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Abstract

progression of ND.

Background: Cox-regression-based methods have been commonly used for the analyses of survival outcomes,
such as age-at-disease-onset. These methods generally assume the hazard functions are proportional among various
risk groups. However, such an assumption may not be valid in genetic association studies, especially when complex
interactions are involved. In addition, genetic association studies commonly adopt case-control designs. Direct use
of Cox regression to case-control data may yield biased estimators and incorrect statistical inference.

Results: We propose a non-parametric approach, the weighted Nelson-Aalen (WNA) approach, for detecting
genetic variants that are associated with age-dependent outcomes. The proposed approach can be directly applied
to prospective cohort studies, and can be easily extended for population-based case-control studies. Moreover, it
does not rely on any assumptions of the disease inheritance models, and is able to capture high-order gene-gene
interactions. Through simulations, we show the proposed approach outperforms Cox-regression-based methods in
various scenarios. We also conduct an empirical study of progression of nicotine dependence by applying the WNA
approach to three independent datasets from the Study of Addiction: Genetics and Environment. In the initial
dataset, two SNPs, rs6570989 and rs2930357, located in genes GRIK2 and CSMD1, are found to be significantly
associated with the progression of nicotine dependence (ND). The joint association is further replicated in two
independent datasets. Further analysis suggests that these two genes may interact and be associated with the

Conclusions: As demonstrated by the simulation studies and real data analysis, the proposed approach provides an
efficient tool for detecting genetic interactions associated with age-at-onset outcomes.

Keywords: Weighted Nelson-Aalen, Cox regression, Progression of nicotine dependence, Joint association

Background

For most common complex diseases, if not all, the cur-
rently identified genetic loci only explain a small per-
centage of the disease heritability [1,2]. The search for
genetic variants underlying complex diseases remains
to be a major goal and challenge for the coming de-
cades. While genetic variants, such as rare variants and
structure variation, may contribute to the remaining
heritability, part of the missing heritability could be ex-
plained by the interplay of genetic variants through
complicated mechanisms [3,4]. The study of gene-gene
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interaction may reveal novel findings explaining missing
heritability, and shed light on the underlying etiological
and pathophysiological processes that result in complex
diseases. Although substantial efforts are given to identifi-
cation of gene-gene (G-G) interactions related to binary
disease outcomes, less attention has been given to G-G
interaction research on other clinical features, such as ages
at disease onset, which may more closely reflect the
dynamic process of disease development [5]. A number
of studies show that the intensity of natural selection
on a gene declines with the age at which it is expressed
[6-8]. In addition, practical evidence suggests that many
complex diseases, such as Alzheimer’s diseases and bipolar
diseases, have separate pools of genetic variants that con-
tribute to the early-onset and late-onset cases, indicating
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distinctive biological pathways involved in the disease
development process [9,10]. Though G-G interactions
are ubiquitous in various biological pathways related
with the disease development process [3], identification
of these G-G interactions presents continuing challenges.

Cox-regression is a powerful tool for the genetic ana-
lysis of age-at-disease-onset outcomes. It has been used
in genetic association studies for detecting single genetic
variant associated with disease progression [11-13]. To
better characterize the association in a candidate gene/
region, Cox-regression has also been extended to handle
multiple loci via haplotype analysis [14-16]. However,
Cox-regression is less suitable for the analysis of a large
number of genetic variants and possible G-G interactions,
because of the rapidly increasing number of parameters.
In addition, Cox regression assumes the hazard rates are
proportional among various risk groups. Such an assump-
tion may be questionable in genetic studies, especially
when complex interactions are involved. Further, most of
the current genetic association studies adopt case-control
designs, by which cases are usually over-sampled from
the source population. Applying Cox regression to case-
control studies may raise another issue of biased esti-
mation of hazard ratios [17,18]. To address this issue,
Nan et al. proposed to analyze age-at-disease-onset for
case-control studies using a modified case-cohort ap-
proach (MCC) [19]. It was shown that this approach
had very small bias when the disease prevalence was
low. However, the bias would increase with the disease
prevalence, which may limit its application to studies of
common diseases.

