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Abstract

macro-, meso- and micro scales of development.

Background: There was ancient human selection on the wild progenitor of modern maize, Balsas teosinte, for
decreased shoot branching (tillering), in order to allow more nutrients to be diverted to grain. Mechanistically, the
decline in shoot tillering has been associated with selection for increased expression of the major domestication gene
Teosinte Branched 1 (Tb1) in shoot primordia. Therefore, TB1 has been defined as a repressor of shoot branching. It

is known that plants respond to changes in shoot size by compensatory changes in root growth and architecture.
However, it has not been reported whether altered TB1 expression affects any plant traits below ground. Previously,
changes in dosage of a well-studied mutant allele of Tb7 in modern maize, called tbi-ref, from one to two copies,
was shown to increase tillering. As a result, plants with two copies of the tb1-ref allele have a larger shoot biomass
than heterozygotes. Here we used aeroponics to phenotype the effects of tb1-ref copy number on maize roots at

Results: An increase in the tb1-ref copy number from one to two copies resulted in: (1) an increase in crown root
number due to the cumulative initiation of crown roots from successive tillers; (2) higher density of first and second order
lateral roots; and (3) reduced average lateral root length. The resulting increase in root system biomass in homozygous
tb1-ref mutants balanced the increase in shoot biomass caused by enhanced fillering. These changes caused
homozygous tb1-ref mutants of modern maize to more closely resemble its ancestor Balsas teosinte below ground.

Conclusion: We conclude that a decrease in TB1 function in maize results in a larger root system, due to an increase in
the number of crown roots and lateral roots. Given that decreased TB1 expression results in a more highly branched and
larger shoot, the impact of TB1 below ground may be direct or indirect. We discuss the potential implications of these
findings for whole plant coordination of biomass accumulation and maize domestication.
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Background

Evidence suggests that the domestication of maize (Zea mays
ssp mays) began in the Balsas River valley of southwestern
Mexico ~9,000 years ago from a wild grass relative known as
Balsas teosinte (Z. mays ssp parviglumis) [1-7]. Descendant
Balsas teosinte plants can still be found today in Mexico:
they have a large shoot with multiple branches (tillers) each
tipped with an inflorescence producing few seeds encapsu-
lated by hard fruit cases. During maize domestication, the
highly branched (tillered) shoot of ancestral teosinte was
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bred by ancient farmers into a crop with a single main
stem, thus allocating more nutrients to seeds [8,9].
Significant research has been conducted on the genetic
basis underlying the reduction in shoot tillering during
maize domestication. These studies have implicated the
transcription factor TEOSINTE BRANCHED1 (TB1)
[10,11]. In single-stemmed genotypes of modern maize,
tiller meristems responsible for shoot branching initiate
but their outgrowth is repressed by TB1 [10-13]. Tb1 is
a member of the TCP Type II gene family involved in
transcriptional regulation of cell cycle genes [14]. Mech-
anistically, it is hypothesized that TB1 may repress lat-
eral bud outgrowth by binding to TCP Type II-specific
binding sites in the promoters of cell-cycle genes,

© 2014 Gaudin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:raizada@uoguelph.ca
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Gaudin et al. BMC Genetics 2014, 15:23
http://www.biomedcentral.com/1471-2156/15/23

blocking their activation [15,16]. During domestication,
ancient selection on the regulatory elements of 7h1 re-
sulted in increased ThI expression in tiller meristems,
leading to their constitutive repression [11,13,17-21].
Th1 is therefore considered a master shoot domestica-
tion locus and critical for the emergence of modern
maize agriculture.

Given the dramatic 7hI-mediated changes in maize
shoot architecture and size during domestication, it seems
logical that there may have been balancing changes in root
system size and morphology. Roots, which are otherwise
metabolic sinks, are required for mechanical support of
the shoot and for uptake of nutrients to support shoot
growth; both requirements may have been reduced follow-
ing domestication, at least during vegetative stages. In-
deed, in an earlier study [22] we observed that Balsas
teosinte and a modern maize inbred (W22) have a similar
root:shoot biomass ratio despite thousands of years of
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crop selection, suggestive of selection inadvertently occur-
ring at the whole plant level.

The root system of maize is complex. At the seedling
stage, maize relies on an embryonic root system consist-
ing of a single primary root and a variable number of
branched seminal roots [23] (Figure 1A). At adult stages,
dozens of below- and above-ground shoot-borne roots,
known as crown roots and brace roots, respectively, pro-
vide anchorage, nutrient uptake and transport to the
shoot (Figure 1B). The thick and long crown roots initi-
ate shorter and thinner first order lateral roots which
further branch to give rise to even finer higher order lat-
eral roots (Figure 1C). Lateral roots are the major con-
tributors to root system length and nutrient uptake [24].
The epidermal surface of lateral roots and crown roots
is covered with root hairs, which are single cell epider-
mal projections responsible for significant water and nu-
trient uptake [23].
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Stem CR
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(45 DAG)
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2nd order LR

