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Abstract

Background: Triad families are routinely used to test association between genetic variants and complex diseases.
Triad studies are important and popular since they are robust in terms of being less prone to false positives due to
population structure. In practice, one may collect not only complete triads, but also incomplete families such as dyads
(affected child with one parent) and singleton monads (affected child without parents). Since there is a lack of
convenient algorithms and software to analyze the incomplete data, dyads and monads are usually discarded. This
may lead to loss of power and insufficient utilization of genetic information in a study.

Results: We develop likelihood-based statistical models and likelihood ratio tests to test for association between
complex diseases and genetic markers by using combinations of full triads, parent-child dyads, and affected singleton
monads for a unified analysis. A likelihood is calculated directly to facilitate the data analysis without imputation and
to avoid computational complexity. This makes it easy to implement the models and to explain the results.

Conclusion: By simulation studies, we show that the proposed models and tests are very robust in terms of
accurately controlling type I error evaluations, and are powerful by empirical power evaluations. The methods are
applied to test for association between transforming growth factor alpha (TGFA) gene and cleft palate in an Irish study.

Keywords: Association mapping of complex diseases, Likelihood ratio tests, Transmission disequilibrium tests

Background
In family-based studies, one might collect triads, sib-
ships, parent-child dyads, general pedigrees or some com-
binations. In modern times, large multi-generation pedi-
grees are not common, and small nuclear families are
more practical to collect. In our birth defects studies,
almost all families contain only a single affected child
with or without parents. They are basically triad fami-
lies allowing for missing parents [1]. In family association
studies, triad families are routinely used to test associa-
tion between genetic variants and complex diseases. Triad
studies are important and popular since they are robust in
terms of being less prone to false positive results due to
population structure [2,3]. In particular, triad studies are
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advantageous over case control designs which are prone
to spurious association due to population stratification.
In practice, one may collect not only complete triads,

but also incomplete families such as dyads (affected child
with one parent) and singleton monads (affected child
without parents). Here the terminology of dyads andmon-
ads are taken from Weinberg [4]. Since there is a lack of
convenient algorithms and software to analyze the incom-
plete data, dyads and monads are usually discarded. This
may lead to loss of power and insufficient utilization of
genetic information in a study. For instance, dyads and
monads were not used in the analysis of family data in
the Irish oral clefts study [1]. This study contained about
75% triads and 25% parent-child dyads in addition to some
affected monads. Only triads were used in an analysis of
transmission disequilibrium tests (TDT) [1]. The reason
that parent-child dyads and singleton monads were not
used in the analysis is that there is no readily available
software to analyze the combinations of triads, dyads, and
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monads, although statistical models are proposed in the
literature to analyze family data jointly [5-9]. Intuitively,
analyzing combined data should improve the power com-
pared with the methods which use triads only, and should
be more robust since more data are added to the analy-
sis. Therefore, it is important and interesting to develop
statistical models and related software to analyze the com-
bined data of triads, dyads, and monads.
Triad studies are popular and important because the

triad families are relatively easy to collect. More impor-
tantly, the results of triad studies are robust in terms of
being less prone to false positives due to population strat-
ification. To analyze triad data, TDT analysis is usually
performed [3]. To use both triads and dyads for a com-
bined analysis, Sun et al. [10] proposed a score test tomore
sufficiently use the data information. To use more data in
the analysis, a likelihood-based approach was developed
to handle missing data by imputation. For instance, an EM
algorithm was used to recover the information contained
in dyads and monads in Epstein et al. [11] and Weinberg
[4]. Specifically, Epstein et al. [11] proposed a likelihood
based approach to analyze the combinations of the fam-
ily data handling missing parent data by imputation. The
imputation arguments are based on similar derivation of
Schaid and Sommer [12], p1119, right column. In addi-
tion, Nagelkerke et al. [13] used an approximate analysis
of logistic regression. The joint analysis and design of
family data has received extensive research in the last
decade [14-17]. Some efforts have been made to imple-
ment the statistical models to software [18]. However, it
is desirable to build statistical models which can be eas-
ily implemented to handle specific data such as the family
data of the Irish oral clefts study, and to explain the results
easily.
In this paper, we develop likelihood-based statistical

methods to test for association between complex diseases
and genetic markers by using combinations of full tri-
ads, parent-child dyads, and affected singleton monads
for a unified analysis. Our research interest is stimulated
by our oral clefts study [1]. We assume that the data are
ascertained through the affected cases, i.e., the triads and
parent-child dyads are ascertained through the affected
child, and the affected monads are ascertained via them-
selves. Some studies use conditional likelihood given the
parent mating type, which is not appropriate for our birth
defects study since the data are ascertained through the
affected cases [12].
Assume that we have a di-allelic candidate gene locus

such as a single nucleotide polymorphism (SNP). We
derive the conditional probabilities of triad, dyad, and
monad genotypes given the sampling scheme that the data
are ascertained through the affected cases. A conditional
likelihood is then constructed directly; the likelihood is
calculated without imputation; and analytical formulae

are provided for parameter estimations, which are pre-
sented in Appendix A of Additional file 1. Based on the
likelihood, likelihood ratio tests (LRT) are performed to
test for association between complex diseases and genetic
markers. To evaluate the performance of the proposed
models and tests in terms of robustness and power, exten-
sive simulation studies are carried out to calculate the
empirical type I error rates and powers. From simula-
tion results, we show that the proposed methods are very
robust in terms of correct empirical type I error rates, and
themethods are powerful. Themethods are applied to test
for association between the transforming growth factor
alpha (TGFA) gene and cleft palate in the Irish study [1].
The proposed methods are programmed by the statistical
package R to facilitate the data analysis.