As a non-parametric alternative to Cox regression,
Nelson-Aalen estimator has been widely used to analyze
survival outcomes. It was first introduced by Nelson and
was later on rediscovered by Aalen, who derived the
estimator using the modern counting process tech-
niques [20,21]. It was shown to have a number of nice
properties, such as requiring less assumptions and bet-
ter small-sample-size performance than other standard
approaches [22]. Considering these advantages, we propose
a weighted Nelson-Aalen (WNA) approach for detect-
ing genetic variants associated with age-at-disease-onset,
considering possible interactions. The proposed approach
searches for the best combination of loci forwardly, and
tests their joint association with the age-at-disease-onset.
Our approach has the following advantages. First, it is a
multi-locus approach that is applicable to a set of genetic
variants (i.e. from a number of candidate genes or a gen-
etic pathway) with the consideration of high-order inter-
action. Second, it is a non-parametric approach, which
does not make any assumption of the disease models.
Third, it can be directly applied to prospective cohort
studies, and can be easily extended for population-based
case-control studies. Through simulations, we compare
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the performance of the proposed approach with Cox-
regression-based approaches under both perspective co-
hort and case-control study designs. We further illustrate
our approach with a real data application to smokers’ pro-
gression to nicotine dependence (ND), using three inde-
pendent datasets from the Study of Addiction: Genetics
and Environment (SAGE).

Methods

Suppose we have a study population of n subjects, which
is a sub-cohort from the source population. We denote T;,
§; and X; as the observed age, the disease status and the
genetic markers for subject i, respectively. Let 7; = min
(T?,T%), where T and T; are the age-at-disease-onset
and age-at-survey for subject i. Then T? is either observed
or right-censored, and we assume the cause of censoring
is independent with either age-at-disease-onset or any
genetic variants. Further denote §; = I(T?<T?), where
I(.) is an indicator function. Without loss of generality,
we assume K genetic markers, X = (X;;, Xipeoeoerr Xix),
are single nucleotide polymorphisms (SNP) with three
possible genotypes, X;; € {AA, Aa, aa}, 1 <j< K. Our hy-
pothesis is that the K SNPs and their possible interac-
tions may be associated with the age-at-disease-onset
outcome. In the following, we introduce the WNA ap-
proach for perspective cohort studies, and then extend
it for population-based case-control studies.

Weighted nelson-Aalen for prospective cohort studies

a. Association testing of multiple genotype groups with
age-at-disease-onset

Assume k disease-susceptibility SNPs are associated with
ages of disease onset, by forming L G-G groups, G,
G,,......Gr, each representing a different hazard rate
for the disease onset. Given these G-G groups, we can
partition all subjects into L groups, Sy, S5 .....,Sz, where
S1=1{i|X; =G}, 1 <l < L. Suppose the onsets of a disease
are observed at M distinct ages, t; < £ < ..... <y Let Y (£)
be the number of subjects who are at risk at age ¢, and
N(¢) be the number of subjects who have disease-onset
by age t. The cumulative hazard function H and survival
function S are estimated as,

A = [ vy tave = S S
S(t) = exp(-H(t))
)

In a similar manner, we can also define the group-
specific cumulative hazard functions H; (), 1 </ < L, based
on the subjects within group S;. To examine the joint asso-
ciation of k SNPs with the age-at-disease-onset, we test
the following hypothesis: Hy: H;(t) = Hy(t)=...... = H;(t) for
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all £ < 7 versus Hy : at least one H(t) is different for
some £ < T.

Here 7 is the largest observed age of onset in the
study.

Let Y; (t) be the number of subjects in group S; who
are at risk at age t; N; (f) be the number of subjects in
group S; who have the disease-onset by age z. The test
statistic can be formed based on Z=(Z,, Zy,... Zr),
where

Yi(t)

zi- [ wi (dm(t) T

In Equation (2), W (¢) is a weight function for the ages
at disease onset. A variety of weight functions have been
proposed in the literature. For example, W (¢) =1 for
any ¢, would lead to the widely used log-rank test [23];
W (t) = Y(t) would lead to Mann-Whitney-Wilcoxon test
and the generalization of Kruskal-Wallis test [24,25]. In
our study, we suggest using the weight function,

we) =] (1 TG )(j)1> (3)

which has a form similar to the Kaplan-Meier estimator
in the entire study population, and gives the most weight
to early disease onset. This weight function was first

proposed by Peto et al. [26], and was also suggested in a
series of articles [27,28].
The variance of Z; and the covariance between Z; and
Z;" can then be calculated as,
Y(
Var(Z)) = /W(t2 (t ( )
Y
" (t) AN (t ANt
Y (t)—l
/ W(e)? Yy(8) Y, (2)
Y(t) Y(¢)
-AN(2)
_— 1 L.
><< Y1 > IN(t),1<l=1 <
(5)
(Zy, Zyyewony Zp) are linearly