Figure 1 Schematic representation of maize root system development and the aeroponics growth system used to facilitate root
phenotyping. (A) The primary root (PR) and seminal roots (SR) initiate from the embryo. (B) Lateral roots (LR) initiate from PR and SR, while
crown roots (CR) initiate from the stem. (C) The root system in adult maize consists of a large number of crown roots and their LR, which
undergo multiple orders of branching. The various root organs terminate in root hairs (RH). Structural brace roots (BR) initiating above ground
are also shown. (D-F) The aeroponics growth system used in this study. (D) Picture showing the highly branched maize root system. (E) The
custom built aeroponics chambers. (F) Modern maize tbi-ref plants (B73 background) (left) and inbred B73 (right) at 30 days after transplanting
in the aeroponics system. Abbreviations: co = coleoptile; DAG = Days after germination.
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Despite their importance, there has been no study
concerning the impact of altered expression of 7h1 on
root systems in maize. Earlier studies have characterized
a mutant allele of Th1 in modern maize called tbI-ref
[25] which results in increased shoot branching [10,17].
These earlier studies demonstrated that the tbI-ref allele
increased shoot branching in a dosage-dependent man-
ner, with two copies of the allele resulting in more
branches than heterozygotes [10,17]. In this study, we
asked whether a change in dosage of thi-ref has any ef-
fects on the root system of modern maize at the macro
scale (crown roots), meso scale (lateral roots) and micro
scale (root hairs). For our analysis, we compared one
versus two copies of thl-ref, which had previously been
introgressed into modern maize inbred B73 [17], and
were segregating here from a thi-ref/Tbl x tbl-ref/thl-
ref testcross. We also analyzed B73 and Balsas teosinte
as reference genotypes, the latter containing the ances-
tral Th1 allele.

There were two pre-requisites for this study. First, root
phenotyping at adult stages was deemed critical, as dif-
ferences in shoot branching between divergent 7h1 dif-
ferent alleles become pronounced toward the end of the
vegetative growth period. Second, since we hypothesized
that TB1 may affect lateral root branching, a growth
system was required that permitted non-destructive ex-
cavation of the fragile lateral roots and root hairs. For
these reasons, we grew maize and teosinte plants in a
customized aeroponics growth system (Figure 1D-F)
where roots were suspended in the air and misted with a
nutrient solution [26,27]. As we have demonstrated re-
cently [24], aeroponics allows growth of maize to late
vegetative stages, results in root system architecture that
is similar to plants grown on solid substrate, and permits
phenotyping of very large, intact root systems including
fine lateral roots and root hairs.

Here we demonstrate that in modern maize, plants
with two copies of the tbI-ref allele have a larger root
system biomass than plants with a single copy, and that
this biomass increase is associated with increased crown
root and lateral root branching. Homozygous thi-ref
modern maize plants architecturally resemble ancestral
Balsas teosinte both above and below ground. We discuss
the potential implications of these findings for under-
standing the impact of TB1 on whole plant coordination
of biomass accumulation and maize domestication.

Results

The ancestral Balsas teosinte root system is highly
branched, with a similar root:shoot biomass ratio as a
modern maize inbred

Growth in aeroponics (Figure 1D-F) allowed us to com-
pare the complete post-embryonic root systems of plants
35 days after transplanting (35 DAT). Balsas teosinte had
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a more tillered shoot but also a more bushy-looking
root system compared to a modern maize inbred (B73)
(Figure 2). As a result, compared to the modern inbred,
the higher vegetative shoot weight of Balsas teosinte
plants was balanced by its greater root biomass. Despite
thousands of years of human selection separating these
two genotypes, both the modern inbred and teosinte had
statistically similar root:shoot biomass ratios (Table 1).

Homozygous tb1-ref plants have a greater shoot and root
biomass than heterozygotes

Segregating homozygous (thb1-ref/tbl-ref) and heterozy-
gous plants (Tb1/tb1-ref) were distinguished using a diag-
nostic molecular marker (Additional file 1: Figure S1) and
then phenotyped. As expected, in modern maize, the
th1-ref homozygous mutant mimicked the high shoot til-
lering phenotype of Balsas teosinte (Figure 2A-D; Table 1).
Homozygous tbI-ref mutant plants showed a significant
increase in shoot biomass compared to heterozygotes
(Table 1). Modern maize plants that possessed two copies
of thi-ref were not significantly different than Balsas teo-
sinte in terms of shoot biomass or tiller number (Table 1).
Below ground, modern maize plants with two copies of
tbl-ref had a significantly higher root biomass than het-
erozygotes (Table 1; Figure 2). Increased copy number of
the th1-ref allele caused the root biomass to increase suffi-
ciently to balance its effect on increased tillering above
ground, resulting in no significant change in the root:
shoot biomass ratio (Table 1).

The specific root length (SRL, measured in cm/g) also
increased in tb1-ref homozygotes compared to heterozy-
gous plants (Table 1): the simplest interpretation is that
this change was caused by a greater increase in lateral
root length than crown root length in homozygotes,
since lateral roots are very thin and light weight com-
pared to crown roots.

