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Abstract

Background: It has been reported in the quantitative trait locus (QTL) literature that when
testing for QTL location and effect, the statistical power supporting methodologies based on two
markers and their estimated genetic map is higher than for the genetic map independent
methodologies known as single marker analyses. Close examination of these reports reveals that
the two marker approaches are more powerful than single marker analyses only in certain cases.

Simulation studies are a commonly used tool to determine the behavior of test statistics under
known conditions. We conducted a simulation study to assess the general behavior of an
intersection test and a two marker test under a variety of conditions. The study was designed to
reveal whether two marker tests are always more powerful than intersection tests, or whether
there are cases when an intersection test may outperform the two marker approach.

We present a reanalysis of a data set from a QTL study of ovariole number in Drosophila
melanogaster.

Results: Our simulation study results show that there are situations where the single marker
intersection test equals or outperforms the two marker test. The intersection test and the two
marker test identify overlapping regions in the reanalysis of the Drosophila melanogaster data. The
region identified is consistent with a regression based interval mapping analysis.

Conclusion: We find that the intersection test is appropriate for analysis of QTL data. This
approach has the advantage of simplicity and for certain situations supplies equivalent or more
powerful results than a comparable two marker test.

Background mapping. These comparisons have shown that the addi-
Many authors [1-4] have compared the statistical power  tional information supplied by the genetic distance
of different methods for quantitative trait locus (QTL)  between identifiable DNA markers unconfounds the QTL
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effect from the QTL location, thus making two marker
models more powerful than single marker models of
detection (for review see Doerge et al. [5]).

With the goal of detecting and/or locating QTL, there are
two common statistical approaches that can be taken. The
first approach is based on ANOVA, or simple linear regres-
sion, and performs statistical tests based solely on single
DNA marker information. No genetic map is required for
single marker analysis, and the calculations are based on
phenotypic means and variances within each of the geno-
typic classes. The second, and more involved approach, is
based on two DNA markers, the estimated recombination
fraction between them (or the estimated genetic distance),
and either a maximum likelihood based calculation or a
regression model including multiple (two or more) mark-
ers as independent variables. The linear ordering of multi-
ple DNA markers based upon their estimated
relationships (i.e., recombination fraction (or genetic dis-
tance)) supplies the framework or genetic map for (com-
posite) interval mapping [6,7] and as such unconfounds
the QTL effect and the QTL location, thus providing a
more precise means for detecting and locating QTL with
respect to the estimated genetic map for the organism
under investigation.

Rebai et al. [4] present a comprehensive comparison of
the statistical power for many of the commonly used
flanking marker or two marker methods employed, and
conclude that two marker mapping provides a relatively
small gain (5%) in power over single marker methods
when the two markers define an interval of width less
than 20 cM, but a substantial increase (greater than 30%)
in power for intervals upwards of 70 c¢M, indicating that
the gain in power may come from the addition of the sec-
ond marker to the analysis, or the addition of information
from that marker, rather than the map.

Using the findings of Rebai et al. [4], and others as our
motivation, we hypothesize that the power increase
between single marker and two marker regression meth-
ods is due to additional genotypic information in the sec-
ond marker. In order to assess this, similar test statistics
should be compared. A comparison of maximum likeli-
hood interval mapping to single marker ANOVA is com-
plicated because of the differences that may be observed
due to differences between regression and maximum like-
lihood [3], as well as differences in marker information.
In order to avoid this complication, we consider two
regression based approaches that differ only in the
number of markers included in the initial model (i.e. the
statistical methodology is the same, the models are differ-
ent). First, a set of compound hypotheses are defined for
use with a single marker analysis and used to define an
intersection test. We then state the equivalent hypotheses
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for a regression based two marker model for a test of the
interval. Last we compare, via simulation, the power of
the intersection and the two marker test under the stated
hypotheses for each model. We do not consider the case
of multiple QTL in a single interval, as this case was not
considered by Rebai et al. [4]. These two approaches are
then applied to a 'backcross' population of Drosophila
with 76 informative markers [8] to detect QTL associated
with ovariole number.