—2dN(t )),lslsL; (2)

|/\
I/\
—
N
S~—

Cov Zl,Zl

The components of Z=
L

dependent because ZZ; = 0. Therefore, the test sta-
=1

tistics can be calculated based on any L -1 compo-

nents of Z, such as Z;, Z,......, Z;.;. The test statistic

can be formed as,

where X is the variance-covariance matrix for (Z;, Z,,......,
Zr1). Under the null hypothesis of no association, the
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above test statistic has asymptotically a Chi-square dis-
tribution with L — 1 degrees of freedom. The theoretical
details of the test can be found elsewhere [29].

b. Selection of multi-SNP combinations by recursive
partitioning

In genetic association studies with a set of SNPs, it is
expected that only a small subset of SNPs are associated
with the disease. To determine the disease-susceptibility
SNPs and the associated G-G groups, we adopt a recur-
sive partitioning algorithm. The algorithm starts with a
null model by treating all study samples as one group.
In each of the following steps, it gradually selects disease-
susceptibility markers, and then divides samples into
different G-G groups. In step one, we search among all
available SNPs for a single SNP that can best divide
samples into two groups. Assuming the minor allele a
is the risk allele of j-th SNP, we consider three parti-
tioning strategies:

1) Dominant effect:

{Sj1 = {i|X;; = AA}, S, = {ilX;; = Aaoraa}};
2) Recessive effect:

{SJI = {i|X;; = aa}, S, = {i|x;; = AAorAa}};
3) Heterozygote effect:

{8 = {ixi; = Aa}, 8} = {ilX;; = Adoraa} }.

For each partitioning strategy, we calculate Aywna and
its corresponding p-value. We repeat the partitioning
process for all SNPs, and choose the most significant

group partitioning for step one, denoted it as {Sgl), S(zl)}.

In step two, a second SNP ' is considered to further
partition the existing two groups into four G-G groups,
denoted as { ng) = SgnmSj1 , 5(22) = S(ll)mSé , Sé2> = Sgl)mSi,
Siz) = Sg)nSé}. Again, the group partitioning that most
significantly related to the age-at-disease-onset is selected
in the step two. In a similar fashion, the disease-
susceptibility SNPs can be selected forwardly into the
model to partition samples into different G-G groups.
Ten-fold cross-validation (CV) is then used to determine
the most parsimonious model with an optimal number of
G-G groups. In this procedure, all the subjects are ran-
domly divided into 10 subsets. Then 9 of the 10 subsets
are used as the training set, while the remaining one is
used as the testing set. The process is repeated 10 times to
make sure all subsets have served as a testing set. In each
testing set, a test statistic is calculated based on the G-G
groups selected from the corresponding training set. The
final model with an optimal number of G-G groups is the
chosen to be the one that attains the highest significance
level of the averaged testing statistic from 10 testing sets.
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After the final model is determined, an overall test statistic
based on entire samples, Aywna, is obtained, and is used to
evaluate the association of the selected G-G groups with
the age-at- disease-onset. In order to account for the in-
flated Type I error due to selection of G-G groups, a
permutation test is used to assess the significance level.
In the permutation process, the outcomes of individuals
(i.e. the age-of-onset and censoring status outcomes) in
each permutation replicate are simultaneously permuted.
The forward selection algorithm is then applied to the per-
muted data to choose the best G-G group and calculate
Awrna- By repeating the same process on a large number
of permutation replicates (e.g. 1,000), the empirical null
distribution of Ayna is generated and an empirical
p-value can be obtained. In a replication study where the
G-G group is pre-determined, the asymptotic test based
on the Chi-square distribution can be used.

Modification for population-based case-control studies
Most of existing and ongoing genetic association stud-
ies adopt case-control design, where controls are not
matched to the cases by age. To facilitate the survival
analysis of genetic data from case-control studies, we
also propose a modified WNA for case-control data.
Suppose the study includes #n subjects with n; cases
and nq controls (n = n; + np). Assuming the disease has
a prevalence of p in the general population, we modify
the hazard function by adjusting the number of subjects at
risk, Y (¢):

Y(&) + (m/p-n)  Y'(t)
Correspondingly, we modify the group-wise hazard

function by adjusting the number of subjects in group
Slr

oo AN(t) _ AN((t)
AHiO =TT ) por) < fy - Ti0)

where f; denotes the frequency of genotype G; among
controls, and Zl:lfl = 1. With this adjustment, we
expect to retrieve a pseudo-cohort population with a
number of unobserved controls, who are expected to
be at risk throughout the study.