Homozygous tb1-ref plants have more crown roots (CR)
than heterozygotes

We investigated the underlying architecture of the heav-
ier root systems of homozygous tbI-ref plants. Below
ground, homozygous tbI-ref plants had an enlarged and
bushier root system than heterozygotes, remarkably re-
sembling the overall root system architecture of Balsas
teosinte (Figure 2E-H) with similar total root length
(Table 1). The total lengths of all crown roots (CR) and
all measurable lateral roots (LR) were significantly
greater in homozygous tbI-ref mutants compared to het-
erozygotes. The homozygous plants resembled ancestral
Balsas teosinte for these traits (Figure 3A). Most signifi-
cantly, the total number of CR, which are the thick and
heavy backbone roots of maize, increased significantly in
th1-ref mutants compared to heterozygotes (Figure 3B).
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Figure 2 Representative pictures of shoot and root morphologies of B73, tb1-ref and teosinte plants. (A-D) Representative pictures of
shoots (92 days after planting) of: (A) modern maize inbred B73, (B) heterozygous tb1-ref mutant (tb1/Tb1, B73 background), (C) tb1-ref homozygous
mutant (tb1/tb1, B73 background), and (D) Balsas teosinte. (E-H) Representative pictures of the root system at 35 days after transplanting (35 DAT) for
(E) inbred B73, (F) heterozygous tb1-ref mutant (tb1/Tb1), (G) tb1-ref homozygous mutant (tb1/tb1) and (H) Balsas teosinte.

tb1-ref restores the ancestral developmental pattern of

cumulative crown root initiation from successive tillers

We further investigated the CR phenotypes of tbI-ref
mutants. We observed that CR initiate at the base of
the main stem but also at the base of each tiller
(Figure 3C-F). Therefore, we hypothesized that the tbI-
ref-dependent increase in CR number was indirectly
caused by its effect on increasing tiller number. To test
this hypothesis, the association between tillers and CR
was quantified. On tb1-ref modern maize plants, each
shoot and its associated CR system were separated and
measured individually. All mature tillers were observed
to possess separate CR systems, similar to Balsas teo-
sinte (Figure 3G-H; Additional file 2: Tables S1 and S2).
The increase in CR number in homozygous versus het-
erozygous tbI-ref mutants was associated with increased
tillering rather than more CR emerging from either the

main stem or a subset of tillers (Figure 3I; Additional
file 2: Tables S1 and S2). A similar positive association
between successive tillering and crown rooting was
observed in ancestral Balsas teosinte when compared
to modern inbred B73 (Figure 3G-I; Additional file 2:
Table S2). However, homozygous tbI-ref plants had
fewer CR compared to its ancestor, perhaps due to a
slower rate of tiller initiation in tbI-ref plants compared
to Balsas teosinte (Additional file 2: Table S2). Consist-
ent with these results, a direct positive correlation was
observed between CR number and tiller number across
genotypes (Figure 3J).

Homozygous tb1-ref mutants have increased first order
lateral root (LR) branching compared to heterozygotes
In maize, the CR initiate first order lateral roots (LR)
which can further branch to form second order LR.
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Table 1 Dry biomass allocation, shoot and root traits in tb1-ref heterozygotes (tb1/Tb1, B73 background) and
homozygotes (tb1/tb1, B73 background) compared to modern maize inbred B73 and Balsas teosinte

Tiller # TRL (cm) Dry weights (g/plant) SRL (cm/qg) Leaf tips #
Total Main stem Tillers Root R/S ratio

tb1/Tb1 4+10 a 76226+5831 a 711+48 a 363+46 a 218+43 a 129+10 a 022+003 a 59089+5102 a 456+73 a
tb1/tb1 MN5+16 b 11977048657 b 866+79 b 27+42 abc 426+67 b 172+15 b 024+004 a 69634+5389 a 96+116 b
B73 0 C 66900+4321 a 632+49 a 522+41 b 0 a 111+08 a 021+002 a 6027+5227 a 145+£58 ¢
Teosinte  208+11 d 124383+93265 b 923+98 b 197+36 ¢ 548448 c 18711 b 024+003 a 66518+5674 a 1265+82 d
Genotype ** * * ** * * NS NS *
effect
Notes.

-Values are Least Square Means from ANOVA =+ standard errors (n =6) at 35 days after transplanting.
-Means within a column followed by the same letter are not significantly different at a=0.05. A mean value with multiple letters indicates that it is not

significantly different at a=0.05 from multiple other genotypes as indicated.
-(*) significant at a =0.05, (**) significant at a=0.01, NS = Not Significant.

-(#) = number, TRL = total root length, R/S =root to shoot biomass ratio, SRL = specific root length.