Results

Simulations

An overview of the simulations performed is given in
Table 1 and 2. For the purpose of evaluating the relative
difference in statistical power between the intersection
test and the two marker test, the estimated statistical
power of the two marker test was subtracted from that of
the intersection test for each of the parameter combina-
tions investigated, and a t-test [9] was performed to test
the null hypothesis that the mean difference in power was
zero.

For the binomial phenotype with a backcross design, sam-
ple size of 100, the 100 parameter combinations exam-
ined resulted in 34 showing no difference in statistical
power between the intersection test and the two marker
test (i.e, the value of the difference was exactly zero), 39
favoring the intersection test, and 27 favoring the two
marker test. The intersection test was more powerful with
a mean difference in power of 0.010, and the t-test of the
null hypothesis that the difference in power was zero was
rejected (p = 0.020). When n was equal to 500, the 139
parameter combinations examined yielded 116 showing
there was no difference in statistical power, 18 parameter
combinations indicated the intersection test as more pow-
erful, and 5 indicated the two marker test as more power-
ful. The mean difference in power was 0.020, and the t-test
of the null hypothesis that the difference in power was
zero was rejected (p = 0.010). The test of the null hypoth-
esis that the mean difference between the intersection and
two marker was zero was rejected for both sets of simula-
tions. The estimated difference between the two
approaches was positive, indicating that the intersection
test has slightly higher power than the two marker test in
these cases.

We also investigated F, experimental populations for a
binomial phenotype, using a sample size of 500. From the
25 parameter combinations investigated, 5 failed to con-
verge consistently for the two marker model due to singu-
larity in the design matrix. The remaining 20 parameter
combinations showed 10 as having no difference in statis-
tical power, while the remaining 10 favored the intersec-
tion test. Results similar to those found in the initial
simulations indicate that the intersection test performs as
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Table I: Simulation conditions for a binary phenotype, two marker loci M1l and M2, a single locus (Q), sample sizes n = 100, 500,

recombination fraction TMlQ and erQ , respectively, and effect size. *TMIQ = erQ = 0.0 not simulated

™MQ

Effect Size Number of combinations

Population n ™,Q
Backcross 100, 500 0.0% 0.10, 0.20, 0.30, 0.40, 0.50
F, 500 0.0%,0.10, 0.20, 0.30, 0.40, 0.50

0.0%,0.10, 0.20, 0.30, 0.40, 0.50
0.0%,0.10, 0.20, 0.30, 0.40, 0.50

0.40, 0.60, 0.80, 1.00  239*
1.00 25

Table 2: Simulation conditions for a normally distributed trait (Q), sample size n = 500, recombination fraction TM]Q and erQ ,

respectively, and effect size. * TMlQ = TMzQ = 0.0 not simulated

Population n ™,Q

"™MQ

Backcross 500 0.0%, 0.10, 0.20, 0.30, 0.40, 0.50

well as, or better than the two marker test. Comparisons
with smaller sample sizes (n = 100) were not conducted
because of convergence problems using the two marker
model.

For a normally distributed phenotype, 75 parameter com-
binations for the backcross were examined. From these,
12 showed no difference in statistical power, 34 scenarios
favored the intersection test, while 29 indicated the two
marker test as more powerful. The mean difference in
power was 0.015, and we failed to reject the test of the null
hypothesis that the difference was zero, p = 0.064.

Upon investigation of the parameter combinations that
showed some difference in power, specifically, for the sce-
nario highlighted by Rebai et al. [4] (QTL in the middle of
the interval with a large distance between markers), we
also find the two marker approach to be slightly more
powerful than the intersection test. However, when the
distance between the QTL and one marker is much
smaller than the distance between the QTL and the second
marker, the intersection test is more powerful. Although
we can point to these cases, it is important to realize that
for most of the scenarios no difference in power was
observed (see Figure 1).

Drosophila Analysis

Ovariole number is related to reproductive success in Dro-
sophila melanogaster and positively correlated with maxi-
mum daily female fecundity [10,11]. The 98 RILs
(recombinant inbred lines) for this study were scored for
the trait ovariole number and genotyped as described in
Wayne et al. [8].

0.0%,0.10, 0.20, 0.30, 0.40, 0.50

Effect size Number of combinations
0.20, 0.50, 0.80 75
A
12 “/ \
[
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s‘f \‘\
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44 //
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/
0 T — = T =
0.2 0.1 00 0.1 02

Difference in statistical power

Figure |
Histogram and density plot of difference in power between
intersection test and two marker test for 334 simulations.