Results

Simulation studies

In the simulation studies, we evaluated the performance of
the proposed WNA approach and compared it with those
of Cox-regression-based approaches. Two series of simu-
lations were conducted for perspective cohort studies and
case-control studies, respectively. In the simulations, we
assumed a subject’s age-at-survey, T+, followed a normal
distribution, N(60,10%), and its age-at-disease-onset, TIQ,
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might follow various disease models described below. Each
subject had an observed age T; = min(Tl.O, Tls) , and a
censoring status, ,, determined by 8; = I(T?<T?). Two
causal SNPs with an interaction effect were simulated for
each disease scenario. We also assumed each SNP had
two alleles, A and a, and the minor allele a had a fre-
quency of 0.3 leading to an early onset of the disease. In
addition, eight noise SNPs were also simulated with
minor allele frequencies sampled from a uniform distri-
bution, Unif]0.1, 0.5]. For each disease model, we simu-
lated one million subjects as the source population, and
the disease prevalence was calculated by p = Z 8:/10°.
1

The parameters were chosen to ensure the disease
prevalence was within the range of [0.15, 0.25] in the
source population. For prospective cohort studies, 1,000
subjects were selected as the study population, while
500 cases (§; = 1) and 500 controls (8, = 0) were selected
for case-control studies.

Disease model 1

The underlying disease model was simulated to mimic
an ideal scenario where the proportional hazard (PH) as-
sumption was satisfied and the hazard ratio was linear.
In the model, we assumed the hazard function /,(t) for
an individual i had a semi-parametric form,

hi(t) = ho(t) exp(Bixi1 + Poxio + BroXinXia),

where
0 if Xo=AA
X = 1 UC Xil = Aa
2 lf Xil = aa
and
0 if Xin=AA
Xp =4 1 if Xip=Aa

2 if Xp=aa

In the simulation, we specified the baseline hazard /(f)
by a Weibull distribution with a shape parameter 6 =3
and a scale parameter \ = 100.

Disease model 2

The underlying disease model was simulated to mimic
a scenario where the PH assumption was met, but the
hazard ratio was non-linear. For this model, we assumed
the hazard function for an individual i had the form:

]’l,’(t) = ho(t) EXP(IBJ(XH > 0) 'l(xig > 0))

In such a model, we assumed individuals with risk alleles
at both loci had a high risk of disease than the remaining
individuals.



Li et al. BMC Genetics 2014, 15:79
http://www.biomedcentral.com/1471-2156/15/79

Disease model 3

This disease model mimicked a scenario where the PH
assumption was violated. In this model, we assumed the
age-at-disease-onset for a subject with a G-G combination
of (x;1, x») followed a Weibull distribution W(\,0,i1, xi12),
where the scale parameter A was fixed at 100 and the
shape parameter varied by the G-G combinations of
two causal SNPs. In such a model, we assumed the haz-
ard functions increased over time for all G-G combina-
tions (i.e.,0 > 1).

Disease model 4

This disease model also assumed the PH assumption
was violated. Different from Disease Model 3, we as-
sumed the hazard functions may remained constant or
decreased overtime for certain G-G combinations (i.e.
0 < 1), mimicking an early onset disease scenario.

Simulation results

Simulations were conducted to compare WNA with the
conventional Cox regression (COX) approach under the
perspective cohort studies. Additional simulations were
also perform to evaluate WNA with the modified case
cohort (MCC) approach proposed by Nan et al (Nan
and Lin, 2008) under case-control studies. To be consist-
ent with WNA, we also adopted a forward selection
strategy for the COX and MCC, and used the Akaike in-
formation criterion (AIC) as the criteria for model selec-
tion. For each disease model, we started the analysis
with two causal SNPs, and gradually added noise SNPs
into the analysis. The simulation was repeated for 1,000
times for each disease model. In each replicate, a final
model was selected by each approach, and was then
evaluated on an independent sub-cohort of 1,000 sub-
jects from the source population. Because an independ-
ent dataset was used for validation in each replicate, the
asymptotic test based on the Chi-square distribution was
used. The Type I error and power were thus calculated
as the probability for the selected final model to have a
p-value less than 0.05 on the independent sub-cohort of
1,000 subjects.