First order LR branching initiates in the apical region
of each CR above the elongation zone near the root
tip; thus the most mature LR are located in the basal
region closest to the soil surface. To quantify the
effect of altered dosage of the tbI-ref allele on LR
traits in modern maize, synchronously initiating CR
were labelled (one per plant) at 15 days after trans-
planting (15 DAT). First order LR length and density
were measured 20 days later on three equal segments
above the elongation zone (see Methods). In all three
CR segments, a significant increase was observed in
the number of first order LR per cm of CR in homozy-
gous tbl-ref plants compared to heterozygous thi-ref
plants (Figure 4A). In the oldest two root system
segments, homozygous tbI-ref plants had a similar
number of first order LR per crown root segment
as Balsas teosinte (Figure 4A). These trends were
similar when the total number of first order LR was
expressed per CR segment (Table 2), indicating that
the tb1-ref homozygous genotype led to an increase
in the absolute number of first order LR on individ-
ual CR systems. To confirm this result, the number
of newly initiated LR during a 24-hour period was
scored at the same time as above. The branching
zone of each CR was stained, and any unstained LR
were scored as being newly initiated roots (Figure 4B-
D). Using this method, homozygous tbI-ref plants
were observed to have a higher rate of first order LR
initiation than heterozygotes at 35 DAT (Figure 4C).
To ensure that the higher rate of LR initiation
was not an artefact of faster CR growth, the CR
elongation rate over the same 24-hour period was
simultaneously quantified. No difference was observed
between the CR elongation rate in homozygous tbI-
ref plants versus heterozygotes (Figure 4D). We con-
clude that plants with two copies of the tbI-ref allele
have increased branching of first order LR compared
to heterozygotes.

Homozygous tb1-ref mutants have increased second
order lateral root (LR) branching compared to
heterozygotes

On the two most mature CR segments, the basal and mid-
dle regions, homozygous tbI-ref plants initiated ~two-fold
more total second order LR per cm of CR compared to
thi-ref heterozygotes. The homozygotes were similar to
Balsas teosinte in the oldest two root system segments
(Figure 5A; Table 2). A similar result was observed when
the data was normalized by unit length of LR (Figure 5B;
Table 2). No informative differences could be observed be-
tween homozygotes and heterozygotes in the segment
closest to the CR tip, likely because the second order LR
were in the process of initiating (Figure 5A; Table 2). We
conclude that, along with first order LR branching, tb1-ref
homozygous plants have an increased density of second
order LR compared to heterozygotes.

Finally, the homozygous tbI-ref genotype showed re-
duced average lengths of both the first and second order
LR by 31% and 45%, respectively, compared to heterozy-
gotes on the most mature CR region (basal segment);
the average lengths of LR of homozygotes were similar
to Balsas teosinte (Table 2). Hence, even though homo-
zygous th1-ref plants had shorter LR compared to het-
erozygotes, the overall LR length per CR appeared to be
the same as there was an increase in LR numbers.

Altered dosage of tb1-ref does not affect root hairs (RH)
Unlike tillers, crown roots or lateral roots, all of which
initiate from meristems, root hairs (RH) originate from
differentiation of individual epidermal cells [28]. Altered
dosage of the tbI-ref allele showed no significant effect
on total RH length per unit of lateral root, average RH
length or RH density (Figure 6). Total and average RH
lengths were significantly higher in Balsas teosinte than
all of the modern maize B73 genotypes, consistent with
independent data comparing Balsas teosinte with an-
other modern maize inbred line (W22) [22].
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inbred B73 (B73), (D) tbi-ref heterozygous mutant (tb1/Tb1, B73 background), (E) tb1-ref homozygous mutant (tb1/tb1, B73 background) and (F)
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crown root elongation over a 24 hour period beginning at 34 days after transplanting (DAT). At 15 DAT, synchronously initiating crown roots
were labelled (one per plant) and all root traits were quantified 20 days later. Shown is the standard error of the mean estimate. Bars with the
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Discussion of the shoot [10,11,25]. TB1 orthologs have also been
Earlier studies demonstrated that reduced-function al- shown to have conserved above-ground functions in
leles of the major maize shoot domestication locus 7h1  Arabidopsis [29], sorghum [30], rice [31], wheat [32]
result in an increase in biomass and axillary branching and barley [33]. However, the below ground impact of
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Table 2 Comparative measurements of the length and density of first and second order lateral roots per crown root
segment

Per crown root segment Per unit of crown root length (cm) Per unit of 1%t order LR
LR total length LR number LR total length LR number LR average length LR number

Segment Genotype 1% 2 1 2nd 1 2 1 2"d 1% 2 # 2nd

order order order order order order order order order order order
tb1/Tb1 7287 a 4389 a 523 a 1844 a 658 a 396 a 48 a 167 a 139 a 212 a 026 a
tbi1/tb1 8033 a 4685 ab 833 b 3989 b 772 b 451 a 80 b 384 b 97 b 117 b 049 b
fasa B73 8252 a 3579 a 554 a 2059 a 825 b 358 a 56 a 206 a 149 a 174 a 025 a
Teosinte 9504 a 5036 b 1067 b 5043 b 725 b 384 a 82 b 385 b 89 b 100 b 053 b
tb1/Tb1 2594 a 963 a 386 a 1539 a 234 a 87 a 35 a 139 a 44 b 063 a 059 a
) tb1/tb1 2892 a 939 a 713 b 2823 ab 278 a 90 a 69 b 272 b 41 b 033 b 098 b
Middle B73 3057 a 1077 a 434 a 1574 a 286 a 108 a 44 a 157 a 66 a 068 a 055 a
Teosinte 4901 b 1133 a 1057 b 4087 b 394 b 86 a 81 b 312 b 49 b 028 b 079 b
tb1/To1 694 a 323 a 205 a 425 a 63 a 29 a 18 a 38 a 29 a 076 a 061 a
) tbi/tb1 796 a 297 a 473 b 311 a 69 a 26 a 42 b 27 a 16 a 026 a 039 b
Apical B73 418 a 464 a 179 a 386 a 46 a 52 a 19 a 43 a 23 a 030 a 093 a
Teosinte 2008 b 1193 b 1137 ¢ 1802 b 153 b 91 b 87 ¢ 138 b 18 a 026 a 08 a

Notes

-Values are least square means from ANOVA =+ standard errors (n = 12) at 35 days after transplanting.