Results
Extensive simulations are carried out to evaluate the per-
formance of the proposed models and tests. The robust-
ness of the test statistics is evaluated by empirical type I
rates. The power performance is evaluated by empirical
power analysis. The simulation strategy is presented in the
Methods section.

Empirical type I error rates
The results of empirical type I error rates are presented
in Table 1. For each entry of Table 1, we simulate 100,000
datasets under the null hypothesis H0 : ψ1 = ψ2 = 1,
whereψ1 andψ2 are relative risks defined in theMethods
section. Each dataset contains s = 50 affectedmonads and
n = 100, 200, or 500 triads. For each of the three cases,
m = 0 or m = 0.25n parent-child dyads are simulated
in the dataset. For instance, m = 0 or m = 25 parent-
child dyads are generated in the dataset when the number
of affected monads is s = 50 and the triad number is
n = 100. An empirical test statistic is calculated for each
dataset. The empirical type I error rates at nominal lev-
els α = 0.05 and α = 0.01 are reported in Table 1 which
represent the proportions of false positives in the 100,000
replicates, that is, proportions of test values which exceed
the 95-th and 99-th percentiles of the χ2

2 (for Unr model)
or χ2

1 (forDom, Rec,Mult, and Addmodels) distributions,
respectively.
Encouragingly, the empirical type I error rates were all

around or below the nominal levels 0.05 and 0.01, except
two entries 0.05944 and 0.06505 of unrestricted (Unr) and
recessive (Rec) models when the allele frequency p = 0.05,
triad size n = 100, monad size s = 50, and dyad size
m = 0. Hence, the proposed test statistics are very robust.
Table 1 exhibits an interesting trend: the type I error rates
of the dominant (Dom), multiplicative (Mult), and addi-
tive (Add) columns are not affected by the allele frequency
p but the error rates of the other two columns forUnr and
Rec are generally getting smaller when p decreases except
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Table 1 Empirical type I error rates at 0.05 and 0.01 nominal significance levels of the proposed tests

Nominal Sample size
p

Model

Level α s n m Unr Dom Rec Mult Add

0.05 50 100

25

0.5 0.04989 0.04985 0.04867 0.05028 0.05138

0.2 0.04152 0.05057 0.04240 0.05214 0.05364

0.1 0.03517 0.05006 0.02672 0.04979 0.05230

0.05 0.05327 0.05093 0.05038 0.05138 0.05685

0

0.5 0.04921 0.05055 0.05135 0.05149 0.05330

0.2 0.03999 0.05073 0.03637 0.05156 0.05222

0.1 0.03534 0.05088 0.02611 0.05249 0.05199

0.05 0.05944 0.04916 0.06505 0.05230 0.05609

0.01 50 100

25

0.5 0.00907 0.01039 0.00973 0.00972 0.01031

0.2 0.00759 0.01031 0.00568 0.01043 0.01117

0.1 0.00699 0.01011 0.00504 0.01054 0.00936

0.05 0.01010 0.01072 0.00966 0.01021 0.01200

0

0.5 0.00831 0.0098 0.01008 0.00998 0.01043

0.2 0.00723 0.01075 0.00489 0.01054 0.01097

0.1 0.00676 0.01065 0.00477 0.01040 0.01014

0.05 0.01054 0.01054 0.01204 0.01104 0.01163

0.05 50 200

50

0.5 0.04974 0.05003 0.05093 0.04951 0.05178

0.2 0.04641 0.04976 0.05019 0.05005 0.05201

0.1 0.03539 0.04977 0.02236 0.04996 0.05236

0.05 0.04095 0.05142 0.03730 0.04990 0.05288

0

0.5 0.05121 0.05027 0.05121 0.05039 0.05098

0.2 0.04360 0.05128 0.04991 0.05210 0.05249

0.1 0.03503 0.05018 0.02303 0.05146 0.05108

0.05 0.04521 0.05156 0.04011 0.05423 0.04997

0.01 50 200

50

0.5 0.01042 0.00967 0.01010 0.00961 0.01050

0.2 0.00872 0.00962 0.00914 0.01020 0.01101

0.1 0.00642 0.00986 0.00430 0.01056 0.01043

0.05 0.00769 0.01125 0.00705 0.01091 0.01133

0

0.5 0.00987 0.00976 0.00987 0.00991 0.01002

0.2 0.00799 0.01030 0.00828 0.01059 0.01062

0.1 0.00629 0.01012 0.00443 0.00994 0.01089

0.05 0.00900 0.01027 0.00769 0.01076 0.00924

0.05 50 500

125

0.5 0.05032 0.05009 0.05048 0.04870 0.04895

0.2 0.05091 0.05029 0.05025 0.04965 0.05111

0.1 0.04178 0.04998 0.04298 0.05023 0.05021

0.05 0.03380 0.05043 0.02511 0.05020 0.05081

0

0.5 0.04957 0.05049 0.05056 0.05150 0.05048

0.2 0.05071 0.04963 0.0522 0.04954 0.05084

0.1 0.03980 0.05037 0.03109 0.04936 0.05067

0.05 0.03491 0.05012 0.02749 0.05031 0.05107

0.01 50 500

125

0.5 0.01032 0.00957 0.01016 0.00963 0.00928

0.2 0.01006 0.01045 0.01031 0.01040 0.01062

0.1 0.00707 0.0098 0.00502 0.01051 0.01008

0.05 0.00640 0.00996 0.00473 0.00979 0.01077
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Table 1 Empirical type I error rates at 0.05 and 0.01 nominal significance levels of the proposed tests (Continued)

0

0.5 0.00971 0.01057 0.00974 0.01024 0.00998

0.2 0.00978 0.00999 0.01081 0.00955 0.01010

0.1 0.00725 0.01007 0.00484 0.00974 0.01078

0.05 0.00677 0.00990 0.00525 0.01010 0.01044

when p = 0.05 and the sample sizes are small. This shows
that the models ofUnr and Rec are getting more conserva-
tive when the allele frequency p is getting smaller except
when p = 0.05 and the sample sizes are small.