We first evaluated the Type I errors for both ap-
proaches. In this case, we evaluated a null model with
ten SNPs, simulated independently from the age-at-
disease-onset outcome. As shown in Table 1, the Type I
errors were well controlled for COX/MCC approach,
and reasonably controlled for WNA. We then evaluated

Table 1 Type | errors of WNA and COX/MCC
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the power and the sensitivity (specificity) of both ap-
proaches. The sensitivity was calculated as the probabil-
ity of selecting a causal SNP in the final model, while
the specificity was calculated as the probability of not
selecting a noise SNP in the final model. The results for
perspective cohort studies were summarized in Table 2.
Under the Disease Model 1, while COX had a higher
power than WNA (i.e., 0.702 vs. 0.738) when only causal
SNPs were considered, its power decreased much faster
than that of WNA as the number of noise SNPs in-
creased. When the noise SNPs reaches 8, WNA attained
a higher power than COX (i.e., 0.567 vs. 0.427). When
the hazard ratio was non-linear (Disease Model 2) or
PH assumption was violated (Disease Models 3 and 4),
WNA had a consistently higher power than COX.
WNA showed the most advantages over COX under
Disease Model 4 when the hazard functions do not follow
monotonic patterns. In all scenarios, COX tended to have
a higher sensitivity, but a lower specificity than WNA.
This indicated COX tended to include more noise SNPs
in the model than WNA, which partially explained its
relatively lower power with the increasing number of noise
SNPs. Compared to COX, WNA had relatively more ro-
bust performance, especially when the PH assumption
was violated.

The simulation results for case-control studies were
summarized in Table 3. WNA attained a higher power
than MCC under all simulated models, which could be
explained by the biased estimation of MCC under com-
mon disease scenarios. The power of MCC also decreased
more rapidly as the number of noise SNPs increased, com-
pared to the power of COX in cohort studies. Similar with
COX, MCC tended to have a higher sensitivity, but a
lower specificity than WNA.

For case-control studies, we assumed that the disease
prevalence was accurately estimated. However, in practical,
the prevalence of a disease might be estimated inaccurately.
Therefore, additional simulation was conducted to evaluate
the performance of WNA when disease prevalence was
estimated inaccurately. For simplicity, we used the Dis-
ease Model 2 as an example, and considered both ac-
curate and inaccurately estimated disease prevalence
values, including p, p 5%, p = 10%. The results were
summarized in Table 4. The power of WNA increased
slightly as the disease prevalence decreased. However,
the type I errors also increased as the disease preva-
lence decreased, and would be inflated when disease

2 SNP 4 SNPs 7 SNPs 10 SNPs
WNA COX/McCC WNA COX/McCC WNA COX/MCC WNA Ccox/mccC
Prospective Cohort Study 0.065 0.045 0.058 0.053 0.059 0.052 0.064 0.047
Case-Control Study 0.032 0.056 0.056 0.053 0.062 0.045 0.058 0.050
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Table 2 Comparison of WNA and COX in prospective cohort studies
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Disease models

Two Causal SNP

+ 2 Noise SNPs

+5 Noise SNPs

+ 8 Noise SNPs

WNA COoX WNA COoX WNA CoX WNA cox
Model 1: PH; Linear 0=3

By=015 Power: 0.702 0.738 0.641 0.660 0.596 0532 0.567 0427
B,=0.15 Sensitivity: ~ 0.736 0.924 0.686 0.926 0.633 0.906 0.587 0.906
B12=0.15 Specificity - - 0967 0.966 0.942 0.904 0932 0.847
Model 2: PH; non-linear Power: 0.802 0623 0.731 0513 0.687 0.386 0.661 0.297
0=3 Sensitivity:  0.781 0818 0.730 0810 0681 0.810 0.647 0.810
B=06 Specificity - - 0975 0.970 0.956 0.905 0.940 0.869

Model 3: Non-PH 0 AA  Aa aa
BB 3 25 25 Power: 0932 0.733 0910 0.652 0.903 0522 0.891 0428
Bb 3 2 2 Sensitivity: 0611 0.778 0.588 0.786 0573 0.786 0.556 0.786
bb 3 2 2 Specificity - - 0.987 0.963 0974 0.903 0.965 0.843

Model 4: Non-PH 0 AA Al aa
BB 3 3 1 Power: 0.989 0.508 0979 0420 0971 0304 0.958 0232
Bb 3 3 1 Sensitivity: 0916 0.769 0.851 0.773 0.779 0.773 0.737 0.769
bb 1 1 0.5 Specificity - - 0.897 0.860 0.836 0.799 0.802 0.739

prevalence was under-estimated. Further, the under-
estimation of disease prevalence appeared to increase
the sensitivity of SNP selection, but reduced the speci-
ficity. By adjusting the disease prevalence, we expect to
retrieve a pseudo-cohort population with a number of
unobserved controls, who are expected to be at risk
throughout the study. Under-estimating the disease
prevalence would artificially increase the number of
controls in the study, and thus cause bias in the follow-

up studies with an independent sub-cohort data from
the source population.

