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Abstract

Background: Hyperuricemia is associated with multiple diseases, including gout, cardiovascular disease, and renal
disease. Serum urate is highly heritable, yet association studies of single nucleotide polymorphisms (SNPs) and serum
uric acid explain a small fraction of the heritability. Whether copy number polymorphisms (CNPs) contribute to uric
acid levels is unknown.,

Results: We assessed copy number on a genome-wide scale among 8,411 individuals of European ancestry (EA) who
participated in the Atherosclerosis Risk in Communities (ARIC) study. CNPs upstream of the urate transporter SLC2A9
on chromosome 4p16.1 are associated with uric acid (ngf = 3545,p = 3.19 x 10~23). Effect sizes, expressed as the
percentage change in uric acid per deleted copy, are most pronounced among women (3.974.93s5.g7 [2550975
denoting percentiles], p = 4.57 x 10~%3) and independent of previously reported SNPs in SLC2A9 as assessed by SNP
and CNP regression models and the phasing SNP and CNP haplotypes (x7 . = 3190, p = 7.23 x 107%). Our finding
is replicated in the Framingham Heart Study (FHS), where the effect size estimated from 4,089 women is comparable
to ARIC in direction and magnitude (; 414.7078g, p = 5.46 x 10793).

Conclusions: This is the first study to characterize CNPs in ARIC and the first genome-wide analysis of CNPs and uric

acid. Our findings suggests a novel, non-coding regulatory mechanism for SLC2A9-mediated modulation of serum
uric acid, and detail a bioinformatic approach for assessing the contribution of CNPs to heritable traits in large
population-based studies where technical sources of variation are substantial.
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Background

Serum uric acid levels are highly heritable and associated
with several diseases, including gout, hypertension, and
cardiovascular disease [1-4]. Genome-wide association
studies have identified several single nucleotide polymor-
phisms (SNPs) that are strongly associated with uric acid
levels [5-10], but a large proportion of the heritability of
uric acid is unexplained by common SNPs. While varia-
tion of DNA copy number has been implicated in many
heritable diseases, there has been no association studies of
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copy number polymorphisms (CNPs) and serum uric acid
levels on a genome-wide level.

High-throughput platforms used to genotype SNPs are
useful for copy number estimation, though additional
steps are required to reduce technical artifacts that are
prevalent in studies of copy number. Estimates of the rel-
ative copy number (log R ratios) and B allele frequencies
measured at each marker on the array are mutually infor-
mative for the latent copy number [11]. Various hidden
Markov model (HMM) implementations integrate the log
R ratios and B allele frequencies to infer copy number
[12-19]. Copy number estimation is challenging, in part,
due to technical artifacts that contribute to false pos-
itives. Among the most common artifacts are genomic
waves [20,21], an autocorrelation of the marker-level esti-
mates when plotted against physical position, and batch
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effects, differences between groups of samples arising from
technical sources of variation such as sample preparation,
reagents, and laboratory personnel [22-24]. Approaches
to reduce wave and batch artifacts include models for
adjusting log R ratios by the GC composition of the
local sequence as in [21] and surrogates of batch such as
chemistry plate in association models when confounding
between batch and phenotype is incomplete.

Here, we implement a HMM to infer integer copy num-
ber from B allele frequencies and wave-corrected log R
ratios obtained from 8,411 ARIC participants of European
ancestry assayed on Affymetrix 6.0 arrays. We evaluate
the association between CNPs and uric acid concentra-
tions through mixed effects regression models that adjust
for available clinical risk factors as well as technical covari-
ates such as chemistry plate and study center. For loci
reaching genome-wide significance, we replicate our find-
ings in the Framingham Heart Study (FHS). In addition,
we assess whether statistically significant associations
among EA participants persist in a smaller cohort of 3,392
African Americans in ARIC. Finally, we establish the inde-
pendence of the relationship between copy number and
uric acid concentrations from genome-wide significant
SNP associations among ARIC EA participants.

Results and discussion

Among 8,411 ARIC samples of European ancestry pass-
ing SNP and copy number metrics for quality control (see
Methods), 47 percent are male and the mean BMI, uric
acid concentration, and age are 27 kg/m?, 5.9 mg/dL, and 54
years, respectively.