Power analysis
Power analysis is performed to calculate empirical power
levels for various scenarios. The results are presented in
Table 2 and Table 3. To make our results comparable with
those of Table 3, Troendle et al. [19], we use the same
parameters in our simulation. Again, we simulate 100,000
datasets for each entry of Table 2 and Table 3. The empir-
ical power levels at nominal levels α = 0.05 are reported.
They show four notable results. First, the power levels
in Table 2 and Table 3 for most entries are higher than
those corresponding entries of Table three, Troendle et
al. [19]; for a few entries, they are slightly lower. Hence,
the proposedmodels are reasonably powerful. Second, the
power levels obtained by using combinations of both tri-
ads and parent-child dyads are higher than those obtained
by using triads only. Tests using combinations of tri-
ads, parent-child dyads and singleton monads provide the
highest power levels. Thus, it is advantageous to use more
data in the analysis. Third, the power levels are the high-
est when the disease models are correctly specified (the
results on the diagonals marked by boldface in Table 2
and Table 3). However, if dominant disease is misspeci-
fied as recessive or vice versa, it leads to powerless tests.
If dominant disease or recessive disease is misspecified as
unrestricted ormultiplicative, the power loss is less severe.
Fourth, TDT and zcom suffer severe power loss compared
with the correctly specified LRT statistics. Overall, the
power levels of TDT and zcom are lower than the proposed
LRT. Hence, the proposed parametric models can be very
useful in mapping disease genes.
In Table 3, the empirical powers ofMultmodel are close

to those ofAddmodel. In the firstMultmodel, the param-
eters are ψ1 = 1.3 and ψ2 = 1.69; in the second Mult
model, the parameters are ψ1 = 1.35 and ψ2 = 1.82; for
both cases, ψ2 = 2ψ1 − 1 is roughly true, and so it leads
to similar results for the two models.

Example: cleft palate data of TGFA gene of Irish study
We applied the proposed methods to examine the associ-
ation between oral clefts and the TGFA gene in the Irish
study [1]. We focused on cleft palate only. The data were

ascertained through the presence of a cleft palate in the
child, and so the ascertainment procedure satisfies our
model assumption. In the dataset, there are 31 SNPs in
12 candidate genes. One SNP, rs2166975, is located in
the region of the TGFA gene. In Carter et al. [1], SNP
rs2166975 was found to be associated with cleft palate
by transmission disequilibrium test based on triad fami-
lies (p-value = 0.041). For the SNP rs2166975, there are
296 triad counts, 62 parent-child dyads, and 15 affected
monads in our analysis.
The results of the proposed likelihood ratio tests of SNP

rs2166975 are presented in Table 4. Using the 296 full tri-
ads, the tests of Dom and Add show significant signals of
association between SNP rs2166975 and cleft palate (p-
value = 0.047 and 0.05, respectively). By using 296 full
triads, 62 parent-child dyads, and 15 affected monads, the
test ofMult also shows significant signal of association (p-
value = 0.051) and the test of Add suggestively shows it
(p-value = 0.055). Using the 296 full triads, the test ofMult
suggestively shows the signal (p-value = 0.058). Table 4
provides results of all five tests (Unr, Rec, Dom, Mult, and
Add) and parameter MLEs for each model.
SNP rs2166975 in TGFA gene is the top one using both

TDT and the LRTs of the proposed models. The results
of the proposed models are consistent with that of TDT
based on triad families. The reported association between
the TGFA gene and cleft palate is confirmed by the pro-
posedDom,Add, andMultmodels. However, the p-values
of the LRTs of the proposed Rec and Unr models are not
significant at a cutoff of 0.05. In summary, the association
between TGFA gene and cleft palate is only confirmed by
3 out of 5 proposed models. This is expected since it is
unlikely that all models can give significant results.

Computational evaluation based on the cleft palate data of
TGFA gene of the Irish study
The dataset of Carter et al. [1] is not from a genome-wide
association study (GWAS). To get the results for the 31
SNPs of the cleft palate data of the Irish study, it takes
about 4 minutes on our PC computers. Based on our eval-
uation, it takes about one hour to analyze 450 SNPs by the
proposed models if the sample size of the data is similar
to that of the dataset of Carter et al. [1]. In 24 hours, the
proposed models can analyze about 10,000 SNPs. There-
fore, the proposed models are slower than TDT. This is
because we need to estimate the parameters in our models
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Table 2 Power performance of the proposed tests at 0.05 nominal significance level using the parameters in Table three,
Troendle et al. [19] and n = 100