Application to study the progression to nicotine
dependence (ND)

Previous studies have indicated that the progression to
ND could be influenced by the interplay of genetic vari-
ants [30,31]. Detecting G-G interactions contributing to
the development of ND would help to understand the

Table 3 Comparison of WNA and MCC in case-control studies

Disease Models

Two Causal SNP

+ 2 Noise SNPs

+5 Noise SNPs

+ 8 Noise SNPs

WNA MCC WNA McCC WNA McCC WNA McCC
Model 1: PH; Linear 6=3

B, =015 Power: 0.762 0614 0718 0434 0.692 0222 0674 0.100
B,=0.15 Sensitivity: 0.753 0.980 0.717 0.980 0.693 0.978 0.680 0.978
By,=0.15 Specificity - - 0.926 0913 0.827 0.763 0.753 0627
Model 2: PH; non-linear  6=3 Power: 0.876 0.561 0.823 0376 0.838 0.195 0.821 0.076
Sensitivity: 0916 0.934 0.909 0.902 0873 0.902 0.844 0.902
B=06 Specificity - - 0.879 0.878 0.736 0.735 0.605 0.578

Model 3: Non-PH 0 AA  Aa aa
BB 3 25 25 Power: 0.926 0678 0933 0.480 0.930 0253 0932 0.114
Bb 3 2 2 Sensitivity: 0.753 0.891 0.717 0.891 0.693 0.891 0.680 0.891
bb 3 2 2 Specificity - - 0.926 0915 0.827 0.777 0.753 0629

Model 4: Non-PH 0 AA  Aa aa
BB 3 3 1 Power: 0.987 0458 0.974 0277 0.960 0.133 0.952 0.057
Bb 3 3 1 Sensitivity: 0971 0.831 0.905 0.831 0.831 0.831 0.769 0.830
bb 1 1 0.5 Specificity - - 0.878 0917 0.781 0.790 0.729 0.656
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Table 4 Performance of WNA when disease prevalence is
miss-specified

p-10% p-5% ] p+5% p+10%
Power 0.858 0.853 0.821 0.784 0.782
Type | 0.108 0.070 0.058 0.051 0.048
Sensitivity 0912 0.872 0.844 0.818 0817
Specificity 0526 0578 0.605 0.739 0.873

transition process from first cigarette use to nicotine
dependence, and to promote the development of early
prevention and intervention strategies. For such a pur-
pose, we initiated an interaction search among known
ND-associated genetic variants by applying the WNA
approach to the Study of Addiction: Genetics and Envir-
onment (SAGE) GWAS dataset. The participants of the
SAGE were unrelated individuals selected from three
large, complementary case-control studies: the Family
Study of Cocaine Dependence (FSCD), the Collabora-
tive Study on the Genetics of Alcoholism (COGA), and
the Collaborative Genetic Study of Nicotine Dependence
(COGEND) [32]. The SAGE included standardized diag-
nostic assessments of ND by Diagnostic and Statistical
Manual of Mental Disorders (DSM) 1V, and its assessment
plans for age-at-onset variables were also guided by
standardized interview protocols and assessments, as
described in prior SAGE publications [33,34]. We con-
sidered two age-at-onset variables, age-at-onset of ND
and age-at-initiation of tobacco uses, and defined pro-
gression to ND as their difference. The study subjects
under the investigation were limited to those who ever
smoked cigarettes daily for a month or more. For non-
ND subjects, age-at-survey was used as right-censoring
values for age-at-onset of ND. After removing the sub-
jects with missing outcomes, there were 706, 727, and
1,232 subjects in FSCD, COGA and COGEND, respect-
ively. From the literature, we selected 150 SNPs across
64 candidate genes that have been reported for potential
association with ND. Among those 150 SNPs, genotypes
for 124 SNPs were available in the SAGE dataset, while
genotypes for the remaining 26 SNPs were imputed by
using PLINK [35]. The HapMap phase III founders of
the CEU and ASW populations were used in the imput-
ation as the reference panels for the white and black
subjects [36].