Copy number estimates 0-4 were obtained from a HMM
[14]. In this population, the median number of deletions
and duplications is 55, and the median cumulative num-
ber of bases spanned by copy number variants (CNVs)
in autosomal chromosomes is 3,530 kb (Additional file 1:
Figure S1 and Table S1). The number of CNVs estimated
for an individual is dependent on array quality and is
associated with batch (chemistry plate). In particular, the
detection of small CNVs (< 25kb) requires high quality
arrays, whereas identification of large CNVs (> 200 kb)
is robust to array quality and batch (Additional file 1:
Figure S2). From the distribution of CNV breakpoints
across all EA subjects, we identified 12,397 disjoint (non-
overlapping) genomic intervals for which copy number
is unambiguous and at least 1 percent of ARIC partici-
pants have a duplication or deletion (see Methods). These
genomic intervals capture 317 non-contiguous loci con-
stituting the CNPs ascertained by the HMM among EA
ARIC participants, and nearly all span known regions
of copy number variation reported in the Database of
Genomic Variants [25].

Prior to our assessment of CNPs as potential risk factors
for hyperuricemia, we removed seasonal trends of uric
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acid concentrations using a lowess smoother with span %0
fit to women and men independently. Our baseline mixed
effects model for seasonally adjusted log uric acid con-
centrations includes fixed effects for study center, age, log
BM]I, gender, and the interaction of age and log BMI with
gender, as well as a random effect for chemistry plate.

For each disjoint interval, we extended the baseline
model for uric acid with copy number (0-4) mod-
eled as a continuous covariate. A Manhattan plot of
the —log;, p-value revealed a cluster of statistically
significant associations on chromosome 4 (Additional
file 1: Figure S3, A). The statistically significant coef-
ficients are derived from two non-overlapping CNPs
with NCBI36 build coordinates 9,832,502-9,844,354 bp
(CNP-9Mb) and 10,002,240-10,009,754bp (CNP-10Mb;
Additional file 1: Figure S3, B). Together, the two CNPs
span 19.368 kb, are interrogated by 49 nonpolymorphic
markers and 1 SNP, overlap common deletions previously
identified in HapMap Phase 1 [26], and are upstream of
the SLC2A9 gene that is transcribed in the reverse direc-
tion. With the exception of the chromosome 4 locus,
the distribution of p-values is approximately uniform
(Additional file 1: Figure S4).

The marginal distribution of the average log R ratios
at CNP-10Mb and CNP-9Mb can be approximated by a
mixture of normal distributions, where the components
of the mixture are induced by differences in the latent
copy number (Figure 1A and 1C). Our approximation to
the posterior is derived from a Gibbs’ sampler [27,28],
an approach conceptually similar to the Bayesian mixture
model described in [29] and extending some of the origi-
nally proposed heuristics using mixture models for CNPs
[30]. A scatterplot of the average log R ratios at CNP-9Mb
and CNP-10Mb provides a non-discrete visualization of
their joint distribution (Figure 1B). Assuming the mixture
components correspond to latent copy numbers 0, 1, and
2, the integer copy number for each sample is inferred
from the component with highest posterior probability.
The copy number estimates from the mixture model are
further corroborated by the genotype clusters for SNP
rs4607209 in the CNP-10 Mb locus (Figure 1D). For exam-
ple, samples belonging to the second mixture component
(copy number 1) populate the ‘A’ and ‘B’ genotype clusters
at SNP rs4607209 (green). Hereafter, regression mod-
els for uric acid utilize the maximum a posteriori copy
number estimates from the Bayesian mixture model.

Copy number estimates at the CNP-9Mb and CNP-
10Mb loci have a Spearman correlation coefficient of
-0.82. Homozygous deletions are common at each locus
(46% of subjects at the CNP-9Mb locus and 6% of sub-
jects at the CNP-10Mb locus), yet none of the subjects
have a homozygous deletion at both loci (233 expected
by chance). Evaluated in separate regression models, each
deleted copy at CNP-9Mb and CNP-10Mb is associated
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Figure 1 Low-level data and posterior summaries from a Bayesian finite mixture model supporting copy number alterations. (A) A

histogram of the average log R ratios at CNP-10Mb (gray). The posterior distribution approximated by the Gibbs sampler is indicated by the black
lines overlaying the histogram. (B) The average log R ratios at the CNP-9Mb and CNP-10Mb chromosome 4 loci. (C) Same as (A) for the CNP-9Mb
locus. (D) The log-transformed intensities for alleles A and B allele at a SNP in the CNP-10Mb locus. The genotype clusters are consistent with the
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with a 1.171.501 g» percentage decrease (p = 5.43 x 10~20)

and a 1832.633 42 percentage increase (p = 1.54 x 10710)
in uric acid concentrations, respectively (Figure 2). While
the regression coefficients at CNP-9Mb and CNP-10Mb
are opposite in sign, the data is consistent with a dose
response to copy number at only one CNP and an oppos-
ing sign for the tagging CNP attributable to its strong link-
age disequilibrium. At each locus, the interaction of copy
number and gender is statistically significant with more
pronounced slopes observed among women. For example,
each deleted copy at the CNP-10 Mb CNP among women
is associated with a 3.974.93587 (p = 4.57 x 10723) percent-
age increase of uric acid concentrations, whereas among
men each deleted copy is associated with a ¢.311.362.39 (p =
0.001) percentage increase in uric acid concentrations.