-Means within a column followed by the same letter are not significantly different at a=0.05. A mean value with multiple letters indicates that it is not
significantly different at a=0.05 from multiple other genotypes as indicated.

-LR =lateral root, WT = wild type, # = number.
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Figure 5 Dosage effects of the tb1-ref allele on second order lateral roots. (A) Total number of second order lateral roots per unit length of
crown root for each of three crown root segments: top (basal), middle and bottom (apical). (B) Density of second order lateral roots per unit
length of first order lateral root. Measurements were performed at 34 days after transplanting (DAT) on crown roots synchronously initiated at 15
DAT (n = 12). Shown is the standard error of the mean estimate. Bars with the same letter are not significantly different at a = 0.05.
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Figure 6 Dosage effects of the tb1-ref allele on root hair traits
at 35 DAT. (A) Total root hair length per unit length of first order
lateral roots. (B) Root hair initiation density per unit length of first order
lateral roots. (C) Average root hair length. At 15 DAT, synchronously
initiating crown roots were labelled (one per plant), and root hairs were
scored 20 days later on lateral roots 5 cm away from the beginning of
the branching zone on each crown root. Root hair traits were quantified
using 192 digital images per genotype. Shown is the standard error

of the mean estimate. Bars with the same letter are not significantly
different at a = 0.05.

mutations at the 7b1 locus or its orthologs, had not
been reported previously. In this study, using aeroponics,
we observed that in tbI-ref mutants, the increase in
shoot biomass was balanced by a corresponding increase
in root biomass. Increasing the tbI-ref copy number
from one to two copies altered root architecture at the
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macro and meso scales of root development, resulting
in: (1) an increase in crown root number due to the cu-
mulative initiation of crown roots from successive tillers;
(2) higher density of first and second order lateral roots;
and (3) reduced average lateral root length (Figure 7).
These changes caused homozygous thI-ref mutants of
modern maize to resemble the root system of its ances-
tor Balsas teosinte (Figure 7).

A limitation of this study is that we were not able to
compare thI-ref (B73) plants to a true wild-type, as the
thl-ref seeds that we received did not segregate wild-
types because it was generated from a testcross (tb1-ref/
thi-ref x Thi-ref/tb1-ref). Therefore, we limited our con-
clusions to the effects of one versus two copies of the
thl-ref allele which were segregating 1:1 in the same
genetic background. For reference, we also characterized
the root system of a standard B73 line, but we have not
made direct comparisons out of caution that the two
B73 backgrounds may be genetically or epigenetically
different. Another limitation of this study is that though
we focused on a well characterized mutant allele of tb1
[10,17], we did not characterize any other ThI alleles
within modern maize. However, the variation observed
in shoot tiller number and crown root number within
and between the two comparison genotypes (tb1/tbl
versus 1b1/tb1) clearly demonstrates that these popula-
tions are distinct (Additional file 1: Figure S2), and does
not lead us to suspect the existence of a major segregat-
ing genetic modifier in the background that affects shoot
or root branching; in any case, such a modifier should
be equivalently segregating in both tbI-ref homozygotes
and heterozygotes. We cannot rule out the possibility
that a mutation in a tightly linked locus or distant regu-
latory element modulates the phenotypes observed here.

Maize maintains homeostasis of the root:shoot biomass
ratio despite mutation at Tb7

The root:shoot biomass ratio is considered a fundamen-
tal physiological and genetic measurement of how plants
acclimate and adapt to the environment, respectively
[24,34]. Despite having an enlarged shoot, Balsas teo-
sinte plants were calculated as having a similar root:
shoot biomass ratio as two modern maize inbreds
(Table 1) [22]. This result is consistent with data from
wheat and barley, in which no significant differences
were observed in the root:shoot biomass ratio between
modern cultivars and their wild ancestors [35].

What is mechanistically responsible for maintaining
homeostasis in the root:shoot biomass ratio despite
thousands of years of human selection on crop shoots?
Similar to the teosinte versus modern inbred compari-
son, we found that homozygous thIl-ref mutants had
more shoot tillers and crown root systems than hetero-
zygotes. One possible explanation was that homozygous
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a single crown root with its first and second order lateral roots.