Sample size
p

Disease model Model
TDT zcom

s n m Model (ψ1,ψ2) Dom Rec Mult Unr Add

0 100

25 0.5

Dom (2.6, 2.6) 0.91066 0.06000 0.50500 0.84541 0.70714 0.31163

Rec (1.0, 2.2) 0.04523 0.90067 0.70559 0.83608 0.57124 0.47878

Mult (1.8, 3.24) 0.48646 0.68023 0.88068 0.80862 0.87348 0.65977

Unr (0.65, 1.54) 0.32262 0.93172 0.34347 0.92475 0.17819 0.22527

0 0.5

Dom (2.6, 2.6) 0.84710 0.05676∗ 0.44357 0.76226 0.63856 0.44186

Rec (1.0, 2.2) 0.04665∗ 0.84330 0.63678 0.76013 0.50830 0.63486

Mult (1.8, 3.24) 0.44423∗ 0.62624∗ 0.82447 0.74065 0.81753 0.82465

Unr (0.65, 1.54) 0.24177 0.87274 0.30563 0.84850 0.15914 0.30947

50 100

25 0.5

Dom (2.6, 2.6) 0.96437 0.08869 0.56774 0.92870 0.79380

Rec (1.0, 2.2) 0.05605 0.95407 0.76586 0.91508 0.61764

Mult (1.8, 3.24) 0.49237 0.71043 0.92158 0.86355 0.91256

Unr (0.65, 1.54) 0.55513 0.98255 0.38476 0.98123 0.17861

0 0.5

Dom (2.6, 2.6) 0.93871 0.07985 0.51548 0.88896 0.74713

Rec (1.0, 2.2) 0.05134 0.92769 0.71809 0.87193 0.55984

Mult (1.8, 3.24) 0.45734 0.66902 0.88925 0.82026 0.87906

Unr (0.65, 1.54) 0.47192 0.96392 0.34894 0.96087 0.16023

0 100

25 0.2

Dom (2.2, 2.2) 0.89874 0.05076 0.76992 0.83080 0.84520 0.53247

Rec (1.0, 3.6) 0.03613 0.92147 0.48451 0.87037 0.30487 0.31694

Mult (1.9, 3.61) 0.69925 0.34702 0.85778 0.77836 0.85218 0.62966

Unr (0.5, 2.0) 0.65567 0.84785 0.10276 0.94265 0.03027 0.08794

0 0.2

Dom (2.2, 2.2) 0.84384 0.04086∗ 0.70946 0.75109 0.78697 0.70494

Rec (1.0, 3.6) 0.03782∗ 0.86147 0.43153 0.79210 0.26755 0.42869

Mult (1.9, 3.61) 0.64051∗ 0.32123∗ 0.80066 0.70908 0.79017 0.79740

Unr (0.5, 2.0) 0.54538 0.75786 0.10187 0.87870 0.02940 0.09909

50 100

25 0.2

Dom (2.2, 2.2) 0.94780 0.08895 0.82800 0.90217 0.90049

Rec (1.0, 3.6) 0.05440 0.97394 0.53918 0.95030 0.31670

Mult (1.9, 3.61) 0.72728 0.34717 0.90222 0.83592 0.89492

Unr (0.5, 2.0) 0.83495 0.95478 0.10560 0.98840 0.02343

0 0.2

Dom (2.2, 2.2) 0.91980 0.07593 0.78331 0.85809 0.86423

Rec (1.0, 3.6) 0.04721 0.95163 0.49510 0.91409 0.28013

Mult (1.9, 3.61) 0.67942 0.32597 0.86532 0.78885 0.85618

Unr (0.5, 2.0) 0.77111 0.92279 0.10152 0.97278 0.02310

0 100

25 0.05

Dom (2.2, 2.2) 0.57438 0.02821 0.53632 0.43550 0.56002 0.33291

Rec (1.0, 3.6) 0.04380 0.29455 0.06729 0.21332 0.04873 0.06352

Mult (1.9, 3.61) 0.38400 0.10189 0.42547 0.34874 0.41536 0.26377

Unr (0.5, 2.0) 0.22082 0.27767 0.18594 0.32682 0.12097 0.14033

0 0.05

Dom (2.2, 2.2) 0.50622 0.03413 0.47104 0.39360 0.49103 0.46796

Rec (1.0, 3.6) 0.04448 0.27724 0.06733 0.20273 0.04704 0.06674

Mult (1.9, 3.61) 0.33877 0.10807 0.36803 0.31909 0.36089 0.36674

Unr (0.5, 2.0) 0.17709 0.25044 0.15031 0.26490 0.06971 0.17677

50 100

25 0.05

Dom (2.2, 2.2) 0.63920 0.01453 0.58425 0.47921 0.62697

Rec (1.0, 3.6) 0.04465 0.28842 0.06893 0.23235 0.04345

Mult (1.9, 3.61) 0.42156 0.08232 0.46540 0.36949 0.46364

Unr (0.5, 2.0) 0.30208 0.31549 0.20745 0.42153 0.15479

0 0.05

Dom (2.2, 2.2) 0.58412 0.01814 0.54315 0.42708 0.57007

Rec (1.0, 3.6) 0.04222 0.29220 0.06943 0.22264 0.04549

Mult (1.9, 3.61) 0.38029 0.08648 0.42651 0.33479 0.41893

Unr (0.5, 2.0) 0.27336 0.30692 0.18868 0.37802 0.12098

∗ indicates entry that is slightly lower than the corresponding entry of Table three, Troendle et al. [19].



Fan et al. BMC Genetics 2013, 14:78 Page 6 of 11
http://www.biomedcentral.com/1471-2156/14/78

Table 3 Power performance of the proposed tests at 0.05 nominal significance level using the parameter in Table three,
Troendle et al. [19] and n = 500