Table 3: Concordance of significant test results from analysis of
71 unique pairs of adjacent makers using the intersection test and
two marker regression test. Yes, indicates that test was
significant, No, indicates test was not significant at o = 0.05

Two marker regression test Intersection test

Yes No
Yes 26 6
No 3 36
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Table 4: Marker analysis for ovariole number in Drosophila melanogaster from analysis using intersection test, o. = 0.025, two marker
regression test o = 0.05; and interval mapping; only markers significant in either the two marker test or intersection test listed

Two marker test

Intersection test Interval mapping

Chromosome  Marker  Frequency M,N,df M,N, Frequency Frequency M,df N,df M,p-value N, p-value p-value
M,N, p-value M, )

! 3E-4F 0.67 94 0.029 0.67 0.86 96 95 0.14 0.0256 0.0242
4F-5D 0.8l 93 0.032 0.86 0.84 95 96 0.0256 0.056 0.0226
6E-7D 0.7 93 0.0499 0.83 0.74 96 95  0.069 0.1 0.0373

2 35B-38A 0.69 82 0.028 0.8l 0.83 89 84 033 0.017 0.3036
38A-38E 0.7 77 0.017 0.83 0.88 84 87 0.017 0.028 0.0105
38E-43A 0.71 78 0.028 0.88 0.84 87 84 0.028 0.038 0.0083
43A-43E 0.73 79 0.03 0.84 0.9 84 87 0.038 0.034 0.0177
43E-46C 0.8 85 0.038 0.90 0.89 87 89 0.034 0.073 0.0339

3 63A-65A 0.29 85 0.075 0.49 0.38 94 89 0227 0.0249 0.0187
65A-65D 0.3 86 0.035 0.38 0.51 89 93  0.0249 0.13 0.0207
65D- 0.42 90 0.021 0.51 0.51 93 94 0.13 0.004 0.0031
67D
67D-68B 0.44 9l 0.0000 0.51 0.58 94 94  0.004 0 0

4
68B-68C 0.46 90 0.0000 0.58 0.49 94 92 0 0.002 0

3
68C- 0.41 89 0.002 0.49 0.46 92 94 0.002 0.007 0.0013
69D
69D- 0.34 86 0.0007 0.46 0.45 94 90 0.007 0.0008 0.001
70C
70C-71E 0.35 84 0.0002 0.45 0.38 90 89  0.0008 0.0006 0.0009
71E-72A 0.35 84 0.0002 0.39 0.42 89 90  0.0006 0.0007 0.0016
72A-73D 0.39 88 0.0001 0.42 0.46 90 90  0.0007 0.0003 0.001
73D-76A 0.34 83 0.0001 0.46 0.37 90 87  0.0003 0.0001 0.0007
76A-76B 0.34 85 0.0001 0.37 0.45 87 92  0.0001 0.0009 0.0005
76B-77A 0.41 90 0.0008 0.45 0.44 92 92 0.0009 0.0009 0.0009
77A-82D 0.34 83 0.0002 0.44 0.38 92 87  0.0009 0.0003 0.0011
82D-85F 0.31 84 0.0006 0.38 0.38 87 90 0.0003 0.0012 0.0006
85F-87B 0.27 84 0.0019 0.38 0.32 90 89 0.0012 0.003 0.0012
87B-87E 0.28 85 0.008 0.32 0.34 89 91  0.003 0.0l 0.0028
87E-87F 0.27 84 0.006 0.34 0.30 9l 89 0.0I1 0.004 0.0066
87F-88E 0.23 85 0.13 0.3 0.32 89 88 0.004 0.11 0.0061
96A-96F 0.2 87 0.066 0.32 0.27 94 90 021 0.013 0.0176
96F-97D 0.23 86 0.013 0.27 0.36 90 92 0013 0.048 0.0168
97D-97E 0.3 88 0.024 0.36 0.32 92 90 0.048 0.02 0.053
97E-98A 0.26 88 0.013 0.32 0.34 90 94  0.02 0.018 0.016
98A-99A 0.27 88 0.0001 0.34 0.4 94 90 0.018 0 0.0001
99A-998 0.34 88 0 0.40 0.43 90 9 0 0.0000 0
99B-99E 0.32 88 0 0.43 0.33 90 94 0 0.0000 0
99E- 0.33 93 0 0.33 0.34 94 95 0 0.0000 0
100A