To evaluate whether CNPs at the chromosome 4 loci
are associated with uric acid in an independently sam-
pled EA population for which uric acid measurements
are available, we pursued replication in FHS. Because
access to the intensity-level data in FHS was not avail-
able, we used missing genotype calls for SNP rs4607209
in the CNP-10 Mb CNP as a surrogate for the deletion
polymorphism (justification in Methods). With the miss-
ing genotype indicator as a surrogate for homozygous

deletions, we fit a mixed effects model implemented in
the R package kinship [31] with log uric acid concen-
trations as the dependent variable and clinical covariates
age, gender, and log-transformed BMI as explanatory vari-
ables. The gender-specific slopes for the surrogate copy
number variable in FHS are comparable to the copy num-
ber slopes in ARIC with respect to magnitude, direction,
and statistical significance (Figure 3). In particular, miss-
ing genotypes are associated with a 1 414.707 g3 percentage
increase of uric acid concentrations among FHS women
(p = 5.46 x 107%3) compared to a 3974.9358; percent-
age increase among ARIC women (p = 4.57 x 10723). As
in ARIC, the _3120.173 3¢ percentage change in uric acid
concentrations among men is small and not statistically
significant in FHS (p = 0.92). Replication at the CNP-
9Mb CNP is not possible as the array platform used in
FHS does not contain markers in this region.

To investigate whether the association between copy
number and uric acid concentrations is present in non-
EA populations, we estimated the copy number at
both chromosome 4 CNPs for 3,392 African American
(AA) participants in ARIC using the Bayesian mixture
model described previously for the EA cohort. Homozy-
gous deletions occur in approximately 46 and 6% of
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Figure 2 The relationship between integer copy number (x-axis) and average log uric acid concentrations is approximately linear. Slopes
for the copy number coefficients at the chromosome 4 CNP-9 Mb (top) and CNP-10 Mb (bottom) loci overlay the empirical average log uric acid
concentration with error bars drown to = two standard errors of the mean. The opposite signs of the regression slopes at CNP-OMb and CNP-10Mb
is a reflection of linkage disequilibrium — the copy number estimates have a strong, negative correlation (Spearman correlation =-0.82).

EA participants at the CNP-9Mb and CNP-10 Mb loci,
respectively, but only 33 and 0.6% of AA participants
have homozygous deletions at these loci. The percentage
decrease of uric acid concentrations associated with each
deleted copy at CNP-9 Mb is _0750.732.22 among women
(p = 0.335) and _1.900.051.97 among men (p = 0.957).
Similarly, copy number is not associated with uric acid
levels among AA women or men at CNP-10 Mb ( X22df =
3.45,p = 0.179) (Figure 3).

To assess whether the CNP associations are indepen-
dent of SLC2A9 SNPs among EA participants, we eval-
uated a series of models for uric acid concentrations
that include SNPs and/or the gender-specific CNP slopes.
Marginally, the association between SNPs and CNPs with
uric acid concentrations is the strongest for SNPs directly
in the SLC2A9 transcript, and the associations 200 kb
upstream of SLC2A9 are comparable for SNPs and CNPs
(Figure 4, top). Adjusting for the SNP with the strongest
marginal association (rs7675964), effect sizes for other
SNPs near SLC2A9 decrease. The CNP effect sizes are

also attenuated but remain genome-wide significant (min-
imum xJ 4 = 3190, p = 7.23 x 10~%) (Figure 4, bottom).
Adjusted for the CNP with the strongest marginal asso-
ciation (CNP-9 Mb), the effect size for SNP rs7675964 is
comparable to the marginal model (data not shown).
While regression coefficients for SNPs near SLC2A9
are attenuated in the rs7675964-adjusted models, SNP
rs6449213 (and others) remain genome-wide significant
(p = 9.46x10711). To assess the independence of the CNP
association with uric acid after adjusting for the rs6449213
and rs7675964 genotypes, we compared the baseline
mixed effects model with rs6449213 and rs7675964 geno-
types to an extended model with gender-specific slopes
for copy number. A 2 degree of freedom likelihood ratio
test comparing the baseline and extended models is sta-
tistically significant at both CNP loci (CNP-9 Mb: X22 i =
31,p = 2.01 x 107%7; CNP-10 Mb: x3 ;. = 33,p = 8.72 x
107%). To further evaluate whether CNPs contribute to
inter-individual variation of uric acid concentrations inde-
pendently of SNPs in SLC2A9, we phased the genotypes at
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Figure 3 Regression coefficients for copy number at the CNP-9 Mb and CNP-10 Mb loci in ARIC and FHS cohorts. Combined estimates were
obtained by a weighted average using the inverse variance of the model coefficients as weights. Data is not available at the CNP-9 Mb loci in FHS
due to the older array technology. *Missing genotypes at SNP rs4607209 in the CNP-10 Mb locus are modeled as a surrogate for deletion genotypes
in FHS.

