variable selection based on stepwise logistic re-
gression and the BIC have been proposed in [19] and
[18], respectively, to restrict the model space and to re-
duce the number of variables included in the model.
Bayesian shrinkage method that was first applied to
QTL mapping for continuous traits [15,20-24] has also
been used in QTL mapping for binary traits [15,22],
which employed MCMC for the inference of the QTL
model. To reduce computational burden, more efficient
methods [25,26] were developed to infer Bayesian QTL
models for binary traits. Another well-known method
for shrinking variables is the least absolute shrinkage
and selection operator (LASSO) [27], which has been
applied to QTL mapping for continuous traits [24] and
investigated for genome-wide association study (GWAS)
of complex diseases [28,29].
Recently, we developed an efficient empirical Bayesian

LASSO (EBLASSO) algorithm for multiple-QTL mapping
for continuous traits, which is capable of handling a large
number of markers and their interactions simultaneously
[30]. In this paper, we extend the linear Bayesian LASSO
model [23,30,31] to logistic regression to map multiple
QTLs for binary traits. We consider a three-level and a
two-level hierarchical model for the prior distributions of
the regression coefficients. Building on the EBLASSO al-
gorithm [30], we develop efficient empirical Bayesian
algorithms to infer the Bayesian LASSO logistic regression
model with two different priors. We then use simulations
to compare the performance of our EBLASSO with that
of five other QTL mapping methods for binary traits,
that include the LASSO-logistic regression [27,28], the
HyperLasso [25], the Bayesian hierarchical generalized lin-
ear models (BhGLM) [26], the relevant vector machine
(RVM) [32,33], and the single-QTL mapping method
based on logistic regression. Simulation results show that
our EBLASSO offers best overall performance among the
examined methods in terms of power of detection and
false positive rate. Analysis of a real dataset with our
algorithms also identifies several QTLs.

Methods
Logistic regression model
Let yi = 0 or 1 denote the binary trait of the ith sample of
n individuals in a study. Let us define y = [y1, y2, ···, yn]

T

as the binary phenotypes for all the n individuals. The
probability of observing yi = 1 is written as pi = Pr(yi = 1),
i = 1, ···, n, which are further collected into a vector p =
[p1, p2, ···, pn]

T. Suppose that m genetic markers of these n
individuals are genotyped and the genotype of marker j of
individual i is xij. Taking main and epistatic effects of all
markers into consideration, we have the following logistic
regression model for multiple-QTL mapping:

logit pið Þ ¼ β0 þ
Xm
j¼1

βjxij þ
Xm�1

j¼1

Xm
j0>j

βjj0xij⋅xij0 ð1Þ

where βj and βjj’ are regression coefficients, and logit(pi) is
defined as:

logit pið Þ ¼ log
Pr yi ¼ 1ð Þ

1� Pr yi ¼ 1ð Þ
� �

ð2Þ

The widely adopted Cockerham genetic model [34] will
be used in this paper. For a back-cross design, the
Cockerham model assigns −0.5 and 0.5 to xij for two pos-
sible genotypes at marker j. For an intercross (F2) design,
there are two possible main effects named additive and
dominance effects. The Cockerham model defines the
values of the additive effect as −1, 0 and 1 for the three
genotypes and the values of the dominance effect as −0.5
and 0.5 for homozygotes and heterozygotes, respectively.
For simplicity, we only consider additive effects in (1),
although the methods developed in this paper are also
applicable to the model with dominance effects.

Let us define xGi = [xi1, xi2,⋯, xim]
T, and βG ¼

β1; β2; ⋅⋅⋅; βm
� �T

. Let xGGi be a m(m − 1)/2 × 1 vector
containing xij⋅xij0 ; j ¼ 1;⋯;m� 1; j0 > j, and βGG be a vec-
tor consisting of corresponding regression coefficients. We

further define xi = [1, xGi
T , xGGi

T ]T and β ¼ β0; β
T
G;β

T
GG�

T
h

,

then (1) can be written in a more compact form:

logit pið Þ ¼ xTi β ð3Þ
From (3), we can express pi as follows:

pi ¼ 1

1þ e�xTi β
ð4Þ

Note that there are k = 1 + m(m + 1)/2 unknown regres-
sion coefficients in (1) or (3). Typically, we have k ≫ n. If
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dominance effects of the markers are considered, k is even
larger. Simultaneously estimation of all possible genetic
effects with k ≫ n is a challenging problem. However, we
would expect that most elements of β are zeros and thus
we have a sparse model. We will exploit this sparsity to
develop efficient methods to infer β.
Prior distributions for the regression coefficients
We assign a noninformative uniform prior to β0, i.e.,
p(β0)∝ 1. For βi, i = 1, 2,···, k, we will consider two hier-
archical models for the prior distribution. The first model
is the one used in both the linear Bayesian LASSO model
[23,30,31] and the HyperLasso logistic regression [25,35],
which has three levels. At the first level, βi, i = 1, 2,···, k,
follows an independent normal distribution with mean
zero and variance σi

2: βi ∼N(0, σi
2). At the second level, σi

2,
i = 1, 2, ···, k, follows an independent exponential distribu-
tion with probability density function p(σi

2) = λexp(−λσi
2),

with parameter λ > 0. At the third level, λ follows a
gamma distribution gamma(a, b) with a shape parameter
a and an inverse scale parameter b. We name the logistic
regression model with this normal-exponential-gamma
(NEG) prior as BLASSO-NEG.
The three-level hierarchical model has two hyper-

parameters a and b. While these two parameters give
much flexibility of adjusting the degree of shrinkage, sig-
nificant computation is required for cross validation to
properly choose their values. To reduce the computational
burden of cross validation, we will also consider a model
with only the first two levels in the BLASSO-NEG. This
two level hierarchical model only has one hyperparameter
λ to be adjusted, and thus, it requires less computation.
We name the logistic regression model with the two-level
prior as BLASSO-NE. We will next develop two empirical
Bayes (EB) algorithms to infer these two models.
Empirical Bayesian algorithm for the BLASSO-NEG model
(EBLASSO-NEG)
Using the EB approach [36], we will first estimate σi

2,
i = 1, 2,⋯, k, from the data, and then find the posterior
distribution of β based on the estimated σi

2. As shown in
[30], the prior distribution of σi

2 can be found as
p σ2
i

� � ¼ Z 1

0
p
�
σ2i
��λ�p λð Þdλ ¼ a

b σ2i =bþ 1
� �aþ1 ð5Þ
Let us define σ2 ¼ σ21; σ
2
2; ⋅⋅⋅; σ

2
k

� �T
and y = [y1, y2, ···, yn]

T, then the posterior distribution of β and σ2 is given by:

p β; σ2 yj Þ∝p y βj Þp β σ2
�� �

p σ2
� ���� ð6Þ
where p
�
y
��β� ¼ Yn

i¼1

pyii 1�pið Þ1�yi and p β σ2j Þð is a normal

distribution. Since it is difficult to integrate out β in (6) to
get the marginal posterior distribution of σ2, it is difficult
to estimate σ2 directly by maximizing its posterior func-
tion. To overcome this problem, we will employ an itera-
tive approach that relies on Laplace approximation of the
posterior distribution of β [32,37,38].
Let αi = 1/σi