Figure 7 Summary of the dosage effects of the tb1-ref allele on lateral root branching and length. Shown is a schematic representation of

tbi-ref plants had more crown roots per (main) stem.
Consistent with this hypothesis, in earlier studies involv-
ing modern maize, plasticity in crown root number in
response to shading [36,37] or low nitrogen stress [24]
was shown to occur without corresponding changes in
tillering as these plants maintained a single stem. Fur-
thermore, in rice, initiation of tillers and crown roots
was shown to be uncoupled: in a knockout of the polar
auxin efflux carrier OsPIN1, there was an increase in
tiller number but a reduction in adventitious root num-
ber [38]. However, in the current study, we observed
that the majority of the extra crown root systems in
homozygous tbI-ref plants, compared to heterozygotes,
initiated from the base of the (extra) tillers rather than
from the main stem (Additional file 2: Tables S1 and S2;
Figure 3C-J). Compared to inbred B73, the extra crown
root systems in Balsas teosinte also initiated from the
extra tillers (Additional file 2: Table S2; Figure 3C-J).
There was a positive correlation between tiller number
and crown root number across genotypes (Figure 3J).
Therefore, the simplest explanation for root:shoot
homeostasis in maize (and perhaps other crops) over
thousands of years is that as the tiller number was re-
duced during domestication, there were successively
fewer crown root systems because these initiate at the
base of tillers. With respect to the impact of mutation at
the Th1 locus, plants appear to have an auto-regulated
developmental mechanism that adjusts root construction
with any major change in the demand for nutrients
caused by altered ThI-dependent tillering.

Tillering and crown rooting appear to be similarly cor-
related in other species. For example, in sorghum, the
ortholog of TB1 (ShTBI) was shown to be involved in
the shade-dependent decline in tillering [39], a stress
which decreases crown root number in maize [36,37]. In
other cereals, Green Revolution breeding for dwarfism
increased both tiller number and crown root number in
wheat, barley and rice [40-43]. A single locus (ari.e.GP)
was implicated in regulating both tiller number and
crown root number in barley [44]. In wheat, decreases in

crown root and tiller number were coordinated in re-
sponse to reduced Red:Far Red light (shading) [45,46]. In
a dicot, petunia, a defect in strigolactone synthesis in-
creased both shoot branching and late-developing ad-
ventitious roots [47,48].

One important caveat to the above interpretation is
that we do not know how mutations at the 7hI locus
affect the root:shoot biomass ratio at reproductive stages
of development when grain demand for nutrients may
affect biomass partitioning to roots versus shoots. Due
to the exponential increase in microchamber space and
nutrients required to grow mature maize plants in
aeroponics, this study was terminated at late vegetative
stages. In studies concerning wheat and barley, the ob-
served increase in seed weight following domestication
was found to strongly correlate with a larger embryonic
root system [49-51].

Is the effect of TB1 on lateral root branching direct or
indirect?

We observed that plants with two copies of the tbi-ref
allele had an increased density of first order and second
order lateral roots (LR) (Table 2). Mechanistically, a key
first step in lateral root primordia initiation is reactiva-
tion of cell division involving cyclin genes within the
pericycle layer adjacent to xylem pole cells [52-54]. Al-
tered cyclin regulation has been shown to affect the
density of lateral roots [52]. In the shoot, it is proposed
that TB1 inhibits tiller meristem outgrowth by binding
to, and blocking activation of, cell cycle promoters
[15,16]. Hence, one model is that the tbI-ref allele might
directly increase lateral root density by preventing TB1-
mediated repression of cell cycle genes involved in lat-
eral root primordia (LRP) initiation.

Another possibility, however, is that the lateral root
phenotype of thi-ref plants may also have an indirect
physiological cause, for example due to an increase in
demand by the larger shoot for nutrients or alterations
in phytohormone gradients associated with morpho-
logical changes. Consistent with an indirect physiological
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mechanism, we recently demonstrated that an increased
density of second order lateral roots is an important re-
sponse to low nitrogen in modern maize [24].

Is there an adaptive advantage to shorter lateral roots in
tb1-ref homozygous plants?

As noted above, the increase in lateral root number per
segment of crown root in plants with more tillers (tb1-
ref homozygotes) (Table 2) might permit a higher rate of
nutrient uptake to support a larger shoot system. The
adaptive advantage of homozygous tbI-ref plants show-
ing a concomitant decrease in average lateral root length
(Table 2) is less clear. One possibility is that the decline
in average lateral root length occurs to metabolically
compensate for the dramatic doubling in lateral root
number, as the root system is an energy sink. This hy-
pothesis is supported by the observation that the nor-
malized total length of the lateral root system was not
significantly or dramatically greater when the tbI-ref
copy number was increased (Table 2). It might be that a
more branched root system is the most energetically effi-
cient means of adding mechanical stability to support a
larger shoot by gripping the soil. Alternatively, an in-
crease in lateral root number might be more adaptive
than increasing the lateral root length in terms of redu-
cing physiological bottlenecks for nutrient uptake, be-
cause the former increases the number of lateral root to
crown root junctions for nutrient unloading into the
thicker vascular system of crown roots.