1s7675964 and rs6449213 with copy number at CNP-9 Mb
and CNP-10 Mb (see Methods). Notationally, we denote
the CNP portion of the haplotypes by 1~ —et1——c12 =~

H2: — —c31 — —cop — —
where ¢;; is the copy number at the j%* CNP locus (c; j €
{0,1}) for haplotype H; (i € {1,2}). Similarly, the por-
tion of the haplotypes for rs7675964 and rs6449213 are

denoted by Ei - :ﬁ; - :2; ~_ , where g;; is the allele at

the j SNP (g; ;i € la, b}). Of the 2* possible allelic hap-
lotypes, 14 were observed in the 8,411 EA participants
and only 3 SNP haplotypes had variation in the corre-
sponding CNP haplotype. Specifically, the 3 SNP haplo-

types for we observed variation in the phased copy num-
H:--a4—-—-a—-—- HLi——-b——-b——

’

ber estimates are [, ~ —°”"“" "~ , 7" 7’7~ and
Eé ~—b—=a=— For 2,195 subjects with the allelic hap-
f——a——a——
HL:— —b——b—— HL:— —0——1-—
lotype 1, — — — —._ _ ,CNPhaplotypes |}, ~ "]~ "/~
HL:——0——1—— ) . .
and )" 7] " "~ are weakly associated with uric

acid concentrations with similar effect sizes observed

in men and women (def = 9.05, p = 0.0599). For
4,313 gé _ %7 7% subjects, CNP haplotypes are asso-

ciated with uric acid concentrations in women ( XZ =
14.3, p = 6.3 x 107%) but not men (x2;; = 0.757, p =

0.944). CNP haplotypes are not associated with uric acid
Hl:— —b——a——
H2:——-a——a——

2.06, p = 0.357), though the sample size for this popula-
tion is small and the effect size among the 66 women in
this subgroup is comparable to the effect size in the much
larger :é - :2 B :Z ~~ and g% ~ 2”4~ subgroups
for which the CNP haplotype association is statistically
significant (Figure 5).

As the CNP association appears independent of SLC2A9
SNPs and the CNP loci are located in an intergenic
region approximately 200kb upstream of the SLC2A9
gene (SLC2A9 is transcribed in the reverse orientation),
we examined publicly available regulatory data for human
kidney tissue where SLC2A9 is known to function in the

concentrations for subjects (X22df =
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Figure 4 SNP and CNP associations near SLC2A9 with and without adjustment for genome-wide significant SNP rs7675964. Top: Negative
logyq p-values derived from a likelihood ratio test comparing a null model with clinical and technical covariates to an extended model evaluating
the marginal association of SNPs (gray circles) or CNP x gender (black rectangles). The region shaded in light gray is the location of the SLC2A9
gene. Bottom: Negative log; p-values from a likelihood ratio test comparing an extended model with SNPs or CNP x gender to a null model that

includes the rs7675964 genotypes.

transport of uric acid from urine to blood [32]. Exami-
nation of DNAse hypersensitivity for human fetal kidney
tissue and adult kidney cell line HKCS8 revealed a peak
adjacent to CNP-10 Mb, suggesting that CNP-10 Mb abuts
a regulatory element. We did not observe DNAse hyper-
sensitivity peaks near CNP-9 Mb, but nearly half of EA
participants have a homozygous deletion at CNP-9 Mb.
It is unclear whether the absence of peaks at CNP-9 Mb
reflect the absence of a regulatory element in the fetal kid-
ney or whether the fetal kidney has a deletion at this locus
(i-e., loss of a regulatory element by deletion).

Given the strong association between CNPs and uric
acid, we modeled the relationship between CNPs and
gout. Of the 8,411 ARIC EA participants, 609 had gout
at some point during the study’s follow-up. In a logistic
regression model including technical and clinical covari-
ates described previously, the odds of gout is 1.21 times
higher comparing subjects who differ by one copy of CNP-
9Mb (p = 0.003). As expected, this association is largely

mediated through the CNP’s association with serum uric
acid. After including uric acid in the model, the asso-
ciation between copy number at CNP-9 Mb and gout is
attenuated (1.11 odds ratio; p=0.12). Results are qualita-
tively similar at the CNP-10 Mb locus with a statistically
significant gout association in the marginal model that
is attenuated after adjusting for uric acid concentrations
(data not shown).