Sample size
p

Disease model Model
TDT zcom

s n m Model (ψ1,ψ2) Dom Rec Mult Unr Add

0 500

125 0.5

Dom (1.5, 1.5) 0.91984 0.05494 0.59684 0.86250 0.67998 0.38389

Rec (1.0, 1.45) 0.04830 0.91488 0.68434 0.85930 0.61349 0.46383

Mult (1.3, 1.69) 0.54475 0.63588 0.88638 0.81607 0.88395 0.67525

Unr (0.82, 1.22) 0.40678 0.94369 0.28652 0.95067 0.19831 0.19157

0 0.5

Dom (1.5, 1.5) 0.86469 0.05501∗ 0.53494 0.78362 0.61161 0.53133

Rec (1.0, 1.45) 0.04868∗ 0.86048 0.62189 0.78284 0.54995 0.61559

Mult (1.3, 1.69) 0.50217∗ 0.58591∗ 0.83504 0.74791 0.82951 0.83316

Unr (0.82, 1.22) 0.30751 0.88989 0.25717 0.89710 0.18219 0.25521

50 500

125 0.5

Dom (1.5, 1.5) 0.93417 0.05975 0.61089 0.88359 0.69680

Rec (1.0, 1.45) 0.04970 0.93022 0.70132 0.87754 0.62959

Mult (1.3, 1.69) 0.55266 0.64473 0.89571 0.83059 0.89378

Unr (0.82, 1.22) 0.46190 0.95843 0.29617 0.96292 0.20571

0 0.5

Dom (1.5, 1.5) 0.88543 0.05450 0.55038 0.81938 0.63176

Rec (1.0, 1.45) 0.04813 0.88221 0.63748 0.81229 0.56987

Mult (1.3, 1.69) 0.50941 0.59514 0.85057 0.77031 0.84857

Unr (0.82, 1.22) 0.35793 0.91611 0.26407 0.92113 0.18285

0 500

125 0.2

Dom (1.45, 1.45) 0.91663 0.05581 0.82275 0.85564 0.85475 0.59268

Rec (1.0, 2.0) 0.04455 0.94790 0.44326 0.90851 0.34805 0.28523

Mult (1.35, 1.82) 0.74330 0.29700 0.86030 0.77766 0.85735 0.63475

Unr (0.73, 1.37) 0.75736 0.83819 0.16262 0.95415 0.09838 0.11611

0 0.2

Dom (1.45, 1.45) 0.86430 0.05206∗ 0.76184 0.78832 0.79620 0.76041

Rec (1.0, 2.0) 0.04254∗ 0.90108 0.39325 0.84045 0.30808 0.38860

Mult (1.35, 1.82) 0.67838∗ 0.27300∗ 0.79869 0.70763 0.79626 0.79935

Unr (0.73, 1.37) 0.65414 0.73828 0.14995 0.90150 0.09179 0.14809

50 500

125 0.2

Dom (1.45, 1.45) 0.92776 0.05929 0.83556 0.87192 0.86570

Rec (1.0, 2.0) 0.04580 0.95984 0.45325 0.92594 0.35732

Mult (1.35, 1.82) 0.75081 0.29775 0.86878 0.79374 0.86823

Unr (0.73, 1.37) 0.79247 0.87274 0.17039 0.96622 0.09941

0 0.2

Dom (1.45, 1.45) 0.88237 0.05344 0.78154 0.81038 0.81656

Rec (1.0, 2.0) 0.04352 0.92016 0.40450 0.87014 0.31454

Mult (1.35, 1.82) 0.69361 0.27258 0.81773 0.72982 0.81359

Unr (0.73, 1.37) 0.69897 0.78788 0.15242 0.92672 0.09045

0 500

125 0.05

Dom (1.45, 1.45) 0.54540 0.01899 0.51668 0.41742 0.53330 0.32711

Rec (1.0, 2.0) 0.04787 0.19369 0.06095 0.15167 0.04953 0.05595

Mult (1.35, 1.82) 0.37363 0.06127 0.39755 0.30298 0.39613 0.25117

Unr (0.73, 1.37) 0.32954 0.14447 0.25594 0.32487 0.23685 0.16860

0 0.05

Dom (1.45, 1.45) 0.47895 0.02234 0.45528 0.35409 0.46737 0.45051

Rec (1.0, 2.0) 0.04759 0.17392 0.06026 0.13605 0.04958 0.05914

Mult (1.35, 1.82) 0.32514 0.06317 0.34478 0.26105 0.34585 0.34717

Unr (0.73, 1.37) 0.28430 0.12649 0.22702 0.27964 0.20895 0.22606

50 500

125 0.05

Dom (1.45, 1.45) 0.55918 0.01811 0.53173 0.43260 0.54426

Rec (1.0, 2.0) 0.04848 0.20376 0.06147 0.15963 0.04985

Mult (1.35, 1.82) 0.38246 0.06150 0.41190 0.31308 0.40672

Unr (0.73, 1.37) 0.34311 0.14948 0.27061 0.34266 0.22740

0 0.05

Dom (1.45, 1.45) 0.49431 0.02036 0.46935 0.36889 0.48220

Rec (1.0, 2.0) 0.04777 0.17937 0.06071 0.14178 0.05204

Mult (1.35, 1.82) 0.33955 0.06127 0.36054 0.26850 0.35641

Unr (0.73, 1.37) 0.29572 0.13457 0.23367 0.29240 0.20284

∗ indicates entry that is slightly lower than the corresponding entry of Table three, Troendle et al. [19].
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Table 4 Results of the proposed likelihood ratio tests of SNP rs2166975 and parameter estimates in the region of gene
TGFA for cleft palate only data in Carter et al. [1]