For the 71 marker pairs considered, 36 markers were
found to be significant using both the intersection test
and the two marker test, and 26 were found to be non-sig-
nificant with both tests. The intersection and two marker
tests were concordant in 62 of the 71 pairs of markers
(Table 3). The estimated chance corrected agreement
(Kappa coefficient) was 0.75 with a 95% confidence inter-

val of (0.58,0.90). McNemar's test showed no systematic
difference in the two approaches (S = 1.00, p = 0.32).

Overlapping regions on chromosome 3 were identified by
the intersection test, the two marker test, and the interval
mapping test (Table 4). On chromosome 1, the two
marker test identified a region between 3E and 7D while
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Figure 2

Drosophila melanogaster intersection test. T-test statistics and
thresholds for evaluation of significance considering all mark-
ers typed (solid lines, T = 3.521, 76 markers; T = 2.29, paired
markers). The marker on Chromosome 4 spa was not statis-
tically significant (p = 0.32). Panel a: Chromosome | Panel b:
Chromosome 2 Panel c: Chromosome 3

http://www.biomedcentral.com/1471-2156/4/10

the comparable intersection test showed borderline sig-
nificance for one marker in that region (4F, p = 0.0256).
On chromosome 2, the two marker test identified a region
from 35B-46C while intersection tests identified a smaller
region from 35B-38E and the interval mapping identified
a region from 38A-46C. On Chromosome 3 the two
marker test identifies two regions 65A-87F and 96F-100A
while the intersection test finds the entire region from
63A-100A significant. The interval mapping agrees with
the intersection test for interval 63A-65A and finds it sig-
nificant, while it agrees with the two marker test for the
interval 97D-97F and does not find this interval signifi-
cant. Chromosome 4 was not associated with the trait for
any test.

The application of the intersection test to these data can
be further expanded to include an analysis with all 76
markers. We conducted 76 single marker regression tests
at a Bonferroni adjusted o of 6.6 x 10-4. Markers 68B, 71E,
73D, 76A, 82D, 99A, 99B, 99E and 100A were significant
using this intersection test (see Figure 2). The regions
identified are consistent with a regression-based interval
mapping analysis.

Discussion

The findings of Rebai et al. [4] show differences in the sta-
tistical power of the two marker methods (i.e., interval
mapping) over single marker tests (e.g., ANOVA, t-test)
only when the markers are more than 50cM apart, sug-
gesting that these differences may be due to the addition
of information in the second marker. Our simulation
study supports this hypothesis.

The application of an intersection test uses information
from both markers, and tests the same null hypotheses as
the two marker test. The use of the intersection test takes
advantage of the additional genotypic information pro-
vided in the second marker.

While compound hypotheses are common in statistical
theory, and typically seen in the use of union/intersection
tests, their use in the quantitative genetics arena and QTL
application is relatively novel. Furthermore, the intersec-
tion test is simple to implement, the expansion to multi-
ple markers is straightforward, and uses all available
marker information. In a framework map, where markers
are unlinked, the intersection test is simply the single
marker analysis with a Bonferroni correction for the sig-
nificance level. In cases where markers are correlated, the
application of the Bonferroni correction will be overly
conservative. This correction guarantees that the nominal
a is not exceeded, but is well known to be overly conserv-
ative in cases where tests are not independent. In this case,
the application of the intersection test will require an
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alternative correction in order to achieve maximum
power.

We demonstrate situations for a pair of adjacent markers
where the power of the intersection test is equal to or
greater than the power of the two marker test. In the case
highlighted by Rebai et al. [4], markers more than 50 cM
apart and large effect size, we also find that the two marker
test has higher power than the intersection test. A counter
example is when one marker is much closer to the QTL
than the other marker, in this case the intersection test is
more powerful. Overall, the power of the two approaches
is nearly identical and differences between them small.