Conclusions

This study is the first genome-wide scan of CNPs and
uric acid. We identified an association between serum uric
acid concentrations and two common, intergenic dele-
tions that are 200kb and 350 kb, respectively, upstream
of the urate transporter SLC2A9. Loss of DNA copy
number in these regions is associated with ~ 5 per-
cent change of uric acid concentrations among women
and a one percent change among men with the direc-
tion of the effect depending on the CNP locus ()(22 i =
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Figure 5 The association of CNP haplotypes with uric acid levels is independent of genome-wide significant SNPs. Genotypes at rs7675964
and rs6449213 were phased with CNP-9 Mb and CNP-10 Mb. Subjects were stratified into three allelic haplotypes (column labels) for which there
was variation in the CNP haplotypes (y-axis labels). The pair of CNP haplotypes given by :;:8:1’: is the reference group for each regression.
Likelihood ratio tests for the CNP haplotypes are statistically significant for women with allelic haplotypes :;:Z:g: (def =143, p=63x10"0)
and marginally significant for both men and women with allelic haplotypes 1, ==2=70== (2 - = 9,05, p = 0.0599). CNP haplotypes are not
associated with uric acid concentrations among ﬁiiigiiiii subjects ()(szf = 2.06, p = 0.357), though the sample size for this cohort is small and
the effect size among the 66 women is comparable to the effect size in the much larger m::g::g: and ii;iiZIZI subgroups.

3545, p = 3.19 x 10723). Gender-specific associations increased levels of serum uric acid concentrations when

between SLC2A9 polymorphisms and uric acid concen-
trations have been reported by others and are consistent
with our observations with CNPs near SLC2A9 [7,33-36].
Independent replication of the association between copy
number and uric acid concentrations in FHS provides
further support for our finding. Among ARIC AA par-
ticipants, CNP-10 Mb is weakly associated with uric acid
concentrations and there was no association at CNP-9 Mb
in men or women. The CNP association in ARIC EA is
independent of previously reported SNP associations in
SLC2A9, as assessed by joint CNP and SNP regression
models as well as regression models with phased SNP and
CNP haplotypes.

The physiological role of SLC2A9 in the kidney is the
reabsorption of urate from urine into blood, leading to

SLC2A9 expression is up-regulated and decreased levels
with loss of function mutations such as deletions. When
phased with genome-wide significant SNPs in SLC2A9,
the haplotypes with homozygous deletions at CNP-9 Mb
had lower uric acid concentrations as we would hypothe-
size if CNP-9 Mb spans an enhancer for SLC2A9. DNAse
hypersensitivity assays suggest that CNP-10 Mb abuts a
regulatory element, but we did not find DNAse hypersen-
sitivity or ChiP-seq peaks at CNP-9 Mb. Assays from other
cell lines in ENCODE are consistent with our findings in
the kidney. For example, CNP-10 Mb spans DNAse hyper-
sensitivity peaks in normal esophageal epithelial cells
(HEEpiC cell line), airway epithelial cells (SAEC cell line),
epidermal keratinocytes (cell line NHEK), and mammary
epithelial cells (HMEC cell line), as well as a H3KMel
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histone mark in HMEC cells [37]. As nearly 50 percent
of EA participants in ARIC have homozygous deletions
at CNP-9 Mb, it is possible that the fetal kidney cell line
harbors a homozygous deletion at this locus and that the
absence of ChiP-seq binding and DNAse hypersensitivity
reflect absence of regulatory elements due to loss of DNA
copy number. Gene expression data for kidney or liver tis-
sues and germline copy number for the same samples is
not currently available in ARIC or FHS.