Conclusions

Future experiments are needed to quantify and/or localize
TB1 protein or its orthologs in lateral root primordia cells
including under different environmental stresses. Above
ground, it has been proposed that Th1 expression in teo-
sinte is environmentally regulated, whereas in modern
maize it is more constitutively expressed to repress tiller
outgrowth [55]. Correlating DNA sequence polymorphisms
in diverse ThI alleles from teosintes and modern maize
[56] with their corresponding root phenotypes, may also
help to clarify the role of Th1 in root branching including
any role it may have played below ground during maize do-
mestication. In particular, novel alleles of Th1 which can
unlink root branch phenotypes from tillering would be par-
ticularly informative in maize or other species.

Methods

Plant materials

Maize inbred line B73 was obtained from the Maize Genetic
Cooperative Stock Center (Accession NSL 30053, Lot
04ncai02, USDA, North Central Regional Plant Introduction
Station). Zea mays ssp. parviglumis (Balsas teosinte) seeds
were obtained from CIMMYT, Mexico (ID 9477). Balsas
teosinte originates from the Central Balsas River Valley in
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Southwest Mexico and is thought to be the closest wild dir-
ect ancestor of modern maize [1,7]. Homozygous and het-
erozygous tb1-ref mutants were in a B73 background [17].
This material was previously generated by introgressing
the th1-ref allele for at least five generations into a B73 in-
bred obtained from Pioneer HiBred International which
was then self-pollinated [17], and maintained by the la-
boratory of Paula McSteen (University of Missouri). The
seeds used here were the progeny of a testcross (th1-ref/
thl-ref x Th1/tbi-ref) and hence were segregating 1:1, with
no wild-types. Segregating thi-ref alleles were distin-
guished at Guelph using marker umc1082 which is tightly
linked to the tbI-ref allele (chromosome 1L, Bin 1.09)
using primers, rev: 5'-GCCTGCATAGAGAGGTGGTAT
GAT-3" and fwd: 5° CCGACCATGCATAAGGTCTAG
G-3" with standard amplification conditions (Additional
file 1: Figure S1).

Plant growth system

Maize plants were grown in a custom-made aeroponics
growth system (Figure 1D-F). In aeroponics, plants are
grown by misting roots, suspended in the air, with a nu-
trient solution in a closed loop. Pairs of seedlings were
transplanted into containers suspended on top of 133 L
black micro-chambers containing internal microjets that
were connected to a nutrient solution tank; the solution
was replaced weekly. Four independent but identical
aeroponics systems were constructed side-by-side. For
each system, a 100 L nutrient solution fed 12 plants dis-
tributed amongst 6 barrels. Aeroponics permitted non-
destructive sampling of the large post-embryonic root
system of maize. Details of our aeroponics system and
its construction have been previously described [24].

Growth conditions and experimental design
Seeds were surface sterilized using 20% bleach with
0.05% Tween 20 for 5 min, and washed twice for 10 min
each with water. Teosinte fruit cases were cut closest to
the radicle with a nail clipper to improve the homogen-
eity of germination. Seedlings were germinated in the
dark with dH,O-soaked filter paper with 1 mL of Maxim
XL™ fungicide (Syngenta, USA). Uniformly germinated
seedlings were transferred to the aeroponics growth sys-
tem in a glass greenhouse under a mixture of high pres-
sure sodium and metal halide lamps (800 pmol m™ s,
at pot level), 16 h photoperiod, and 28°C day /20°C night
regime, during the summer of 2009, in the Crop Science
Greenhouse Facility, University of Guelph. Six plants per
genotype were grown for 35 days (12 leaf tips on average
for B73) in a randomized block design. The experiment
was repeated two times (n =12).

The nutrient solution contained: 6 mM Ca(NOs3),,
4 mM NH,NO;, 1 mM MgSO,, 0.1 mM, K,SO4, 1 mM
KCl, 2 mM KH,POy, 0.04 mM H3BO;, 0.02 mM MnSO,,
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0.7 pM ZnSOy4, 0.3 pM CuSO,4 0.5 pM NHiMo;0,4,
1 mM Fe-DTPA. Seven days after planting (3 leaf tip stage
for B73), 3 g of EDTA-chelated micronutrient mix (Plant-
Prod #7906B7B, Plant Products Co., Canada) was added
per 100 L of the above solution to obtain a final concen-
tration of 2.1 ppm Fe (5% EDTA chelated and 2% DTPA
chelated), 0.6 ppm Mn, 0.12 ppm Zn, 0.03 ppm Cu, 0.39
ppm B and 0.018 ppm Mo. On a daily basis, the solution
was maintained in the pH range of 5.7-6.3.

Shoot measurements

Given the dramatic differences in plant development be-
tween Balsas teosinte, the B73 inbred and the tbi-ref
mutants, all comparisons were performed at the same
age rather than phenological stage. At 35 days after
transplanting (DAT), shoots were analyzed for biomass
partition between tillers, stems and leaves after 48 hours
of drying at 82°C.