Model Data used MLEs Test results

Unr

p̂ ( p̃, ψ̃1, ψ̃2) LRT p-value

FT + PD + AM 0.250 (0.226, 1.260, 1.660) 3.821 0.148

FT + PD 0.246 (0.226, 1.279, 1.413) 2.994 0.224

FT 0.245 (0.221, 1.365,1.508) 4.077 0.130

Rec

p̂ (p̃, ψ̃2) LRT p-value

FT + PD + AM 0.250 (0.243, 1.295) 1.245 0.265

FT + PD 0.246 (0.244, 1.087) 0.116 0.733

FT 0.245 (0.243, 1.095) 0.113 0.737

Dom

p̂ (p̃, ψ̃1) LRT p-value

FT + PD + AM 0.250 (0.233, 1.247) 2.407 0.121

FT + PD 0.246 (0.228, 1.275) 2.829 0.093

FT 0.245 (0.224, 1.362) 3.938 0.047

Mult

p̂ (p̃, ψ̃1) LRT p-value

FT + PD + AM 0.250 (0.226, 1.275) 3.792 0.051

FT + PD 0.246 (0.226, 1.232) 2.711 0.100

FT 0.245 (0.221, 1.292) 3.585 0.058

Add

p̂ (p̃, ψ̃1) LRT p-value

FT + PD + AM 0.250 (0.226, 1.281) 3.688 0.055

FT + PD 0.246 (0.225, 1.256) 2.847 0.092

FT 0.245 (0.220, 1.332) 3.830 0.050

The Sub-sample sizes are n= 296,m= 62, s= 15, (n1, n2, n3, n4, n5, n6, n7, n8, n9, n10)= (0, 6, 5, 19, 13, 30, 6, 67, 54, 96), (m1,m2,m3,m4,m5,m6,m7)= (0, 3, 4, 11,11, 8, 25),
and (s0, s1, s2) = (7, 3, 5). Abbreviations: FT = Full triads, PD = Parent-child dyads, and AM = Affected monads.

by doing maximum likelihood estimations. The proposed
models are not suggested for GWAS analysis which has
millions of SNPs. For GWAS which has millions of SNPs,
one may want to run TDT first. The proposed models can
be used as a follow-up to confirm the association for the
SNPs in the candidate gene regions.

Discussion
In this paper, we construct the likelihood directly by using
the results in Tables 5 and 6, and we argue that imputa-
tion is not necessary to deal with themissingness of parent
data. Furthermore, standard statistical methods such as
Newton-Raphson can be used to estimate the parameters.
Note that this facilitates data analysis and interpretation a
lot and computationally it is much easier.
Although the proposed models are built to analyze

combinations of triad families, dyad data, and affected
monads, it is possible to extend them to analyze other
types of family data, e.g., family data with multiple off-
spring, sibship data, and general pedigrees. To combine
different types of family data in the analysis, one needs
to take the ascertained procedure into account and build
the likelihood. For general pedigree data, the imputation
procedure and methods proposed by other researchers

such as Epstein et al. [11], McPeek [20], and Weinberg [4]
can be very useful. By a combined analysis of all family
data, it takes advantage of the robustness of family stud-
ies to avoid high false positive rates and it improves power
since more data are used in the analysis. For data with a
relatively simple structure such as combinations of full tri-
ads, parent-child dyads, and affected singleton monads,
however, the proposedmethods in this article are straight-
forward and easy to implement for genetic community
without imputation.
The impact of important issues on the proposed meth-

ods such as population stratification and heterogeneity
are not investigated in the current study. This is because
the data structure of our oral clefts study is relatively
homogeneous since our project focused on an Irish pop-
ulation and was carefully designed to make sure the data
are homogeneous. Therefore, we may calculate the like-
lihood directly to avoid computational complexity. In the
presence of population stratification and heterogeneity,
sophisticated models can be built to analyze the data
[5,21-23]. For instance, if the data are from two sub-
populations with different allele frequencies, the condi-
tional probabilities of mating type P(MT = i | D) can be
modified to accommodate the population stratification.
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Table 5 Conditional probabilities of parental mating type and triad genotypes given the sampling scheme of using the
affected child as a proband

Parental Affected child
P(MT, C | D) P(MT | D) # Obs

mating type genotype C

1. AA × AA AA p4ψ2/R p4ψ2/R n1

2. AA × Aa
AA 4p3qψ2/(2R)

4p3qψ1+ψ2
2R

n2

Aa 4p3qψ1/(2R) n3

3. AA × aa Aa 2p2q2ψ1/R 2p2q2ψ1/R n4

4. Aa × Aa

AA 4p2q2ψ2/(4R)

4p2q2 ψ2+2ψ1+1
4R

n5

Aa 4p2q2(2ψ1)/(4R) n6

aa 4p2q2/(4R) n7

5. Aa × aa
Aa 4pq3ψ1/(2R)

4pq3 ψ1+1
2R

n8

aa 4pq3/(2R) n9

6. aa × aa aa q4/R q4/R n10

Total 1 1 n

Abbreviation:MT = Mating type, Obs = Observation. R = p2 ψ2 + 2pqψ1 + q2.

Then, the corresponding likelihood functions can be cal-
culated to test for association between disease trait and
genetic marker. In addition, we only use one di-allelic
genetic marker in the analysis and we do not use envi-
ronment factors. It is important to develop a method to
add more genetic variants and environment factors to the
models. Then, we may be able to investigate the impact of
gene-gene and gene-environment interactions. These are
interesting problems to investigate in the future studies.

Conclusion
In this paper, we develop likelihood-based statistical mod-
els and likelihood ratio tests to test association between
complex diseases and genetic markers by using combi-
nations of full triads, parent-child dyads, and affected
singleton monads for a unified analysis. For the data we
discuss, a likelihood can be calculated directly to facilitate
the data analysis without imputation [11]. This makes it

easy to implement the models and to explain the results.
By simulation studies, we show that the proposed models
and tests are very robust in terms of type I error evalu-
ations, and are powerful by empirical power evaluations.
The methods are applied to analyze cleft palate data of the
TGFA gene of an Irish study to show the association found
previously [1].