In the Drosophila reanalysis both methods identify the
same general regions. However, six marker pairs were
found to be significant using the two marker tests that
were not identified using the intersection test. Using the
map and notation defined by Nuzhdin et al. [12] they
were: Chromosome 1 pairs 3E-4F, 4F-5D, GE-7D; Chro-
mosome 2 pairs 38E-43A, 43A-43E, and 43E-46C. The p-
values for the 6 marker pairs from the intersection tests
were small but did not exceed the Bonferroni corrected
significance level (see Table 4). The above markers that
contribute to these marker pairs are linked indicating that
the Bonferroni correction may be overly conservative.

In contrast, three marker pairs on Chromosome 3 were
significant using the intersection tests, but were not signif-
icant using the two marker tests: 63A-65D, 87F-88E, and
96A-9GF (Table 4). In these cases the "internal" marker of
the pair is giving signal while the "outer" marker does not.
This provides an interesting point of discussion. We could
say that marker 65D appears to be associated with ovari-
ole number, but we do not know if the QTL lies to the left
or right of this marker. Just because marker 63A does not
appear to be significantly associated with ovariole
number, we can not infer that the region to the "left" of
65D does not contain the gene of interest.

In some cases, the two marker test results in a larger region
than the intersection test, while in others the reverse is
true. QTL mapping is usually a first attempt to locate
genes, which the biologist uses to identify all possible
regions of interest, e.g. is willing to accept type I error. We
have discussed different ways to detect underlying QTL
and an approach for maximizing or minimizing the
potential region containing the QTL. It is also possible to
estimate the QTL position directly. Estimates can be
obtained using a variety of techniques and the different
possible approaches to estimation are reviewed in Doerge
et al. [5] and Kao [3]. However, even when the position is
estimated, a confidence interval will exist defining the size
of the region to be included for further study. Different
approaches will result in regions of different sizes with
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more, or fewer markers included. The differences in the
size of the regions are potentially important to a biologist,
who relies on QTL mapping analyses to determine regions
for further study. Most biologists accept that current QTL
mapping methods are best used for identifying broad
regions, which subsequently can be dissected with more
precise genetical techniques. The question is then: what
region should be advanced to fine mapping experiments?
The investigator may choose to take only the regions
which are significant in both intersection and multiple
marker approaches, or s/he may choose to carry forward
any marker that shows a positive result according to at
least one analysis. We recommend that experimentalists
perform both a single marker analysis with an intersection
test and a multiple marker analysis and use the informa-
tion available in both analyses to guide their decisions
about what regions to carry forward for further study.

Conclusion

We find that the intersection test has equal or greater
power compared to the two marker equivalent. Our anal-
yses were conducted using the Bonferroni correction for
the intersection test. When markers are linked, as in many
of our simulations, this correction is overly conservative.
If the intersection test is used in conjunction with a more
appropriate correction, the performance of the intersec-
tion test would improve perhaps even surpassing the two
marker equivalent in more cases. Thus, our motivation
and hope in presenting this investigation of the statistical
power of intersection tests versus two marker tests is to
make clear the compound framework and resulting evi-
dence under which intersection tests are indeed equal to
and/or more powerful than the complicated procedures
based on two marker models.

Materials

Statistical Framework

As the framework for our comparison, and in conjunction
with the previous simulations and conclusions provided
by the work of Rebai et al. [4], we consider a backcross
experimental design originating from a cross of two
homozygous inbred lines, differing in the trait of interest,
and producing heterozygous lines that are backcrossed to
one of the initial homozygous parental lines. We examine
both normal and binomial phenotypic distributions. In
general, we denote each marker as M;...M,, where k is the
number of markers being examined and allow each
marker to have two alleles, M;,, M;,..M;;, M,,. The 2k
phenotypic means are differentiated via subscripts (e.g.,
M, My /My My, OT PM“MMM/MIZA.AMM) and the frequencies
of these classes are denoted as p;, p,;...1,; under the bino-

mial scenario (i.e., Mp, /M, = 1P1p)-
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Single Marker Model and Hypotheses
A simple linear regression backcross model is employed
for single marker QTL detection