2, i = 1, 2,⋯, k, and collect them in a vector

α ¼ α1; α2; ⋅⋅⋅; αk½ �T . Then, we have β∼N 0;A�1
� �

, where
A is a diagonal matrix With α on its diagonal. Suppose
in the (i-1)th iteration, we have estimated A as Â. Given
y and A = Â, the posterior distribution of β can be
approximated by a Gaussian distribution found with
the Laplace approximation approach [37] as follows.
Since the posterior distribution of β is given by
p β yj Þ∝p y βj Þp βð Þðð , we have:

logp
�
β yj Þ ¼

Xn
i¼1

yi logpi þ 1� yið Þ log 1� pið Þ½ �

� 1
2
βTAβþ constant ð7Þ

The gradient g and Hessian matrix H of logp β yj Þð are
given by g ¼ XT y� pð Þ � Aβ and H = − (XTBX +A), re-
spectively, where p = [p1, p2,⋯, pn]

T, X = [x1
T, x2

T,⋯, xn
T]T

and B is a diagonal matrix with the diagonal entries p1
(1 − p1), ⋅ ⋅⋅, pn(1 − pn). With g and H available, we can
use the Newton–Raphson method to find the max-
imum a posterior (MAP) estimate or the mode of β, by

maximizing logp β yj Þð , which is denoted as β̂MAP . Then

the Laplace approximation of p β y; Â
��� 	


is a normal

distribution p̂ β y; Â
��� 	


, with mean β̂MAP and covari-

ance given by [37]:

Σ ¼ �Hð Þ�1 ¼ XTBMAPXþ Â

 	�1

ð8Þ

where BMAP is obtained with β̂MAP .

If we postulate a linear model ŷ ¼ Xβþ ε, where ŷ ¼
Xβ̂MAP þ B�1

MAP y� pMAPð Þ with pMAP being obtained with

β̂MAP , ∼N 0;B�1
MAP

� �
and β∼N 0; Â

�1
 	
, we can show that

p̂ β y; Â
��� 	


is the posterior distribution of β in this linear

model as follows. The linear model implies that
the posterior distribution of β is normal with mean
ΣXTBMAP ŷ and covariance Σ [37]. Hence, we need to

prove β̂MAP ¼ ΣXTBMAP ŷ . Since the gradient g = 0 at

βMAP, we have Âβ̂MAP ¼ XT y� pMAPð Þ: From (8),

we get Â ¼ Σ�1 � XTBMAPX; Therefore, we have

Σ�1 � XTBMAPX
� �

β̂MAP ¼ XT y� pMAPð Þ , which implies
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that Σ�1β̂MAP ¼ XTBMAP Xβ̂MAP � B�1
MAP y� pMAPð Þ

h i
¼

XTBMAP ŷ. This leads to β̂MAP ¼ ΣXTBMAP ŷ as desired.
Therefore, in the ith iteration we form the following

linear model:

ŷ ¼ Xβþ ε ð9Þ

where ŷ and the distribution of ε are defined earlier, but β
follows the three-level BLASSO-NEG model. Then based
on the linear model (9), we use the EBLASSO algorithm
[30] to get a new estimate of A, which replaces Â obtained
in the (i-1)th iteration. The iteration process goes on until
certain convergence criterion is satisfied, which gives the

final estimate of A and Laplace approximation p̂ β y; Â
�� ��

of the posterior distribution of β. The iterative process
needs to be initialized. Similar to the EBLASSO [30], we
assume that only one regression coefficient is initially
nonzero or equivalently only one αi is finite. The
EBLASSO-NEG algorithm is summarized as follows:

Algorithm 1 (EBLASSO-NEG)

1. Initialization: choose a > −1.5 and b > 0. The first
basis in the model, xj, is identified by j ¼
argi max xTi y� p0ð Þ�� ��;∀i� �

, with p0 being the
proportion of yi = 1 in the dataset. Compute β̂ j ¼
exTj exj
 	�1exTj y� p0ð Þ with exj ¼ xj � 1

n

Xn
i¼1

xij, and set

αj ¼ 1=β̂
2

j and all αi, i ≠ j notionally to infinity
2. While the convergence criteria are not satisfied
3. Given Â, use the Newton–Raphson method to find
β̂MAP

4. Calculate ŷ ¼ Xβ̂MAP þ B�1 y� pð Þ
5. Apply the EBLASSO algorithm [30] to linear model
(9) to update Â.

6. End while
7. Output β̂MAP and covariance Σ.

Note that the algorithm starts with a logistic regres-
sion model with only one variable and then iteratively
adds variables with a finite αi to the model. The number
of variables in the model km is typically much smaller
than the total number of possible variables k. Since we
only need to calculate the gradient g and the Hessian
matrix H for the km variables in the model, the compu-
tation required in step 3 and in the calculation of Σ in
(8) is relatively small. Moreover, the EBLASSO algorithm
in step 5 is very efficient due to the fact that the variance
components can be estimated in a closed form and other
algorithmic techniques as discussed in [30].
The convergence criteria in Algorithm 1 are defined as:

1) no effect can be added to or delete from the model, 2)
the likelihood change between two consecutive iterations
is less than a pre-specified small value and 3) the total
change of α between two consecutive iterations is less
than a pre-specified small value. In step 5, the EBLASSO
algorithm [30] needs to be modified slightly. First, since
the noise covariance is known as B-1, we do not estimate
noise covariance. Second, since the mean of ŷ in (9) is
zero, we do not need to estimate it. Third, we use the for-
mula Σ = (XTBX +A)− 1 to update the covariance of β.
The values of hyperparameters (a, b) are determined

by cross validation as will be described in the Result
section. The first basis in the initialization step is
determined using the method in LASSO-logistic regres-

sion [28]. The initial value β̂j of the first basis is

calculated from a linear regression model that uses y as
the response variable [39], and the variance σj

2 is

approximated as β̂
2

j , resulting in αj ¼ 1=β̂
2

j .

Suppose that β̂MAP output from the EBLASSO-NEG al-
gorithm contains kn entries. Then the posterior distribution

of the corresponding kn × 1 regression coefficient β̂ can be

approximated by a normal distribution with mean β̂MAP

and covariance Σ. For the ith entry of β̂, we can calculate a

t-statistics ti ¼ β̂i=Σ
1=2
ii , and then use the student’s distribu-

tion to calculate a p-value for β̂i . Markers that correspond

to those β̂i with a p-value less than a threshold, say 0.05,
are then identified as QTLs and the corresponding entries

of β̂MAP are estimated effect sizes of the QTLs.
We next derive an efficient EB algorithm for the

BLASSO-NE model, which simplifies the hyperparameter
selection, since we only need to determine the optimal
value of one hyperparameter λ using cross validation.