Methods
Likelihoods
Consider a design which includes three types of data: (1)
n triad families each consists of an affected child and
two parents; (2) m parent-child dyads with an affected
child and a parent who can be either father or mother;
(3) s affected singleton monads. The triads, parent-child
dyads, and the affected singleton monads are ascertained
through the affected cases. Suppose we have a di-allelic
candidate gene locus which has two alleles A and a with

Table 6 Conditional probabilities of parent-child dyad genotypes given the sampling scheme of using the affected child
as a proband

Genotype P(G, C | D), G =M or F, P(G, C | D),
# Obs

Parent G Case C complex version simplified version

AA
AA p4ψ2/R + 2p3qψ2/(2R) p3ψ2/R m1

Aa 2p3qψ1/(2R) + p2q2ψ1/R p2qψ1/R m2

Aa

AA 2p3qψ2/(2R) + 4p2q2ψ2/(4R) p2qψ2/R m3

Aa 2p3qψ1/(2R) + 4p2q2(2ψ1)/(4R) + 2pq3ψ1/(2R) pqψ1/R m4

aa 4p2q2/(4R) + 2pq3/(2R) pq2/R m5

aa
Aa p2q2ψ1/R + 2pq3ψ1/(2R) pq2ψ1/R m6

aa 2pq3/(2R) +q4/R q3/R m7

Total 1 1 m

Abbreviation: Obs = Observation.
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allele frequencies p and q, respectively. Let D denote that
an individual is affected with the disease. Given the dis-
ease status, let us define the disease penetrance as f2 =
P(D|AA), f1 = P(D|Aa) and f0 = P(D|aa). Such as Schaid
and Sommer [12], define the relative risks as ψ2 = f2/f0
and ψ1 = f1/f0.
For triads, let us denote the genotypes at the candi-

date gene locus as F ,M, and C, where F is the genotype
of the father, M is the genotype of the mother, and C is
the genotype of the affected child. In total, there are 6
mating types [12,24]. Let us denote MT = {mating type}.
Assume that Hardy-Weinberg equilibrium (HWE) is valid.
We also assume random mating in the parental gener-
ation. Given the sampling scheme of using the affected
child as a proband, the conditional probabilities of mat-
ing type P(MT = i|D) and the conditional probabilities of
mating type and child genotype P(MT = i,C|D) can be
derived as

P(MT = i,C|D) = P(MT = i,C,D)

P(D)

= P(MT= i)P(C|MT= i)P(D|C,MT = i)
P(D)

= P(MT = i)P(C|MT = i)P(D|C)

P(D)
,

P(MT = i|D) = P(MT = i) [P(AA|MT = i )ψ2

+P(Aa|MT= i)ψ1+P(aa|MT = i)] /R,

where R = p2ψ2 + 2pqψ1 + q2, C = AA,Aa, aa, and
i = 1, 2, · · · , 6. There are 10 combinations (MT = i,C).
The results are presented in Table 5, which are the same
as those of Table one in Nagelkerke et al. [13]. Using
the notation given in Table 5, we have the following
log-likelihood

log LTriads = [4n1 + 3n2 + 3n3 + 2n4 + 2n5 + 2n6
+2n7 + n8 + n9] log p
+ [n2 + n3 + 2n4 + 2n5 + 2n6 + 2n7
+3n8 + 3n9 + 4n10] log q
+ [n3 + n4 + n6 + n8] logψ1

+ [n1 + n2 + n5] logψ2 − n logR, (1)

where ni are sub-sample sizes of the ten entries in Table 5.
For parent-child dyads, denote the genotypes at the can-

didate gene locus as G and C, where G = M or G = F
is the genotype of the parent and C is the genotype of
the affected child. Given the sampling scheme of using the
affected child as a proband, the conditional probabilities

of parent-child pair genotypes P(M,C|D) can be derived.
For instance, we may calculate

P(M=Aa,C=AA|D) = P(M = Aa, F = AA,C = AA|D)

+ P(M=Aa, F = Aa,C = AA|D)

= P(MT=Aa × AA,C = AA|D)/2
+ P(MT=Aa × Aa,C = AA|D)

= 2p3qψ2/(2R) + 4p2q2ψ2/(4R)

= p2qψ2/R. (2)

Table 6 presents the possible conditional probabilities of
7 parent-child dyads. Then, we have the log-likelihood

log LParent−Child−Dyads = [3m1 + 2m2 + 2m3 + m4

+m5 + m6] log p
+ [m2 + m3 + m4 + 2m5

+2m6 + 3m7] log q
+ [m2 + m4 + m6] logψ1

+ [m1 + m3] logψ2 − m logR.
(3)

Our derivation above in (2) is different from that of
Schaid and Sommer [12], p1119, right column, lines 11–
12 from bottom. Schaid and Sommer [12] considered that
“a case has genotype AA, one of its parents has genotype
Aa, and the genotype of the other parent is missing” which
does not specify which parents, father or mother, hav-
ing Aa or missing genotypes. However, the present paper
takes an ordered example of mother having Aa genotype
and father having missing genotype, which is different
from the unordered case in Schaid and Sommer [12]. To
make it clear, Schaid and Sommer [12] calculated

P(M = Aa or F = Aa,C = AA|D)

= P(M = Aa, F = AA,C = AA|D)

+ P(M = AA, F = Aa,C = AA|D)

+ P(M = Aa, F = Aa,C = AA|D)

= P(MT = Aa × AA,C = AA|D)

+ P(MT = Aa × Aa,C = AA|D)

= 2p3qψ2/R + 4p2q2ψ2/(4R)

= p2qψ2/R + p3qψ2/R. (4)

In practice it is easy to make mistakes by applying
the unordered result like (4) in Schaid and Sommer [12]
directly, since in data it is usually an ordered case.
For the s affected singleton monads, assume s2 of them

have genotype AA, s1 of them have genotype Aa, and s0
of them have genotype aa (s2 + s1 + s0 = s). Then,
P(AA|D) = p2ψ2/R, P(Aa|D) = 2pqψ1/R, and P(aa|D) =
q2/R. Let us denote the likelihood of the affected singleton
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monads as Laffected−Monads. Then, we have the following
log-likelihood

log LAffected−Monads = [2s2 + s1] log p+ [s1 + 2s0] log q
+ s1 logψ1 + s2 logψ2 − s logR.