Yi=Bo+BXej+g;5=1..n (1)

where Y] is the quantitative trait value, X.; is an indicator
variable that denotes the state of a particular marker, f is
the overall mean, and . is the effect of an allelic substitu-
tion at the marker. Ideally, if the marker and QTL are
completely linked, the effect of an allelic substitution is
the effect of the QTL. If k markers are considered
independently, k linear regression models can be consid-
ered (i.e., one for each marker, M;, M,,..., M;)) by denoting
the allelic substitution associated with marker M; as B. =
B fori=1... k. For k = 2 markers, we denote the allelic sub-
stitution associated with marker M, as B. = 3,, where B, =
Mg, /ay, A0d By = Wy v - Mg, m,, and the allelic substi-
tution associated with marker M, as . = 3,, where B, =

My /My, and B, = By My, = Pndy /My

A compound hypothesis testing the effect of an allelic sub-
stitution at either or both of these two independent mark-
ers is,

Ho : By =Wty /vy T HM My =0andp, =Wty /My, ~ Mty /My, =0
Hy:By =Wy /My M My # 0 and/or B, = MMy [ Myy T HMy, /My, #0.

Rejection of this compound null hypothesis indicates an
association between a QTL and either or both of the mark-
ers, M; and M,, hence the term intersection test. From a
statistical perspective the relative position of the two
markers is irrelevant. However, to compare this to a two
marker model there is an implicit assumption that the
markers considered form an interval, or are adjacent to
one another. This marks a departure from the traditional
single marker analysis where no consideration to marker
order is given. To define an overall level a test, the signif-
icance level o must be adjusted for the individual tests to
account for multiple testing. There are many ways to
account for multiple testing. Assuming the markers are
independent, the Bonferroni correction can be applied
[9]. The Bonferroni correction is conservative for the inter-
section test and the lack of independence between mark-
ers would tend to make it more difficult for the
intersection test to reject.

More generally, for k markers, the compound hypothesis
testing the effect of an allelic substitution at any of the
independent markers, M;...M,, is

http://www.biomedcentral.com/1471-2156/4/10

HO Bl = HM]]/Mlz _HMll/Mll = O and
B, = l'lel/Mzz_IJ'le/A’121=Oand
B = Mty /My ~ MMy /My =0

Ho: Br = Mg, m, —Mmy, /s, #*0and/or
By = MMy, /My ~HMy, /My, # 0 and/or
Bk = l’LMlel//\’ikz _uM}zl/Mkl #0.

Rejection of this compound null hypothesis indicates an
association between a QTL and at least one of the markers,
M;...M,. To define an overall level a test, using a Bonfer-

roni correction [9], each B. is tested at an adjusted signifi-

cance level of %. An association between a QTL and a

marker is then indicated when the individual single
marker test rejects the null at the adjusted o level.

The practical result of the application of an intersection
test, is the simplicity of calculation of the single marker
test statistic, with a correction for multiple testing.

Two Marker Regression Model and Test of the
Corresponding Interval

Extending the (backcross) notation defined previously, a
multiple linear regression model (based on two markers)
can be employed for QTL detection purposes. The model
is defined as

Y;= Bo+ BIXIj + BZXZj + B3X3]- + a]-;j =1,..,n

where X;;and X, are the genotypic states of the respective
markers M, and M,, along with their respective allelic sub-
stitution effects (B;, B,), and Xj;is the combined genotypic
states of markers M, and M, with allelic substitutions at
both markers M, and M, having effect ;. Interestingly to
note, when one is selectively genotyping, the information
in B is maximized.

In other words,

BO = By My, [ My My,

By = Moty My, [ MipMyy ™ MMy My /My My,

Ba = MMy My /My My, — HMy My [ My My,

B3 = MMy My, /My My, — HMy My, [ My My, -

Based upon this two marker model with four parameters,
the hypothesis employed to perform a level a test for
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association between a trait and the marker loci M; and M,
is the test of B, where,

HO : BS = HMHMZI /M12M22 - “MHMZ] /MIIMZI =

Ha : BS * lILA/IIIA/IZI /M12M22 - l-LA/IHIMZI /MIIMZI * 0

The null hypothesis for this test is that there is no associa-
tion between either marker (M; or M,) and the trait. A

similar set of hypotheses follow for an F, experimental
design.