We applied WNA to FSCD for an initial G-G inter-
action search and then replicated the initial findings in
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COGA and COGEND. While applying WNA, we fixed
the disease prevalence at p =0.24, which was estimated
according to national survey [37]. Two SNPs, rs6570989
(A/GQ) and rs2930357 (C/T), located in gene GRIK2 and
CSMD1, were identified in the initial search to be jointly
associated with progression of ND with a nominal p-value
of 9.68e-13. Permutation test was then conducted to
estimate the empirical p-value, accounting for overesti-
mation due to the model selection. The empirical p-value
obtained from permutation test indicated a significant
association (i.e., p-value < 0.001). Further validation of
the finding in COGA (p-value =0.034) and COGEND
(p-value = 7.85e-04) showed the association remained
significant at 5% level (Table 5). Survival curves in
Figure 1 showed that the effect of rs6570989 was modi-
fied by the genotypes of rs2930357 in FSCD, which indi-
cated a possible G-G interaction between two SNPs
(Figure 1 A1-A2). Similar patterns were also observed in
COGA (Figure 1 B1-B2) and COGEND (Figure 1 C1-C2).
To account for the possible bias estimation of disease
prevalence, we further examined the joint association for
the identified two SNPs with the disease prevalence rates
of 0.19 and 0.29 (i.e. 0.24 + 0.05). The results showed that
the significance level decreased as the disease prevalence
increased (Table 6), but all joint association remained at
least marginally significant with the disease prevalence of
0.29 (p-values were 4.08e-12, 0.054 and 2.00e-03 in FSCA,
COGA and COGEND, respectively).

We also applied the Cox regression method to the same
datasets. Only pair-wise interactions among SNPs were
considered in the selection. The final model was deter-
mined by forward selection to minimize the AIC value. In
FSCD, Cox regression with forward selection picked up
nine SNPs involving a complicated model with a total
number of 45 parameters. This association could not be
replicated in either COGA (p-value = 0.703) or COGEND
(p-value = 0.218).

Discussion

Complex diseases, manifesting with various clinical fea-
tures, are believed to be caused by the joint action of
multiple genetic variants through distinctive biological
pathways. If two genes are jointly involved in producing
the variability of a disease feature, whether additively or
not, biological interaction between them is involved [38].
Although there is growing interest in detecting genetic
variants that characterize disease progression, relatively

Table 5 Summary of two SNPs identified in FSCD and replicated in COGA and COGEND

SNP Allele Chro Position Gene Grouping p-values
r$6570989 A/G 6 101957413 GRIK2 {AAKAG,GG} FSCD: 9.68e-13
rs2930357 T 8 3709660 CSMD1 {TTHCCCT} COGA: 0.034

COGEND: 7.85e-04
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Figure 1 Survival curves for subjects with different G-G combinations in three studies. A1-A2. Survival curves for G-G groups in the FSCD
study. B1-B2. Survival curves for G-G groups in the COGA study. C1-C2. Survival curves for G-G groups in the COGEND study.
.

few approaches have been proposed to evaluate the inter-
action among multiple genetic variants. In this article, we
have proposed a non-parametric approach, referred to as
WNA, for testing the joint association of multiple genetic
variants with the age-at- onset outcomes, taking possible
G-G interactions into account. The approach can be ap-
plied to both prospective cohort studies and case-control
studies. Through simulations and an empirical study, we
have shown that our approach had a comparable or better
performance than Cox regression under various scenarios.
The outperformance of WNA over Cox regression can
be explained by the following reasons: 1) WNA does
not assume any patterns of the hazard functions among
G-G groups, which makes it more robust under various
disease scenarios. While we expect Cox regression to
have a better performance than WNA when the under-
lying disease model is known, in reality our understand-
ing of the mode of inheritance for complex diseases is
very limited. In such a case, non-parametric approaches,
such as WNA, would have more advantages for the search
of gene-gene interactions. 2) When a set of SNPs are in-
volved, Cox regression tends to select highly complex

Table 6 Evaluating the joint association of two SNPs with
varied disease prevalence rates

Disease Prevalence p=19% P=29%
P-values FSCD: 2.41e-13 FSCD: 4.08e-12
COGA: 0.021 COGA: 0.054

COGEND: 2.97e-04 COGEND: 2.00e-03

genetic models with a large number of parameters. Unlike
Cox regression, WNA is a non-parametric approach,
and does not assume any parametric model for the selected
G-G combinations. When the assumptions are violated,
WNA likely captures the underlying G-G combinations,
which can be replicated in independent studies. 3) Given
the disease prevalence in the source population, WNA can
be easily extended to studies with case-control designs.
For case-controls studies, it has been suggested that Cox
regression should be used with great caution [17,18], due
to the biased estimation of the effect size and incorrect
statistical inference.