(5)

Based on the three log-likelihoods (1), (3), and (5), we
may calculate the log-likelihood of full data as follows

log L(ψ1,ψ2, p) = log LTriads + log LParent−Child−Dyads

+ log LAffected−Monads.

Likelihood ratio tests of genetic association
Under the null hypothesis of no association between the
disease and the marker locus, we have H0 : ψ1 =
ψ2 = 1. There is only one parameter p to estimate under
the null hypothesis H0 and the log-likelihood is equal to
log L(1, 1, p̂), and p̂ is the maximum likelihood estimate
(MLE) of p.
Without any restrictive condition on the parameters,

one gets an unrestricted alternative hypothesis HUnr :
ψ1 ≥ 0,ψ2 ≥ 0. Let ψ̃1, ψ̃2 and p̃ be the MLE of ψ1,ψ2
and p under HUnr . The likelihood ratio test statistic of
association is

Unr = 2 log L(ψ̃1, ψ̃2, p̃) − 2 log L(1, 1, p̂).

Unr is approximately chi-square distributed with 2
degrees of freedom (DF) by large sample theory, when the
sample size is sufficiently large.
Under a dominant model, one imposes a restriction of

an alternative hypothesisHDom : ψ1 = ψ2. Let ψ̃1 and p̃ be
the MLE of ψ1 and p under HDom, respectively. The LRT
of association is

Dom = 2 log L(ψ̃1, ψ̃1, p̃) − 2 log L(1, 1, p̂).

If a recessive disease model is desired, one has an alter-
native hypothesis HRec : ψ1 = 1,ψ2 ≥ 0. Let ψ̃2 and p̃ be
the MLE of ψ2 and p under HRec, respectively. The LRT of
association is

Rec = 2 log L(1, ψ̃2, p̃) − 2 log L(1, 1, p̂).

Under a multiplicative model, an alternative hypothesis
is HMult : ψ2 = ψ2

1 . Let ψ̃1 and p̃ be the MLE of ψ1 and p
under HMult , respectively. The LRT of association is

Mult = 2 log L(ψ̃1, ψ̃2
1 , p̃) − 2 log L(1, 1, p̂).

If an additive model is used, one has an alternative
hypothesis HAdd : ψ2 = 2ψ1 − 1. Let ψ̃1 and p̃ be the
MLE of ψ1 and p under HAdd, respectively. The LRT of
association is

Add = 2 log L(ψ̃1, 2ψ̃1 − 1, p̃) − 2 log L(1, 1, p̂).

Dom, Rec, Mult, and Add are approximately chi-square
distributed with 1 DF by large sample theory, when
the sample size is sufficiently large. In Appendix-A of

Additional file 1, we provide procedures and formulae to
perform MLE and LRT calculations by Newton-Raphson
methods.

Transmission disequilibrium tests
Using the notations in Table 5, it can be shown that the
transmission disequilibrium test (TDT) based on triads is
TDT = (b − c)2/(b + c), where b = n2 + 2n5 + n6 + n8
and c = n3 + n6 + 2n7 + n9 [3]. Combining both triads
and parent-child dyads and using the notations in Table 5
and Table 6, we may define a score test zcom = (W −
Acom)/

√
Vcom, where W = b + b1,Acom = (b + c)/2 +

(b1+ c1)/2,Vcom = (b+ c)/4+ (b1+ c1)/4, b1 = m2+m5,
and c1 = m3+m6 [10]. By large sample theory, the TDT is
approximately chi-square distributed with 1 DF and zcom
is approximately normally distributed when the sample
size is sufficiently large.

Simulations
In our simulation, we use the same notations as those in
the section of Models. For instance, p is the allele fre-
quency of allele A, n is the number of triad families, m is
the number of dyad families, and s is the number of mon-
ads. Hence, n,m, and s are sample sizes for triads, dyads,
and monads, respectively.
For power calculations, the data are simulated under

disease models using the multinomial distribution. For
instance, let us look at the upper left corner cell 0.84541 of
empirical power in Table 2. The cell corresponds to a sam-
ple size n = 100 of triad families, a sample size m = 25
of dyads and no monads s = 0, a given allele frequency
p = 0.5, and parameters ψ1 = ψ2 = 2.6. By using the 10
probabilities of Table 5 in column 3 based on given allele
frequency p = 0.5 and parameters ψ1 = ψ2 = 2.6, we
generate the triad counts ni, i = 1, · · · , 10,∑i ni = 100,
under the multinomial distribution. The same strategy
applies to generate dyad data m1, · · · ,m7,

∑
i mi = 25,

by using the 7 probabilities of Table 6. These counts are
then combined to estimate the parameters and calculate
the likelihood testUnr using unrestricted model. The pro-
cess is repeated 100,000 times. The number 0.84541 is
the the proportion of the Unr test values calculated for
the 100,000 samples, that exceed the 95-th percentiles
of the χ2

2 -distribution. For type I error calculation, the
parameters ψ1 and ψ2 are taken to be 1 under the
null hypothesis of no association using the multinomial
distribution.
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