Empirical Bayesian algorithm for the BLASSO-NE model
(EBLASSO-NE)
The prior distribution of σi

2, i = 1, 2, . . ., k or equivalently
αi, i = 1, 2, . . ., k is used only in step 5 of the EBLASSO-
NEG algorithm. Because the EBLASSO-NE model uses a
different prior distribution from the one used in the
BLASSO-NEG model, we will derive a new formula for
estimating A in each iteration. Then the EBLASSO-NE al-
gorithm uses the same steps in the EBLASSO-NEG except
that the new formula is used in step 5 to find Â.
Suppose that the postulated linear model after step 4

is ŷ ¼ XβMAP þ ε . Following the derivation in [30], the
log marginal posterior distribution of α can be found as:

L αð Þ ¼ � 1
2

log Cj j þ ŷTC�1ŷ
h i

�
Xk
i

log
λ

αi
þ constant ð10Þ

where C ¼ XA�1XT þ B�1 is the covariance matrix of ŷ
in the linear model. Each αi will be estimated iteratively
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by maximizing the log marginal posterior distribution L
(α) with the other parameters fixed. Specifically, L(α)
can be written as L αð Þ ¼ L α�ið Þ þ L αið Þ, where L(α) is a
function of αi and L α�ið Þ is a function of the remaining
parameters. By defining C�i ¼ C� αi�1xix

T
i , we can

write L(α) as:

L αið Þ ¼ 1
2

log
αi

αi þ si
þ q2i
αi þ si

� �
� λ

αi
ð11Þ

where si ¼ xTi C
�1
�i xi and qi ¼ xTi C

�1
�i ŷ . In the Additional

file 1, we show that L(α) has a unique global maximum
and that the optimal αi maximizing L(α) is given by:

α�i ¼ r; if q2i � si > 2λ
1; otherwise;



ð12Þ

where r ¼ � siþ4λð Þ� ffiffiffi
Δ

p

2 si�q2i þ2λð Þ ⋅si, and Δ = si
2 + 8λqi

2.

The EBLASSO-NE algorithm has the same steps
as those in Algorithm 1 but with the following two
modifications. First, we need to choose a value for par-
ameter λ instead of a and b in step 1, which can be done
using cross validation. In the LASSO-logistic regression

[28], an upper bound of λ was estimated to be λlasso ¼
argj max xTj y� p0ð Þ

��� ��� . In our EBLASSO-NE, we suggest

the maximum value of λ to be λmax= 1.5λlasso based on
our simulations showing that this maximum value usu-
ally only gives one nonzero regression coefficient. Sec-
ond, when applying the EBLASSO algorithm in step 5 of
Algorithm 1, the EBLASSO algorithm uses equation (12)
instead of equation (8) in [30] to estimate A.
Note that since the EBLASSO-NEG model for logistic

regression considered in this paper uses the same prior
as the one used by the EBLASSO for linear regression
considered in [30], the EBLASSO-NEG algorithm is es-
sentially a combination of Laplace approximation and
the EBLASSO algorithm [30]. The EBLASSO-NE model
considered here however uses a prior different from the
one used by the EBLASSO [30]. Therefore, we employ
(12) to modify the EBLASSO algorithm in [30], and then
the EBLASSO-NE algorithm is a combination of Laplace
approximation and the modified EBLASSO algorithm.

Results
Simulation study
A total of m = 481 genetic markers were simulated to be
evenly spaced on a large chromosome of 2400 centi-
Morgan (cM) with an interval of d = 5 cM, which gives
rise to a correlation of R = e-2d = 0.9048 since the
Haldane map function [40] was assumed. The simulated
population was an F2 family derived from cross of
two inbred lines. The dummy variable for the three
genotypes, A1A1, A1A2 and A2A2 of individual i at
marker j was defined as xij = 1, 0, -1, respectively. Two
simulation setups were employed. In the first setup, 20
markers were QTLs with main effects but without
interactions. In the second setup, 10 main and 10 epi-
static effects were simulated; a marker could have both
main and epistatic effects, while two markers involving
in an interaction effect did not necessarily have main
effects. The QTLs were selected randomly with varying
distances (5 cM - 500 cM) and effect sizes (in the range
between −1.28 and 2.19). Note that QTLs were assumed
to be coincided with markers in both simulation setups.
If QTLs are not on markers, they may still be detected
since correlation between a QTL and a nearby marker is
high, although a slightly larger sample size may be
needed to give the same power of detection.
EBLASSO-NEG and EBLASSO-NE algorithms were

implemented in C and could be called from the R envir-
onment [41], and thus QTL mapping with these two
algorithms were carried out in R. To compare the per-
formance of our algorithms with that of other relevant
algorithms, we also analyzed the simulated data with
the following five QTL mapping methods: the LASSO
regularized logistic regression implemented in the glmnet
package [42], the HyperLasso [25], the BhGLM method
[26], the RVM [32,33], and the single QTL logistic regres-
sion test using the glm procedure in R. Simulation results
from these methods are presented next.

Simulation result for the dataset with only main effects
The genotypes of m = 481 markers of n = 500 individuals
were generated using the procedure described earlier.
Twenty markers were chosen as QTLs; their IDs and
effect sizes are given in Table 1. Let xi be a 20 × 1 vector
containing the genotypes of 20 QTLs of individual i, and
β contain corresponding effect sizes. Then probability pi

was calculated from pi ¼ 1= 1þ e�xTi β

 	

, and yi was

generated from a Bernoulli random variable with par-
ameter pi. Therefore, a simulated data set included a
500 × 1 vector y and a 500 × 481 design matrix X.
The average log likelihood (denoted as logL) from ten-

fold cross validation was used to select the optimal value
of the hyperparameter(s) in the EBLASSO-NE, the
EBLASSO-NEG, the LASSO. Specifically, the dataset
was first divided into 10 subsets. Nine subsets were used
as the training data to estimate model parameters and
the log likelihoods of the remaining testing data were
calculated using the estimated parameters. This process
was repeated ten times until every subset had been
tested. The logL was the average of all the likelihoods
obtained from 10 testing datasets.
For the EBLASSO-NE, we first calculated λmax as

described earlier. We then chose a set of values for λ



Table 1 True and estimated effects for the simulated data with main effects

locus True
β

EBLASSO-NE

β̂ s
β̂


 	a
EBLASSO-NEG

β̂ s
β̂


 	a
LASSO

β̂ s
β̂


 	a
HyperLasso

β̂ s
β̂


 	a
BhGLM

β̂ s
β̂


 	a
RVM

β̂ s
β̂


 	a
Single QTL

β̂ s
β̂


 	a

11 1.99 0.76(0.22) 1.61(0.22) 0.51(0.73) 1.67(0.30) 1.50(0.27) 3.87(0.60) 0.67(0.13)

26 1.81 0.54(0.19) 1.23(0.21) − 0.93(0.38) 1.07(0.28) 1.53(0.47)b 0.73(0.13)

42 −1.28 −0.34(0.17) −0.72(0.21)b − −1.02(0.29) −0.95(0.24) − −

48 −0.91 −0.40(0.19) −0.82(0.21) − −1.12(0.28)b −0.91(0.23) − −

72 1.28 − − − − − − 0.77(0.14)

73 1.81 1.37(0.21) 1.91(0.24) 1.03(0.85) 2.37(0.32) 2.16(0.28) 4.73(0.59) 0.80(0.14)

123 0.63 − − − − − − −

127 −0.63 − − − − − − −

161 0.44 0.30(0.15)b 0.59(0.19)b − 0.82(0.25)b − 1.15(0.35) 0.57(0.13)

181 0.99 0.38(0.20)b − − − − − 1.67(0.18)

182 2.19 1.60(0.29) 2.86(0.31) 1.26(0.86) 3.34(0.38) −2.73(0.37) 5.01(0.72) 1.89(0.19)