In the simulation, one of our aims is to examine robust-
ness of the proposed WNA approach under case-control
studies of common diseases, where the COX/MCC ap-
proach has biased estimates. Therefore, we have evaluated
the performance of two approaches with an independent
sub-cohort dataset from the source population, mimicking
an independent follow-up study in a real application. The
results have shown WNA approach had an improved
power by adjusting for the disease prevalence in case-
control studies, but in the meantime, under-estimating
disease prevalence may lead to an inflated type I error for
WNA. Caution should be taken in specifying the disease
prevalence in real applications.

Another important consideration is the choice of
weight function in WNA. The weight function in this
study gives the most weight to departures of hazard
functions at early ages. Alternatively, we could also
adopt a general class of weight functions based on the
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Kaplan-Meier estimator [28]. The weight function has
the form,

Wpq(t) = 8(¢-)F [1-8(¢-)]", 20,420,

where S(.) is the Kaplan-Meier estimator of the survival
function. The values of p and g should be chosen ap-
propriately according to the hypothesis of interest. For
instance, when p=0, g>0, the above weight gives
more consideration to departures of hazard functions
at late ages.

In the real data application, we identified two SNPs,
rs6570989 and rs2930357, jointly associated with ND. In
a recent GWAS of 3497 Dutch subjects, both of these
two SNP were found to be significantly associated with
current smoking [39]. These two SNPs are located in
gene GRIK2 and CSMD]1, respectively. Both GRIK2 and
CSMD1 have been suggested to be functionally related
with ND. GRIK2 belongs to the kainate family of glu-
tamate receptors, which are actively involved in a variety
of neurophysiologic processes [40,41]. GRIK2 has also
been reported to be associated with smoking cessation
[42]. Gene CSMD1 was shown to be highly expressed in
the central nerve system [43], and to be related to smok-
ing cessation [44]. A number of studies have also sug-
gested that early smoking initiation and the development
of nicotine dependence are associated with greater diffi-
culty to quit smoking [45-47]. Nonetheless, relatively few
studies have been conducted to evaluate ND age-at- onset
outcomes, and our knowledge regarding the genetic con-
tribution to the progression of ND is still lacking. While it
is biologically plausible that the two identified genes may
have a joint association contributed to the progression of
ND, further studies are required to replicate this result.

We are aware that the proposed approach has some
limitations. First, the test statistic of WNA follows an
asymptotic Chi-square distribution when evaluating com-
mon genetic variants. However, if a genetic variant has a
very low minor allele frequency, it may form certain G-G
groups with a small number of subjects. In such a case,
the asymptotic property of the test may not hold [48,49].
Therefore, for the rare variants, we suggest that an exact
test be used to evaluate the significance [50]. Second, the
proposed approach used a forward selection strategy, and
we expect the power to decrease if none of the genetic
variants has any marginal effect. In this specific case,
exhaustive selection will be needed to detect a G-G
interaction, but at a much higher computation cost.
Third, the proposed approach is implemented in R with
model selection, cross-validation and permutation pro-
cedures. It is less computationally efficient than applying
a Cox regression model available in R. On a dual core
3.20GHz desktop, the average computation time for apply-
ing the WNA approach and Cox regression were
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23.2 second and 0.26 second, respectively. On replica-
tion datasets when the optimal G-G model was pre-
determined, the computation time for applying the
WNA approach was significantly reduced to 0.028 sec-
ond, which was comparable to those for Cox regression
(0.031 second).

One major advantage of the proposed WNA approach
is its capability of handling multiple genetic variants
with the consideration of possible high-order G-G interac-
tions [51]. It is worthwhile to note that WNA is a non-
parametric approach developed for both cohort studies
and case-control studies, which differs from other ap-
proaches, such as the kernel-machine based approach
[52]. Further, we limited the application of WNA approach
to population-based case-control studies in which the
cases and controls were not matched by age. If controls
are matched to cases and are randomly selected from all
those at risk at the age-of-onset of the cases, Cox re-
gression can estimate the effect size of by a conditional
likelihood method without bias [53,54].

Conclusions

We have proposed a statistical approach for detecting gen-
etic interactions associated with age-at-onset outcomes.
The approach is able to capture high-order gene-gene in-
teractions, and can be applied to both prospective cohort
studies and case-control studies. Through simulations, we
showed that the new approach had comparable or better
performance than the conventional Cox-regression-based
methods. The empirical data applications to nicotine de-
pendence also identified two genes, GRIK2 and CSMDI,
joint associated with the progression of nicotine depend-
ence. In addition to conventional statistical approaches for
survival outcomes, the new approach provides an alterna-
tive way to model genetic interactions related to survival
outcomes.
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