Our CNP GWAS has low sensitivity for deletions less
than 50 kb in size and/or having fewer than 10 Affymetrix
6.0 markers. For amplifications, the inability to discrimi-
nate high copy amplifications from single- and two- copy
duplications because of the limited dynamic range of the
array platform will attenuate the regression coefficients
for copy number. The attenuation of the copy number
coefficients for amplifications occurs irrespective of the
size of the amplicon, but will be worse for small, focal
amplifications due to the limited resolution of the plat-
form. Our analyses do not rule out the contribution of
small insertions and deletions as well as high copy repeats
that are beyond the dynamic range of high-throughput
arrays. Sequencing platforms will be useful for elucidat-
ing whether additional structural and mutational variants
near SLC2A9 contribute to inter-individual heterogeneity
of uric acid concentrations. In addition, our association
analysis only included CNPs. Rare duplications and dele-
tions such as those directly spanning the SLC2A9 tran-
script (5 deletions and 9 duplications in ARIC) were not
evaluated in our analysis of CNPs and may have a larger
effect on uric acid concentrations than the CNPs stud-
ied here. While these limitations impact sensitivity, our
results indicate that CNP genome-wide association stud-
ies can achieve a high degree of specificity. As in any
high-throughput setting, the specificity of a genome-wide
screen depends on the extent to which technical factors
influencing estimation can be modeled and the degree to
which they are independent of the outcome of interest.
Participants in ARIC were neither enrolled nor processed
on the basis of their uric acid concentrations. Due to the
merits of the experimental design and mixed models for
uric acid that adjust for study center and chemistry plate,
we feel the major sources of artefactual associations in
ARIC have been addressed.

In summary, the loss of several kilobases of DNA in
close proximity to SLC2A9, a known uric acid transporter
and a candidate gene for gout [38-40], presents a bio-
logically plausible mechanism for regulation of SLC2A9
expression and modulation of serum uric acid concentra-
tions. Gene expression data on the same set of individuals
in target kidney and liver tissues is needed to evaluate
whether loss of DNA copy number effects transcription
of SLC2A9 as hypothesized, and to evaluate gender differ-
ences in SLC2A9 expression.
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Methods

This paper follows the guidelines for communicating con-
fidence intervals as suggested in [41]. Institutional Review
Board (IRB) approval was obtained by the Johns Hopkins
University ARIC study center, and the research was con-
ducted in accordance with the principles described in the
Declaration of Helsinki.

ARIC study

The ARIC study is an ongoing, prospective community-
based cohort of 15,792 persons (27% black) aged
45-64 years at baseline (1987-89) [42]. Participants
were selected by probability sampling from four U.S.
communities (Forsyth County, North Carolina; Jackson,
Mississippi; Minneapolis, Minnesota; and Washington
County, Maryland). Participants took part in examina-
tions starting with a baseline visit between 1987 and 1989
and three follow-up visits, thereafter, administered three
years apart (visit 2: 1990-1992; visit 3: 1993-1995; visit 4:
1996-1998). At baseline, a home interview assessed par-
ticipants’ sociodemographic characteristics, smoking, and
alcohol-drinking habits, medication use, and medical his-
tory. A clinical examination included measurement of
various risk factors. All participants self-reported race as
Asian, black, American Indian, or white. Body-mass index
(BMI) was measured according to published methods
[43]. Central laboratories performed analyses on baseline
fasting specimens using conventional assays to obtain uric
acid values [44]. Uric acid was measured by the uricase
method [45]. The reliability coefficient of uric acid was
0.91, and within-person variability was 7.2 [46].

CNV estimation

Raw CEL files from scanned Affymetrix 6.0 arrays were
processed using Affymetrix power tools (APT, version
1.14.3) and PennCNYV to derive estimates of log R ratios
and B allele frequencies at each marker. While the log R
ratio estimates were wave-adjusted [21], genomic waves
persisted in many of the ARIC samples. We further pro-
cessed the log R ratios using the R package ArrayTV
[47] — an approach adapted from software for remov-
ing waves in high-throughput sequencing data [48]. A
6-state HMM comprising 5 distinct copy number states
(0-4) implemented in the R package VanillaICE (VI) and
the stand-alone tool PennCNV were applied indepen-
dently to each sample [13,14,49]. CNVs with fewer than
10 markers were excluded due to the level of noise of the
log R ratios and the difficulty in assessing the validity of
low-coverage CNVs without experimental validation. As
inference from association models using the PennCNV-
and VI- derived copy number estimates were found to be
qualitatively similar, only the VI copy number associations
were reported.
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Quality control measures

Among 9,779 samples of EA for whom uric acid concen-
trations were measured at visit 1, we excluded 743 samples
that did not meet criteria for SNP genome-wide asso-
ciation analyses in ARIC as described in Kottgen et al.
[50]. For the estimation of germline CNVs, high CNV
call frequencies often indicate problems with the normal-
ization such as genomic waves that were incompletely
removed by the wave correction methods. We excluded
625 participants with autosomal log R ratios having high
autocorrelation or variance (lag 10 autocorrelation > 0.03
or median absolute deviation > 0.32), or if the num-
ber of CNVs called by the VI algorithm exceeded 100.
We used the signal to noise ratio (SNR) implemented
in the R package crlmm as a sample-specific measure
of array quality as assessed by the overall separation of
the canonical genotype clusters at SNPs [51,52], but we
did not exclude samples on the basis of this statistic.
Following the above quality control filters, 8,411 EA par-
ticipants were evaluated in the subsequent association
models.