185 1.29 0.36(0.17)b 0.56(0.19)b 0.27(0.43)b 1.00(0.27)b 0.73(0.32) 2.38(0.69)b 1.44(0.16)

221 −0.75 − −0.36(0.16)b − − − − −

243 −0.57 −0.34(0.15) −0.41(0.16) −0.26(0.33) −0.75(0.24) −0.69(0.20) −1.74(0.45) −

262 −1.28 − − − − − − −

268 0.91 − − − − − 2.90(0.62) −

270 0.57 − − − − − − −

274 −0.99 − − − − − −1.90(0.46)b −

361 0.41 0.30(0.16)b 0.40(0.16)b 0.15(0.56)b 0.77(0.24)b −0.72(0.21)b 1.80(0.40)b −

461 0.51 − − − − − − −

Parameter(s) λ=0.050 a = 0.01 λ=0.0257 a = 0.1 υ=10-3

τ=10-4b = 6 α=0.05

CPU time(s) 25.56 1.31 1.67 1.90 20.64 54.70 8.84

true/false
positive

11/2c 11/1c 6/4c 10/1c 9/0c 17/18c 8/25d

aThe estimated marker effect is denoted by β̂ and the standard deviation is denoted by sβ .
bThe estimated marker effect was obtained from a neighboring marker (≤ 20 cM) rather than from the marker with true effect.
cNumber of effects with a p-value ≤ 0.05.
dNumber of effects with a p-value ≤ 1.04×10-4 after Bonferroni correction was applied.

Huang et al. BMC Genetics 2013, 14:5 Page 6 of 14
http://www.biomedcentral.com/1471-2156/14/5
decreasing from λmax to 0.001 at a step of 0.35 on the
logarithmic scale. Ten-fold cross validation using this set
of values identified an optimal value denoted as λ1. We
next zoomed in the interval of length 0.01 centering at
λ1, and performed cross validation using ten more values
equally spaced in the interval. This procedure identified
the largest logL at the optimal λ = 0.050. A summary of
results for several values of λ and the corresponding logL
was given in Table 2. Using the optimal values of λ, the
EBLASSO-NE detected 11 true and 2 false positive
effects that have p-value ≤ 0.05. The estimated sizes of
the true effects and their standard errors were given in
Table 1.
The optimal values of parameters a and b in the

EBLASSO-NEG were obtained with cross validation in
three steps. In the first step, a = b = 0.001, 0.01, 0.1, 1
were examined and a pair (a1, b1) corresponding to the
largest logL was obtained. In the second step, b was fixed
at b1 and a was chosen from the set [−0.5, -0.4, -0.3, -0.2,
-0.1, -0.01, 0.01, 0.05, 0.1, 0.5, 1], which yielded an a2
corresponding to the largest logL. Note that when fixing
one of the two parameters, the degree of shrinkage is a
monotonic function of the other parameter. In the third
step, a = a2 was fixed and b was varied from 0.01 to 10
with a step size of one for b > 1 and a step size of one on
the logarithmic scale for b < 1. This three-step procedure
identified the optimal pair of parameters that maximized
logL at (a, b) = (0.01, 6). A summary of results for several
pairs of a and b and the corresponding logL was given in
Table 2. The whole dataset was then analyzed with the
optimal parameters, which identified 11 true and 1 false
positive effects that have p-value ≤ 0.05. The estimated
sizes of true effects and their standard errors were depicted
in Table 1.
For the LASSO-logistic regression, the cross validation

procedure in the glmnet package [42] automatically



Table 2 Cross-validations of the EBLASSO-NE, EBLASSO-
NEG and LASSO for the simulation with only main effects

Algorithm Parametersa logL ± STEb

0.0011 −0.39 ± 0.03

0.0022 −0.42 ± 0.03

0.0447 −0.42 ± 0.04

EBLASSO-NE 0.0500 −0.36 ± 0.02c

0.0631 −0.39 ± 0.02

0.1259 −0.41 ± 0.03

0.2512 −0.40 ± 0.01

(−0.5,0.05) −0.38 ± 0.03

(0.01,0.05) −0.37 ± 0.02

(1,0.05) −0.47 ± 0.02

EBLASSO-NEG (0.01,5) −0.39 ± 0.03

(0.01,6) –0.36 ± 0.02c

(0.01,7) −0.37 ± 0.02

0.1037 −0.56 ± 0.02

0.0516 −0.44 ± 0.03

LASSO 0.0257 −0.37 ± 0.04

0.0128 −0.35 ± 0.05c

0.0064 −0.36 ± 0.06
aParameters are λ for EBLASSO-NE and LASSO, (a, b) for EBLASSO-NEG.
bThe average log likelihood and standard error were obtained from ten-fold
cross validation.
cThe optimal log likelihood and corresponding parameter(s) chosen for
comparison with other methods.

Table 3 Summary of results of the HyperLasso for the
simulated data with only main effects

Parameters True/False
positive effectsaShape a Inverse scale b Type I error α

0.1 1.7 × 10-3 0.05 10/1b

0.05 1.5 × 10-3 9/2

0.01 1.4 × 10-3 10/2

0.1 9.8 × 10-4 0.01 9/1

0.05 8.8 × 10-4 9/1

0.01 7.9 × 10-4 9/1

0.1 5.2 × 10-4 0:05
481 8/1

0.05 4.7 × 10-4 8/1

0.01 4.2 × 10-4 8/1

0.1 3.6 × 10-4 0:01
481 7/0

0.05 3.2 × 10-4 7/0

0.01 2.9 × 10-4 7/0
aEffects with p-value ≤ 0.05 were considered as significant different from zero.
bThe optimal results chosen for comparison with other methods.
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identified a maximum value λmax for λ that gave one
nonzero effect and then λ was decreased from λmax to
λmin = 0.001λmax with a step size of [log(λmax) − log
(λmin)]/100 on the logarithmic scale. The largest λ that
yielded a logL within one standard error of the max-
imum logL was determined as the optimal value. This
gave the optimal values λ = 0.0257. The whole dataset
was then analyzed using the optimal λ to estimate QTL
effects, which identified 40 markers with nonzero regres-
sion coefficients. The LASSO only estimates regression
coefficients without giving a confident interval or a p-value
for the estimates. If we counted all nonzero coefficients as
detected effects and considered them as one effect if they
were in 20 cM from a QTL, the LASSO yielded 14 true
positive effects and 12 false positive effects. Moreover, the
LASSO typically gives a biased estimate of non-zero coeffi-
cient toward zero. To reduce the false positive rate and the
bias, we refitted an ordinary logistic regression model with
the markers selected by the LASSO. Among those markers
with a p-value ≤ 0.05 in the refitted model, 6 markers were
true positive effects 4 were false positive effects. A sum-
mary of results from cross validation for the EBLASSO-NE
, the EBLASSO-NEG and LASSO was given in Table 2.
The estimated sizes of true effects and their standard errors
were depicted along with all 20 true effects in Table 1.
The HyperLasso employed the same Bayesian NEG
hierarchical prior for the marker effects and estimated
the posterior modes using a numerical algorithm [25].
Hoggart et al. did not propose a cross validation pro-
cedure to determine the values of a and b but suggested
a range from 0.01 to 10 for a and gave a formula to cal-
culate b from the level of the type-I error controlled at
α. In our simulations, we used three values for a and four
values for α as listed in Table 3. The values of b calculated
from α using the method in [25] is also included in Table 3.
Similar to the LASSO, the HyperLasso outputs a point
estimate of β without a confidence interval or a p-value.
Therefore, we refitted the markers selected by the
HyperLasso with ordinary logistic regression and iden-
tified markers with a p-values ≤ 0.05 as QTLs. The
number of effects identified with different values of a
and b are presented in Table 3. The best results in
Table 3 include 10 true and 1 false positive effects. We
would emphasize here that these best results may not
be achievable in the analysis of real data because the
optimal values of a and b cannot be determined. The
estimated sizes of true effects and their standard
errors for the best results in Table 3 were depicted
along with all 20 true effects in Table 1.
The BhGLM method [26] employed a two-level