Macro-scale root measurements

During plant development, the total numbers of crown
roots and tillers (as applicable) were recorded every 5
days. Root systems were harvested at 35 days after trans-
planting (DAT), weighed and flat-stored in trays contain-
ing 50% ethanol at -20°C. Twelve hours prior to root
scanning, roots were thawed, floated in water in 30 x 42
cm transparent plastic trays, and scanned using a Large
Area scanner (LA2400, Hewlett Packard, USA). Root
traits were quantified using WinRhizo software root
diameter analysis (Version PRO 2007, Regent Instru-
ments Inc., Canada). Scans were analyzed for total root
length per plant (TRL), and image analyzer was set up to
measure length per diameter class allowing analysis of
lateral roots (LR <0.2 mm) and crown roots (CR>0.5
mm) separately. Brace roots were excluded. The number
of crown roots was scored by counting their initiation in
the crown region. The masses of roots were then taken
following drying at 82°C for 48 hours.

Meso-scale root measurements

At 15 days after transplanting (DAT) one newly initiated
crown root on each plant was labelled by carefully tying
a thread around it. At 35 DAT, these labelled roots were
harvested, flat stored in 50% ethanol at -20°C in a trans-
parent plastic bag, and later scanned. Because the first
and second order lateral roots were not differentiated
accurately by the WinRhizo software, we traced each lat-
eral root order on different transparent sheets and then
analyzed the tracings in WinRhizo. As crown roots var-
ied in length, lateral roots were measured on each crown
root as follows: each crown root was divided into 3 equal
segments above the branching zone, and then each seg-
ment was further divided into 3 sub-segments. Within
each segment, the middle sub-segment, representing 1/9
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of each crown root, was directly measured and then
multiplied by three to give the score for that segment.

Analysis of lateral branching and crown root growth rate

The methodology used here was previously described
[24]. At 15 DAT, synchronously initiating crown roots
were labelled as above (one per plant, different roots
than above). Twenty days later, each crown root tip was
stained with 1 mM neutral red dye (pH 7) for 10 min
and washed in dH,O for 5 min before being transferred
back to the aeroponics growth system. Pictures were
taken 24 hours after staining: the length of the non-dyed
crown root tip and unstained lateral roots were used to
quantify crown root elongation and lateral root initi-
ation, respectively, during the 24 hour period. We previ-
ously tested various dye concentrations to ensure that
staining had no effect on root growth (data not shown).

Root hair (RH) (micro-scale) measurements

Four first order lateral roots were removed in a region
beginning 5 ¢cm distal to the crown root elongation zone
from the 20 DAT crown roots described above. Samples
were stored in deionised water at 4°C. Lateral roots
were stained with 0.1% Trypan blue solution for 2 min,
followed by washing with distilled H,0 for 1 min. RH
density (RHD) was measured by counting root hairs on
the full semi-circular plane of a 2 mm lateral root seg-
ment under a light microscope (Zeiss, 100X). This meas-
urement was then multiplied by two for an estimate of
the total root hair number per lateral root segment.

Root hair (RH) lengths were measured using a light
microscope (Leica MZ8) with a 1/0.01 micrometer;
four images per lateral root were taken using Northern
Eclipse software (v5.0, Empix Imaging Inc, Canada). Im-
ages were exported to Image] software (V1.40g, NIH,
USA). The scale in the Analyze function was set to 37
pixels/100 pum based on the microscale.

Total RH length per 100 microns of lateral root
(TRHL) was quantified by digitally tracing every RH in
ImageJ; only protruding root hairs in side-profile were
traced. Additional methodological details have been de-
scribed earlier [24]. The root hairs were traced from a
total of 192 digital images per genotype to ensure robust
measurements; each image contained ~200 root hairs.

Statistical analysis

Statistical analyses were performed using the MIXED pro-
cedure of the SAS statistical software package (Version
9.1, Statistical Analysis System, SAS Institute, USA).
Residuals were tested for normality using the Shapiro
Wilk normality test; Lund’s test was used to identify and
remove outliers. Unbalanced Two-Way Analysis of Vari-
ance and partition were calculated to determine differ-
ences between genotypes using the F-test with a Type I
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error alpha = 0.05. Tukey’s HSD test was used for multiple
comparisons of means. Linear regression analysis of crown
root number and tiller number was performed using SAS
Linear Regression (PROC REG Procedure).

Additional files

Additional file 1: Figure S1. Example of tb]-ref allele genotyping using
the umc1082 diagnostic PCR molecular marker. Shown is a 2% agarose
gel performed on maize seedlings that were subsequently subjected

to morphometric analysis in the greenhouse. Figure S2. Phenotypic
variation within and between populations of tb7-ref homozygous and
heterozygous plants at 35 days after transplanting for (A) the total
number of crown roots per plant and (B) the total number of shoot tillers
per plant. The range of values demonstrates that the two genotypes had
distinct phenotypes associated with altered tb1-ref allele dosage, despite
hypothetical genetic modifiers that may or may not have been
segregating in the background (n=12).

Additional file 2: Table S1. Comparisons of tiller initiation date (days
after transplanting) in tb7-ref heterozygotes (tb1/Tb1, B73 background)

and homozygotes (tb1/tb1, B73 background) compared to modern maize
inbred B73 and Balsas teosinte. Table S2. Comparisons of numbers of
associated crown roots initiating from the base of each stem or tiller in
tb1-ref heterozygotes (tb1/Tb1, B73 background) and homozygotes (tb1/tb1,
B73 background) compared to modern maize inbred B73 and Balsas teosinte.
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