Genome-wide scan of copy number and uric acid levels
From the set of genomic intervals defining CNVs derived
by the VI HMM fit to 8,411 EA subjects, we constructed
rectangular matrices of the inferred integer copy num-
ber. Element [i,j] of the matrix is the copy number
at genomic interval i for sample j. The genomic inter-
vals were obtained from the union of the start and end
coordinates across all CNVs detected for each of the
autosomal chromosomes with the requirement that each
non-overlapping (disjoint) interval contain at least one
marker. For each disjoint interval, we calculated the num-
ber of samples harboring a CNV, excluding intervals
for which fewer than one percent of the samples had
a CNV. Across samples, the CNVs are partially over-
lapping and any given CNV may span one or many
disjoint intervals. As a consequence, adjacent disjoint
intervals often convey similar information with compa-
rable frequencies of deletions and duplications. As the
test statistics are correlated, Bonferonni correction is
conservative. Because none of the loci were of border-
line statistical significance (Additional file 1: Figure S3),
more sophisticated simulation-based approaches for
multiple testing correction with dependent test statistics
were not assessed.

Mixed effects regression models for ARIC cohorts were
implemented using the R package Ime4 [53]. Specifically, we
modeled seasonally adjusted serum log uric acid concen-
trations (continuous) in a regression model with fixed
effects for copy number (modeled as continuous with scale
0-4), age (continuous), log-transformed BMI (continuous),
gender, and study center (categorical). As the heavy-tailed
uric acid concentrations were log-transformed, we report
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the percentage change of uric acid concentrations per
integer increase in copy number. To take into account
the heterogeneity of CNV call frequencies between chem-
istry plates, we include chemistry plate as a random
effect. For regression models with canonical genotypes as
covariates, we treated the frequency of the B-allele (an
integer in the set 0, 1, or 2) as continuous. For FHS,
we implemented mixed effects regression models using the
R package kinship (http://cran.uvigo.es/src/
contrib/Archive/kinship/) [31].

Imputation of copy number in the Framingham heart study
To evaluate whether CNPs at the chromosome 4 loci are
associated with uric acid in an independently sampled EA
population, we explored replication in FHS. Challenges
to replication in FHS include the older array architecture
(Affymetrix 250k Nsp/Sty chips) and the unavailability
of raw intensities needed for copy number estimation.
While there were no markers for CNP-9 Mb on the 250k
chips, SNP rs4607209 in CNP-10Mb is present in the
Affymetrix 250k Nsp chip. To verify that the expected
non-diploid genotypes (A, ‘B’, and NULL genotypes) can
be observed from the normalized intensities for this SNP
on the Affymetrix 250k Nsp chip, we genotyped the 270
phase 2 HapMap samples that were assayed on the the
Affymetrix 250k platform using the BRLMM algorithm
implemented in Affymetrix power tools. (The BRLMM
algorithm was used to genotype FHS participants.) A
scatterplot of the log intensities for the A and B alle-
les reveals three clusters corresponding to the deletion
genotypes for rs4607209 in addition to the canonical bial-
lelic clusters (Additional file 1: Figure S5), and is similar
to the clusters observed on the Affymetrix 6.0 platform
for ARIC EA participants (Figure 1D). Homozygous dele-
tions occur in 8.9% of the HapMap CEPH samples and
6.1% of the ARIC EA participants. The canonical bial-
lelic genotypes in HapMap have high genotype confidence
scores (not shown) and no missing calls, while 6 out of 8
CEPH subjects with homozygous deletions have missing
BRLMM genotype calls. These data demonstrate that the
low level intensities for SNP rs4607209 in both the 250k
Nsp and Affymetrix 6.0 platforms have distinct clusters
corresponding to the latent copy number and that missing
BRLMM genotypes occur in clusters that are consistent
with homozygous deletions. The specificity of missing
genotype calls as a surrogate for homozygous deletion
genotypes at SNP rs4607209 in EA HapMap is 1 and
the sensitivity is 0.75. We expect that missing genotype
calls as a surrogate for homozygous deletions will lead
to conservative parameter estimates of the copy number
effect size in regression models as contamination of the
diploid population with subjects harboring homozygous
and hemizygous deletions will bias the regression slopes
to zero.
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Estimation of copy number for ARIC AA participants

Log R ratios for markers in the CNP-9Mb and CNP-
10 Mb loci were averaged. The average log R ratios in AA
participants are a mixture of 3 normal distributions as
observed in the EA population, with the mixture compo-
nents presumed to be induced by differences in the latent
copy number. A Gibbs’ sampler [27,28] was implemented
in R to approximate the posterior distribution of the 3-
component normal mixture. Each subject was assigned
to the mixture component with the highest posterior
probability. As in the EA cohort, the observed mixture
components in the AA cohort are most consistent with
homozygous deletion, hemizygous deletion, and diploid
copy number on the basis of the expected log R ratios for
these copy number states.