Bayesian hierarchical prior for the marker effects: the
ith entry of β follows a normal distribution N(0, σi

2) and
σi
2 obeys an inverse- χ2 distribution Inv - χ2(υi, τi

2), and it
used the EM algorithm to estimate the posterior mode
of the Bayesian QTL model. The default value for
hyperparameters νi and τi are 0.01 and 10-4, respectively.
The variance of regression coefficients in BhGLM method
was treated as missing data and estimated in the E-step of
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the EM algorithm. The p-value of each nonzero effect was
calculated from the t-distribution of one degree of free-
dom using the t-statisrics calculated from the estimated
regression coefficient and corresponding variance. We
examined 15 different pairs of values for νi and τi as listed
in Table 4. The values νi = 10-3, 10-4 and 10-5 all gave the
best result which includes 9 true and 0 false positive
effects. The corresponding estimated sizes of the true
effects and their standard errors were depicted in Table 1.
The RVM for classification [33] assumed a uniform

prior for the variance of regression coefficients, and thus
it did not involve parameter selection. We utilized the
MATLAB implementation of the RVM from the authors
[33] to analyze the datasets and identified 35 nonzero
effects with a p-value ≤ 0.05. Among these effects, we have
17 true and 18 false positives. The estimated sizes of true
effects and their standard errors were depicted in Table 1.
The false positive rates were much higher that the
EBLASSO-NEG, EBLASSO-NE, LASSO, and HyperLasso.
When we reduced the number of false positive effects to
three, at a level slightly higher than that of our EBLASSO-
NEG and EBLASSO-NE, by reducing the cutoff for the
p-value, we obtained 10 true positive effects, which were
smaller than the number of true effects identified with our
EBLASSO-NEG and EBLASSO-NE.
Single QTL mapping with logistic regression was

performed using the glm procedure in R [41]. After
Bonferroni correction, effects with a p-value ≤ 0.05/481 =
1.04 × 10-4 were considered as significant, which identified
8 true and 25 false positive effects. The estimated sizes of
Table 4 Summary of results of the BhGLM for the
simulated data with only main effects

Parameters True/False
positive effectsaν τ

10-5 9/0

10-4 9/0

10-3 10-5 9/0

10-2 9/0

10-1 9/0

10-5 9/0

10-4 9/0

10-3 10-4 9/0b

10-2 9/0

10-1 9/0

10-5 9/0

10-4 9/0

10-3 10-3 9/0

10-2 9/0

10-1 9/0
aEffects with p-value ≤ 0.05 were considered as significant different from zero.
bThe optimal results chosen for comparison with other methods.
true effects and their standard errors were depicted in
Table 1. The small p-value cutoff used by Bonferroni
correction was expected to yield a small false positive rate.
However, the single QTL mapping method with Bonferroni
correction still gave much more false positive effects than
other methods. If we had used another popular permuta-
tion technique for multiple test correction, we effectively
employed a larger p-value cutoff. Although this could in-
crease power of detection, it would also increase the false
positive rate. To see this, we increased the cutoff for the p-
value to 6 × 10-4 so that the number of true positive effects
detected was increased to 11, at a level same as that of our
EBLASSO-NEG and EBLASSO-NE methods, but then the
number of false positive effects was increased to 27.
As shown in Table 1, the EBLASSO-NE and the

EBLASSO-NEG identified more true effects than other
four methods except RVM, and yielded a number of
false positive effects comparable to those of the LASSO,
the HyperLasso and the BhGLM but much smaller than
those of the RVM and the single-QTL mapping method.
Note that the false negative rate can be easily calculated
from 20 simulated true effects and the true positive effects
detected by each method. While the EBLASSO-NE and
the EBLASSO-NEG offered similar performance in terms
of power of detection and the false positive rate, several
true effects were detected by either of them, which implies
that the power of detection could be improved if the results
of two methods were combined. Similar observations can
be seen from the simulation results for two more independ-
ent replicates described in Additional file 1: Table S1 and
Table S2.
It is well known that the LASSO typically selects only

one variable among a set of highly correlated variables.
This phenomenon is indeed observed from the results in
Tables 1, Additional file 1: Tables S1 and S2 for two
pairs of highly correlated markers, (72,73) and (181,182).
It turns out that all methods compared except the single
QTL mapping method have the same problem, although
the problem with the EBLASSO-NE tends to be less se-
vere. The LASSO is also known to bias the regression
coefficients toward zero. This is observed from the
results in Table 1, Additional file 1: Tables S1 and S2.
Since the EBLASSO-NE uses the same prior distribution
as the LASSO, it exhibits the same trend. However, the
RVM inflated all the detected effects likely due to its
small degree of shrinkage. On the other hand, the
EBLASSO-NEG, the HyperLasso and the BhGLM tend
to detect only one of the two highly correlated effects
with an inflated effect size.
All simulations were performed on a personal com-

puter (PC) with a 3.4 GHz Intel PentiumD CPU and
2Gb memory running Windows XP, except that the
HyperLasso was ran on an IBM BladeCenter cluster
including computing nodes with 2.6 GHz Xeon or
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2.2 GHz Opteron CPU running Linux. The speeds of the
EBLASSO-NEG, the LASSO and the HyperLasso are
comparable and faster than the other methods. The
speeds of the EBLASSO-NE, the BhGLM and the single-
QTL mapping method are comparable.
Simulation results for the model with main and epistatic
effects
In the second simulation setup, 10 main and 10 epistatic
effects were simulated. The genotypes of m = 481 markers
of n = 1,000 individuals were generated using the proced-
ure described earlier. Locations and effects of the QTLs
and QTL pairs are shown in Table 5. Some of the markers
had only main or epistatic effect, while the others had
both main and epistatic effects. The status of the binary
trait of each individual was generated using the logistic re-
gression model as described in the first simulation setup.