This model parameterization differs from the least squares
interval mapping approach first introduced by Knott and
Haley [2]. In the parameterization proposed here, only
one test is performed for the pair of markers. In contrast,
the regression based interval mapping approach [2],
recalculates the value of the independent variables for
each putative position in the interval. Our two marker
regression has a different parameterization from Knott
and Haley [2]. We chose the alternate parameterization in
order to directly compare the two marker model and the
single marker model. In the Knott and Haley [2] parame-
terization, flanking markers are used to define the coeffi-
cients of the regression as mean, additive or dominance
effects. For s steps along the interval between two markers
M, and M, values of X are calculated according to the con-
ditional probability of a QTL in that location.

The regression based interval mapping parameterization
thus provides a mechanism to test for additive and domi-
nance effects using tests of the regression parameters. In
our parameterization, the regression coefficients are tests
for detection. Thus, the two parameterizations have differ-
ent null hypotheses for the tests of the regression coeffi-
cients and are not directly comparable in terms of power.
We use the alternative parameterization so that the inter-
pretation of the tests is comparable in the single marker
and two marker regression models and we can directly
compare the power of the two tests.

Simulations

Data were simulated for two marker backcross and F, pop-
ulations with binomial trait distributions and two marker
backcross populations with normal trait distributions. A
total of 339 parameter combinations were examined
(Table 1). For each combination of parameters, 1000 data
sets were simulated. Traits were simulated from a bino-
mial distribution Bin(n,p) where sample sizes n = 100 and
n = 500 were utilized, and from a normal distribution

N(W—M, 1.0) with n = 500. The effect of the binary
2

trait [13] varied based on p = np; (Table 1). The binomial
probabilities p,, p,, and p, represent the probability that a
binary trait is present given a specific BTL genotype (GT),

http://www.biomedcentral.com/1471-2156/4/10

or the penetrance of the trait for the specific genotypes Q,/
Q;, Q,/Q,, and Q,/Q,, respectively. The location of the
locus relative to marker loci M; and M, also varied. Simi-
larly, the effect under the normally distributed phenotype
was allowed to vary (Table 2) under seventy five parame-
ter combinations. The effect size is the difference in the
penetrances (for binary traits) and between the means (for
normally distributed traits). For each phenotypic trait dis-
tribution and each parameter combination (Table 1 and
2) we analyzed, via least squares, 1000 simulated data sets
using both the single marker regression model and the
two marker regression model.

For the intersection test, the null hypothesis was rejected
when the empirical p-value for either single marker regres-

sion test statistic was less than % = 0.025 (Bonferroni

adjustment). For the comparable two marker test (i.e., B
= 0), the null hypothesis was rejected when the empirical
p-value was less than o = 0.05. Under each parameter
combination, the cumulative assessment of statistical
power was evaluated from the 1000 simulated data sets as
the proportion of times the empirical (permutation) p-
values were less than the specified o level.

Drosophila Analysis

The population of Drosophila melanogaster used in our
analysis was a set of 98 RILs (recombinant in lines)
derived from a cross of two isogenic lines as described in
Wayne et al. [8], for the trait ovariole number. There were
76 informative markers on 4 chromosomes. Markers used
were the cytological map positions of the insertion sites of
roo transposable element markers, with the exception of
the fourth chromosome, where a visible mutation was
used as a marker (spa) [12]. A complete linkage map was
obtained for chromosome 1 (the X) and chromosome 3,
with 15 adjacent marker pairs (16 markers) on 1 and 36
adjacent marker pairs (37 markers) on 3. There was a cen-
tromeric break in the genetic map for chromosome 2,
such that there were 18 adjacent pairs (19 markers) on the
left arm and 2 adjacent pairs (3 markers) on the right arm.

To compare the intersection test to the two marker test,
the 71 pairs of markers identified above were examined.
For each pair, the two marker regression with the test of
the B, parameter was conducted at o = 0.05. The two indi-
vidual markers were then separately modeled in a linear
regression model (see Equation 1), and the intersection
test was conducted. For the 71 unique pairs of markers,
concordance between the intersection test and two marker
test was estimated using the Kappa coefficient, and McNe-
mar's test [14] was conducted to determine whether sys-
tematic differences existed between the two methods.
Regression based interval mapping was performed
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according to the Haley and Knott parameterization [1,2].
Analysis was conducted using S-PLUS 2000 (Insightful

Corp.).
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