Phasing SNPs and CNPs near SLC2A9

Genotypes from 8 SNPs having the largest marginal
associations with uric acid (including rs7675964 and
rs6449213) were phased with CNP-9 Mb and CNP-10 Mb
using the fastPHASE software [54]. For diploid CNPs, we
assumed that each haplotype had one copy. This assump-
tion is supported empirically by the data—if haplotypes
containing two copies were common, we would expect
to see subjects with duplications. Haplotypes were mod-
eled as categorical covariates in regression models for uric
acid concentrations. Subjects with rare haplotypes and
subjects with allelic haplotypes that had no variation in
the corresponding CNP portion of the haplotypes were
excluded (1,473 subjects).

Genomic annotation and software versions

Genomic annotation in this paper is based on UCSC build
hgl8 (NCBI36) [55]. Gene SLC2A9 has RefSeq accession
numbers NM_001001290.1 and NM_020041.2. We used
the May, 2010 version of PennCNYV, version 1.14.3 of
APT, and version 1.4.0 of fastPHASE [54]. All remaining
analyses were performed in the statistical environment R
[56]. Graphics were generated using the R packages lat-
tice [57] or ggbio [58,59]. The analyses downstream of
the VI algorithm relied on the infrastructure provided by
the GenomicRanges package [60]. The complete listing of
supporting R packages and their corresponding version
numbers is provided below.

e Rversion 3.1.0 (2014-04-10),
x86 64-apple-darwinl3.1.0

e Base packages: base, datasets, graphics, grDevices,
grid, methods, parallel, stats, tools, utils

e Other packages: aricUricAcid 1.0.19, Biobase 2.24.0,
BiocGenerics 0.10.0, Biostrings 2.32.0, DBI1 0.2-7,
devtools 1.5, foreach 1.4.2, GenomelnfoDb 1.0.2,
GenomicRanges 1.16.3, ggplot2 1.0.0, gridExtra 0.9.1,
gtable 0.1.2, IRanges 1.22.7, knitr 1.6, lattice 0.20-29,
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lme4 1.1-6, Matrix 1.1-3, oligo 1.28.2,
oligoClasses 1.26.0, pd.genomewidesnp.6 1.10.0,
RColorBrewer 1.0-5, Repp 0.11.1, RSQLite 0.11.4,
XVector 0.4.0

e Loaded via a namespace (and not attached):
affxparser 1.36.0, affyio 1.32.0, Bioclnstaller 1.14.2,
bit 1.1-12, codetools 0.2-8, colorspace 1.2-4,
digest 0.6.4, evaluate 0.5.5, ff 2.2-13, formatR 0.10,
gtools 3.4.0, httr 0.3, iterators 1.0.7,
latticeExtra 0.6-26, MASS 7.3-33, memoise 0.2.1,
minga 1.2.3, munsell 0.4.2, nlme 3.1-117, plyr 1.8.1,
preprocessCore 1.26.1, proto 0.3-10,
ReppEigen 0.3.2.1.2, RCurl 1.95-4.1, reshape2 1.4,
scales 0.2.4, splines 3.1.0, stats4: 3.1.0, stringr 0.6.2,
whisker 0.3-2, zlibbioc 1.10.0

Availability of supporting data

The data set supporting the results of this article is
available in the dbGaP repository, phs000090.v1.pl
(http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs000090.v1.p1). The ChiP-seq and DNAase
hypersensitivity data for the kidney described in
[32] is available from the GEO repository, accession:
GSE49637 (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE49637).

Additional file

Additional file 1: Supplementary figures and tables. Figure S1: Size,
frequency and burden of CNVs among ARIC participants of European
ancestry. Figure S2: Batch effects in processing arrays for copy number
estimation. Figure S3: Manhattan plot of copy number associations.
Figure S4: Quantile-quantile plot of the expected — log; p-values versus
the observed —logq p-values. Figure S5: A scatterplot of the normalized
intensities for the A and B alleles of SNP rs4607209 for 90 HapMap subjects
of EA assayed on the Affymetrix 250k Nsp chip used in FHS. Table S1:
Median and interquartile range (IQR) descriptive statistics of CNVs for 8,411
EA participants.
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