The QTL model contained a total of k ¼ 1þ 481þ
Table 5 True and estimated effects for the simulated data wit

locus i locus j True β EBLASSO- NE β̂ s
β̂


 	a
EBLASSO-NEG β̂ s



11 11 1.99 0.83(0.12) 1.66(0.19)

26 26 1.81 0.46(0.11) 1.42(0.18)

42 42 −1.28 −0.36(0.11) −0.87(0.20)

48 48 −0.91 −0.19(0.09)b −0.68(0.19)b

72 72 1.28 1.01(0.16) 2.53(0.20)

73 73 1.81 0.40(0.14) −

182 182 2.19 0.50(0.14) 1.57(0.26)

185 185 1.29 0.69(0.14) 1.49(0.26)

262 262 −1.28 −0.24(0.09) −0.70(0.15)

268 268 0.91 − −

5 6 1.28 0.42(0.13) 1.11(0.22)

6 39 1.29 0.38(0.15)b 1.37(0.23)b

42 220 1.99 0.23(0.13) 1.99(0.25)b

81 200 −1.28 −0.36(0.13)b −1.02(0.22)b

87 164 1.81 0.44(0.17) 1.73(0.25)

87 322 2.19 0.90(0.15) 2.10(0.25)

118 278 −1.28 −0.29(0.12) −0.76(0.20)

328 404 −0.99 −0.21(0.12)b −

373 400 −0.91 −0.22(0.12)b −1.12(0.22)b

431 439 1.81 0.24(0.13) 1.37(0.24)

Parameter(s) λ = 0.1600 a = −0.2

b = 0.1

CPU time(s) 2037.4 268.6

True/False positive 19/5c 17/4c

aThe estimated marker effect is denoted by β̂ and the standard deviation is denote
bThe estimated marker effect was obtained from a neighboring marker (≤ 20 cM) ra
cNumber of effects with p-value ≤ 0.05.
dNumber of effects with a p-value ≤ 4.31×10-7 after Bonferroni correction was appli
481
2

� �
¼ 115; 922 possible effects, a number about 116

times of the sample size, and the design matrix X was of
size 1000 × 115,921. QTL mapping was performed with
all methods described earlier. However, the BhGLM
method did not converge and the RVM ran out of mem-
ory due to a large number of nonzero effects included in
the model, and thus, they did not yield any result.
The same cross-validation procedures described earlier

were performed to choose the optimal values of the
hyperparameters for the EBLASSO-NE, the EBLASSO-
NEG and LASSO, and the results for several values of
hyperparameters are presented in Table 6. Optimal
values of the hyperparameters were then used to analyze
the whole dataset. The number of true and false positive
effects identified and the estimated effect sizes of the
detected true effects are given in Table 5.
For the HyperLasso, we again examined 12 pairs of

values for hyperparameters a and b as listed in Table 7,
h main and epistatic effects

β̂

	a
LASSO β̂ s

β̂


 	a
HyperLasso β̂ s

β̂


 	a
Two-locus test β̂ s

β̂


 	a

0.72(0.65) 2.21(0.25) 0.88(0.10)

0.39(0.55) 1.73(0.23) 0.56(0.09)

− −1.59(0.21)b −

−0.14(0.55)b − −

0.92(1.18) 3.17(0.27) 1.08(0.10)

− − 1.04(0.10)

0.51(0.96) 2.03(0.30) 1.23(0.10)

0.57(0.91) 1.88(0.30) 1.23(0.10)

−0.15(0.46) −0.78(0.19)b −

− − −

0.40(0.63) 1.63(0.28) −

0.15(1.16)b 1.28(0.35)b −

− 2.47(0.32) 0.77(0.14)

−0.15(1.42)b −1.22(0.27)b −

0.24(1.44) 2.15(0.32)b −

0.74(0.66) 2.44(0.30) 0.79(0.13)

−0.19(1.29) −0.99(0.26) −

−0.15(0.73)b −1.15(0.30)b −

−0.19(0.87) −1.23(0.27) −

− 1.58(0.29)b −

λ=0.0254 a = 0.1

α=0.01

62.7 1094.6 2936.0

15/26c 17/7c 8/18d

d by sβ .
ther than from the marker with true effect.

ed.



Table 6 Cross-validations of the EBLASSO-NE, EBLASSO-
NEG and LASSO for the simulation with main and
epistatic effects

Algorithm Parametersa logL ± STEb

0.0631 −0.44 ± 0.04

0.0891 −0.41 ± 0.04

0.1259 −0.39 ± 0.03

EBLASSO-NE 0.1600 −0.37 ± 0.01c

0.1778 −0.42 ± 0.04

0.2512 −0.53 ± 0.04

0.3548 −0.47 ± 0.04

(−0.4,0.05) −0.40 ± 0.05

(−0.2,0.05) −0.20 ± 0.05

(−0.1,0.05) −0.10 ± 0.05

EBLASSO-NEG (−0.2,0.01) −0.35 ± 0.02

(−0.2,0.1) −0.33 ± 0.02c

(−0.2,0.5) −0.35 ± 0.02

0.1027 −0.57 ± 0.01

0.0511 −0.47 ± 0.02

LASSO 0.0254 −0.37 ± 0.02c

0.0127 −0.37 ± 0.03

0.0063 −0.39 ± 0.04
aParameters are λ for EBLASSO-NE and LASSO, (a, b) for EBLASSO-NEG.
bThe average log likelihood and standard error were obtained from ten-fold
cross validation.
cThe optimal log likelihood and corresponding parameter(s) chosen for
comparison with other methods.

Table 7 Summary of results of the HyperLasso for the
simulated data with main and epistatic effects

Parameters True/False
positive effectsaShape a Inverse scale b Type I error α

0.1 8.5 × 10-4 0.05 17/18

0.05 7.6 × 10-4 19/18

0.01 6.8 × 10-4 19/19

0.1 4.9 × 10-4 0.01 17/7b

0.05 4.4 × 10-4 17/8

0.01 3.9 × 10-4 17/8

0.1 1.3 × 10-4 0:05
115921 5/0

0.05 1.1 × 10-4 5/0

0.01 1.0 × 10-4 8/0

0.1 1.1 × 10-4 0:01
115921 5/0

0.05 1.0 × 10-4 5/0

0.01 0.9 × 10-4 5/0
aEffects with p-value ≤ 0.05 were considered as significant different from zero.
bThe optimal results chosen for comparison with other methods.
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and identified a = 0.1 and b = 4.9 × 10-4 as the optimal
values that gave best tradeoff between the true and false
positive effects. We also used a two-locus logistic regres-
sion model logit(pi) = β0 + β1xi + β2xj + β3xi ⋅ xj, i = 1,⋯,
m-1, j > i, to test the epistatic effect of locus i and j. The
logistic regression model was fitted with the glm proced-
ure in R [41]. Effects with a p-value ≤ 0.05/k = 4.31 × 10-7

were considered as significant. Detailed QTL mapping
results for the HyperLasso and the two-locus test are also
given in Table 5.
As shown in Table 5, the EBLASSO-NE and the

EBLASSO-NEG detected the same or a larger number
of true effects but a smaller number of false positive
than the other methods, which clearly demonstrates
that our EBLASSO-NE and EBLASSO-NEG offer the
best overall performance in terms of power of detection
and the false positive rate. The LASSO is the fastest,
while the EBLASSO-NEG and the HyperLasso are the
second and the third fastest. Similar observations were
obtained from two more independent simulations, as
shown in the results for replicates 2 and 3 whose details
were presented in the Additional file 1.

Real data analysis
We used a mouse data published by Masinde et al. [43]
as an example to test our methods. The trait was wound
healing speed of mice measured as a binary trait, fast
healer denoted by 1 and slow healer denoted by 0. There
were 633 F2 mice derived from the cross of a faster
healer inbred line (MRL/MPj) and a slow healer inbred
line (SJL/J). At age 3 weeks, each F2 mouse was punched
a 2-mm hole in the lower cartilaginous part of each ear
using a metal ear puncher. The fast healer mice com-
pletely healed in 21 days after ear punch (complete clos-
ure of the holes) while the slow healer mice remained
open for the holes after 21 days of ear punch. Some of
the F2 mice healed partially and these mice were pheno-
typically coded as 1 if the holes were < 0.7 mm and 0 if
the holes were > 0.7 mm. This dataset consisted of the
genotypes of 119 markers across the mouse genome from
633 samples. Samples with more than 10% of missing
markers or with missing phenotype were removed,
resulting in a 532 × 119 genotype matrix with 3.28%
missing values. These missing genotypes were inferred
from neighboring markers. Total number of possible
effects is k = 7141.
We carried out QTL mapping for this dataset using the

EBLASSO-NE, the EBLASSO-NEG, the LASSO and the
HyperLasso, since simulation results presented earlier
show these four methods offer better performance than
the other methods. Ten-fold cross validation for the
EBLASSO-NE, the EBLASSO-NEG and the LASSO were
performed with the same procedures used in simulation
studies to obtain optimal values of the hyperparameters.
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For the EBLASSO-NE, λ = 0.4 was determined as the
optimal value, which resulted in 7 main and 4 epistatic
effects with a p-value ≤ 0.05. For the EBLASSO-NEG,
(a, b) = (0.01, 0.5) were the optimal values which resulted
in 4 main and 4 epistatic effects with a p-value ≤ 0.05. For
the LASSO, λ = 0.0715 was the optimal value, which
yielded 13 non-zero effects. Refitting an ordinary logistic
regression model with these 13 effects to the data identi-
fied 7 main and 3 epistatic effects with a p-value ≤ 0.05.
When α = 0.05/k and 0.01/k, the HyperLasso only identi-
fied 1 or 2 main effects; when α = 0.05, it identified more
than 40 effects. On the other hand, when a = 0.1 and α =
0.01, it identified 8 main and 17 epistatic effects, all having
a p-value ≤ 0.05, which seemed a more reasonable result
than the ones obtained with other values of a and α.
Therefore, these 25 effects were regarded as the effects
identified by the HyperLasso. The effects identified by at
least 3 of the 4 methods are listed in Table 8, which con-
tain 7 main and 3 epistatic effects.
Masinde et al. [43] previously identified 10 main ef-

fects using a single-QTL mapping method, and 8 epistatic
effects using two-way ANOVA. Among the 7 main effects
and 3 epistatic effects identified in our analysis, 6 of the
main effects are identical to those identified by Masinde
et al. but all 3 epistatic effects are different from the ones
identified by Masinde et al. One of the markers involved in
an epistatic effect (D4mit31) identified in our analysis was
a main effect identified by Masinde et al. Since our QTL
model considers the main and epistatic effects jointly, it
may account for both effects more reliably, comparing with
the single-QTL mapping approach and the two way
ANOVA used by Masinde et al. Therefore, the three epi-
static effects identified in our analysis may be novel effects
that are worth further experimental investigation.
Table 8 Results for the real data obtained with EBLASSO-NE,

Marker/Marker paira IDs Position (Chr,cM)
EBLASSO-NE β̂ s

β̂


 	b

D1mit334d (1,49.2) −0.15(0.28)

D3mit217d (3,43.7) −0.20(0.30)

D4mit214d (4,21.9) −0.24(0.30)

D6mit261d (6,29.5) −0.18(0.29)

D9mit270d (9,41.5) −0.25(0.31)

D9mit182 (9,53.6) −0.25(0.32)

D13mit228d (13,45.9) −0.12(0.27)c

(D1mit19;D17mit176) (1,37.2;17,12.0) 0.32(0.37)

(D4mit31d;Dxmit208) (4,50.3;20,18.6) 0.19(0.33)

(D7mit246;D11mit242) (7,12.0;11,31.9) 0.20(0.33)
aPaired markers in parenthesis are markers involved in an epistatic effect. Only effe
listed have a p-value ≤ 0.05.
bParameters are λ = 0.4 for EBLASSO-NE, (a, b) = (0.01, 0.5) for EBLASSO-NEG, λ = 0.
effect is denoted by β̂ and the standard deviation is denoted by sβ .
cThe estimated marker effect was obtained from a neighboring marker D13mit35 (5
dMarkers identified previously by Masinde et al. [41].
Some of the identified QTLs are in positions close
to the genes that are up-regulated in expression pro-
files obtained during the inflammation stage of wound
healing [44]. Loci D3mit217 and D9mit270 were identi-
fied as main effects in both our analysis and the study of
Masinde et al. It turns out that D3mit217 (chr3, 34.7 cM)
is close to genes calgranulin A (chr3, 43.6 cM), CD53
(chr3, 50.5 cM), and small proline-rich protein 1A (chr3,
45.2 cM), and that D9mit270 (chr9, 41.5 cM) is close to
gene annexin A2 (chr9, 37.0 cM). Locus D9mit182 was
identified as a main effect in our study but not identified
as an effect in the study of Masinde et al. It was found that
D9mit182 (chr9, 53.6 cM) is close to chemokine receptor
2 (chr9, 71.9 cM). Among the loci in the three epistatic
effects we identified, D11mit242 (chr11, 31.7 cM) is close
to chemokine (C-C motif) ligase 4 (chr11, 47.6 cM) and
chemokine (C-C motif ) ligase 6 (chr11, 41.5 cM). Genes
related to growth factors are known to play an important
role in wound healing [43,45]. D7mit246 and D17mit176
are involved in the epistatic effects we identified; and
D7mit246 is 5.0 cM away from the fibroblast growth factor
receptor 2 (FGFR 2), and D17mit176 is 12.2 cM away from
the vascular endothelial growth factor (VEGF).

Discussion
Our EBLASSO-NEG algorithm is based on a Bayesian
logistic regression model that uses the same three-level
hierarchical prior for the regression coefficients as the
one used in the Bayesian LASSO linear regression model
[23,30,31], the Bayesian hyper-Lasso linear regression
model [35] and the HyperLasso logistic regression model
[25]. The HyperLasso of Hoggart et al. [25] uses a nu-
merical algorithm to estimate the mode of the posterior
distribution, whereas our EBLASSO-NEG first estimates
EBLASSO-NEG, LASSO and HyperLasso

EBLASSO-NEG β̂ s
β̂


 	b
LASSO β̂ s

β̂


 	b
HyperLasso β̂ s

β̂


 	b

− −0.37(0.19) −0.80(0.18)

−0.62(0.13) −0.42(0.20) −

− −0.46(0.16) −0.81(0.20)

−0.42(0.12) −0.56(0.15) −0.78(0.18)

−0.72(0.13) −0.39(0.23) −0.57(0.24)

− −0.51(0.20) −0.80(0.26)

−0.40(0.12)c 0.38(0.20) 0.91(0.19)

0.60(0.19) 0.89(0.24) 0.92(0.30)

0.72(0.18) 0.71(0.23) 0.69(0.29)

0.48(0.16) − 0.71(0.25)

cts detected by at least three of the four algorithms are shown. All effects

0715 for LASSO and (a,α) = (0.1, 0.01) for HyperLasso. The estimated marker

9.0 cM).
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the variance of the regression coefficients and then find
an approximation of the posterior distribution of the re-
gression coefficients based on the estimated variance. As
shown in our simulation study, our EBLASSO-NEG
offers better performance than the HyperLasso of
Hoggart et al. in terms of power of detection, false posi-
tive rate and speed, especially when the number of pos-
sible effects is very large in QTL models with both main
and epistatic effects.
The LASSO-logistic regression was applied to GWAS

to identify genomic loci associated with complex disease
[28,29], and it can be directly employed in QTL mapping
for binary traits as shown in our simulation study and
real data analysis. The LASSO-logistic regression par-
ticularly implemented with the glmnet algorithm [42] is
very efficient. Our EBLASSO-NE algorithm and the
LASSO-logistic regression essentially employ the same
two-level prior for the regression coefficients. However,
the major difference is that the LASSO-logistic regres-
sion estimates the mode of the posterior distribution,
whereas our EBLASSO-NE algorithm first estimates the
variances of the regression coefficients and then finds
the posterior distributions of the regression coefficients.
In our simulation study, we demonstrated that both our
EBLASSO-NE and EBLASSO-NEG algorithms outper-
form the LASSO-logistic regression in terms of power of
detection and false positive rate, although their speed is
lower than that of the LASSO. The good performance of
our EBLASSO-NE and EBLASSO-NEG may be due to the
fact that our model inference using the variance and pos-
terior distribution of the regression coefficients provides
more information than the point estimation of the regres-
sion coefficients yielded by the LASSO-logistic regression.
Another prior distribution commonly employed in

Bayesian shrinkage is the mixture of normal and inverse-χ2

distributions as used in the Bayesian linear regression
model for continuous traits [23,24,46] and the generalized
linear model for continuous or binary traits in the BhGLM
method [26]. The BhGLM method uses the EM algorithm
to estimate the mode of the posterior distribution treating
the variance of regression coefficients as missing data. As
shown in our simulations for QTL models with only main
effects, our EBLASSO-NEG and EBLASSO-NE offer power
of detection better than and a false positive rate comparable
to the BhGLM method. The speed of the EBLASSO-NEG
is much higher than that of the BhGLM method, while the
speed of the EBLASSO-NE is comparable to that of the
BhGLM method. However, the BhGLM method was not
able to handle a QTL model with 115,921 variables and
1,000 samples in our simulation, whereas our EBLASSO-
NEG and EBLASSO-NE completed the analysis of this
model within 5 min and 35 min, respectively.
Our EBLASSO-NEG and EBLASSO-NE use the same

Laplace’s method originally proposed in [38] as the one
used in the RVM for classification [32,33]. However the
prior distributions used by three methods are different.
Although both the uniform prior and the inverse gamma
prior for the variance of regression coefficients were
considered in [32,33], the more efficient RVM algorithm
[33] employs the uniform prior. The uniform prior does
not have any hyperparameter and lacks flexibility of
adjusting the degree of shrinkage that our EBLASSO-
NEG and EBLASSO-NE enjoy. The uniform prior of the
RVM causes at least two problems. First, it often does
not provide sufficient degree of shrinkage in multiple
QTL mapping that includes a very large number of pos-
sible effects, which results in a large number of false
positive, as observed in our simulations in this paper
and in the simulation study for QTL mapping for con-
tinuous traits in [30,46]. Second, because of the relatively
low degree of shrinkage, the regression model usually
contains a relatively large number of nonzero regression
coefficients, which reduces the speed of the algorithm,
as seen in our simulations.
Our EBLASSO-NEG and EBLASSO-NE estimate the

variance of regression coefficients iteratively. In each iter-
ation, Laplace’s method is first used to obtain an approxi-
mation of the posterior distribution, which results in an
equivalent linear regression model. Then, the EBLASSO-
NEG uses the EBLASSO algorithm we developed in [30]
to estimate the variance. Therefore, the EBLASSO-NEG
essentially is a combination of Laplace’s method and the
EBLASSO algorithm. However, the EBLASSO does not
consider the prior of the EBLASSO-NE, and thus, we
derive a novel formula in (12) and modify the EBLASSO
algorithm to estimate the variance for EBLASSO-NE. The
EBLASSO-NEG has two hyperparameters, whereas the
EBLASSO-NE has only one hyperparameter, which
simplifies cross-validation for selecting the optimal
value of the hyperparameter. Moreover, simulation
studies demonstrated that the EBLASSO-NE identified
some QTLs that were not detected by the EBLASSO-
NEG, suggesting that combination of the two methods
can lead to increased detection power.
The full Bayesian methods [11-13,15,47] use the thresh-

old model that employs a latent liability variable to link
the binary trait with the QTLs and then apply MCMC
simulation to infer the model. It is well known that
MCMC simulation requires very large computation for
the model with a relatively large number of variables.
Therefore, these fully Bayesian methods may not be com-
putationally efficient for QTL mapping with both main
and epistatic effects from a relatively large number of
QTLs.
The MIM methods [17,18] for mapping binary trait

loci either does not employ any variable selection tech-
nique [17] or uses step-wise logistic regression and BIC
to select variables [18]. Hence, it is difficult for them to
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deal with a QTL model with a relatively large number of
loci and epistatic effects due to their demanding compu-
tation burden and possible large false discovery rate. The
probability model in [19] for binary trait mapping entails
a model space exponentially increasing with the number
of loci. Although the BIC is used for model selection, its
computational complexity increases dramatically with
the number of loci.
We demonstrated that our EBLASSO-NE and EBLASSO-

NEG can easily handle a model with 115,922 variables. If
much more variables are involved, in e.g. GWAS or QTL
mapping with high order interactions, our methods can
be combined with a variable screening method such as the
sure independence screening (SIS) [48,49] to facilitate
computation. It is not difficult to extend our EBLASSO-
NE and EBLASSO-NEG algorithms to QTL mapping for
ordinal traits. We can first apply Laplace’s method to get
an approximately equivalent linear model by deriving the
gradient and the Hessian matrix of the posterior distribu-
tion and then apply our efficient EBLASSO algorithm to
infer the linear model. Since the multinomial logistic re-
gression model includes more variables than the binary lo-
gistic regression model, it will require more computation.

Conclusions
We have developed two algorithms named EBLASSO-
NEG and EBLASSO-NE for the inference of Bayesian lo-
gistic regression models for multiple QTL mapping. While
the EBLASSO-NEG is an extension of the EBLASSO [30]
to handle binary traits, the simulations demonstrate that
the EBLASSO-NEG algorithm provides superior perform-
ance in terms of power of detection and false positive rate,
comparing with five other existing methods. Moreover,
the EBLASSO-NEG is faster than four other methods
tested but only slower than the LASSO algorithm. The
hierarchical prior in the EBLASSO-NE in this paper was
not considered in the EBLASSO [30]. Here we derive a
novel formula given in equation (12) to estimate the vari-
ance of regression coefficients. Our simulations show that
the EBLASSO-NE provides comparable or better power of
detection and false positive rate comparing with five other
existing methods, and the power of detection could be
improved if the results are combined with that of the
EBLASSO-NEG. In summary, our EBLASSO-NE and
EBLASSO-NEG algorithms provide an efficient tool
for QTL mapping for binary traits involving a large
number of both main and epistatic effects, and they
can be extended to QTL mapping for ordinal traits.

Additional file

Additional file 1: Derivation of equation (12). Replicates 2 and 3 for
the simulations with only main effects.
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