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Abstract
The pedigree and genotype data from the Framingham Heart Study were examined for errors.
Errors in 21 of 329 pedigrees were detected with the program PREST, and of these the errors in
16 pedigrees were resolved. Genotyping errors were then detected with SIMWALK2. Five
Mendelian errors were found following the pedigree corrections. Double-recombinant errors
were more common, with 142 being detected at mistyping probabilities of 0.25 or greater.

Background
Because linkage analysis observes the co-segregation of
marker alleles and phenotype, there is a concern that
errors in pedigrees or genotypes could result in false-neg-
ative or false-positive results. The use of Genetic Analysis
Workshop (GAW) data to examine the presence and
nature of pedigree errors is not new [1-3]. In this exercise
we detect and describe the pedigree and genotyping errors
in the GAW13 Framingham Heart Study data.

Methods
Pedigree error detection and correction
The program PREST [4] was used to detect pedigree errors.
PREST estimates the probabilities, p0, p1, and p2 of two
individuals sharing 0, 1, and 2 alleles identically by
descent (IBD), respectively. We calculated this over all of
the relationship pairs known to PREST (parent-offspring,
full-sibs, half-sibs, avuncular, first-cousins, grandparent-
grandchild, half-avuncular, half-first cousin, half-sib plus
first-cousin, monozygotic twins, and unrelated) within
and between pedigrees. Pedigree errors were first screened
with PREST's analytical tests: conditional estimated iden-
tity by descent (EIBD), adjusted identity by state (AIBS),
and IBS, in that order and where applicable, at α = 0.0001,
to focus on the more significant problems. This index pair

and their relatives were then examined more thoroughly
using PREST's accompanying program ALTERTEST that
can test two individuals for each of the 11 relationship
classes.

PREST comes with an R script written by Dan Weeks to
plot the IBD estimation of a single relative pair on a rela-
tionship triangle [5]. We modified this program to pro-
vide a scatter diagram of IBDs on the triangle. The result is
an informative graphical summary of the pedigree errors
in the sample. Pedigrees were drawn with PEDIGREE/
DRAW [6].

Genotyping error detection and correction
Genotyping errors are detected using SIMWALK [7,8].
SIMWALK2 applies a Markov-chain Monte Carlo method
to data from the pedigree, population allele frequencies,
and a genetic map to assign probabilities of mistyping for
each genotype. Because this is a computationally intensive
exercise, we examined genotyping errors only on chromo-
some 7.

We ran SIMWALK2 in two phases. In the first phase, Men-
delian errors were detected and corrected independently
for each marker. Marker genotypes were blanked
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(changed to a missing value) for all probabilities of
mistyping above a given threshold. The threshold was
chosen conservatively, i.e., to blank no more genotypes
for a marker than necessary to calculate a likelihood for
that marker. The mistyping probability was decremented
from 1.0 until a calculable likelihood was reached.

In the second phase, genotypes that suggest improbable
double recombination events were blanked. Mistyping
probabilities were assigned using the genetic maps sup-
plied with the GAW13 data. In this phase, the proportion
of genotypes potentially blanked at a series of thresholds
is plotted to provide a visual guide for choosing a
threshold.

Following the corrections of the pedigree and genotype
data, we recalculated for comparison, the chromosome 7
genetic map using MULTIMAP/CRIMAP [9,10].

Results
Pedigree errors
Scatter diagrams of the estimated IBD probabilities p0, p1,
and p2 on relationship triangles are shown in Figure 1.
These reveal almost no full-sibling errors. A few avuncular
and first-cousin relationships are likely to be unrelated,

and a great many unrelated individuals are likely in fact to
be related, some being parent-offspring pairs.

Consistent observations among relatives were required
before changes were made to the pedigrees. For example,
the four unrelated pairs that are undoubtedly parent-off-
spring display the required parent-offspring relationships
with a female in a disconnected pedigree, as determined
by ALTERTEST and illustrated in Figure 2. All four were
unrelated to the originally designated mother, now the
stepmother. None of the other alternative tests suggested
any other arrangement.

In another example shown in Figure 3, two pedigrees were
joined through two ungenotyped half-sibs, detected
through consistent half-avuncular and half-first cousin
relationships.

These simple examples belie the difficulties of correcting
pedigree errors. In the Framingham data we were able to
resolve the errors in 16 of 21 pedigrees, out of 329 pedi-
grees in total. The five unresolved pedigrees displayed
patterns of errors that contradicted all testable alternative
hypotheses, and were left unchanged.

Scatter diagrams of estimated IBDs on the relationship triangles for six relationship categoriesFigure 1
Scatter diagrams of estimated IBDs on the relationship triangles for six relationship categories Scatter diagrams 
of the IBD probabilities estimated by PREST on a relationship triangle reveal the extent of pedigree errors within a given rela-
tionship category. By far, the largest number of errors involves "unrelated" pairs that in fact appear to be related.
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Genotyping errors
Five Mendelian errors were revealed following the pedi-
gree changes. The distribution of mistyping probabilities
for the double-recombinant detection is shown in Figure
4. We chose a threshold probability of 0.25 to define erro-
neous genotypes, so as to blank without a too great loss of
data. With this threshold, 142 genotypes were blanked.

Following the blanking, a new genetic map for the 21
markers on chromosome 7 was estimated using MULTI-
MAP/CRIMAP [9,10]. The new map was 167 cM in length,
or 24 cM shorter than the map provided with the data. In
comparison, the length of the corresponding Marshfield
map is 175 cM [11].

Discussion
The Framingham data were relatively free of pedigree
errors, particularly those involving close relatives. The
most frequent type of error involved individuals in the
upper generations, detected through their descendants
due to the lack of genotype data for the ancestors. These
errors were frequently corrected through the joining of
disconnected pedigrees. It is difficult to generalize these
findings to other populations in which the types and dis-
tribution of pedigree errors may be quite different. Pre-
sumably in Framingham, kinship terms are usually given
a biological interpretation. In other populations where
this is not strictly the case, serious errors would seem
possible.

Pedigree error example 1Figure 2
Pedigree error example 1 In the Framingham data the four offspring in the third generation were assigned mother C, but 
the tests identified A as the biological mother. B was confirmed as the biological father. The dashed lines indicate the corrected 
relationships.
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The small number of Mendelian genotyping errors in the
Framingham data that had not been detected previously
became evident only following the pedigree corrections.
Genotype errors that imply unlikely double
recombination events were more common, the exact
number depending on a definition of probable mistyping.

Pedigree error example 2Figure 3
Pedigree error example 2 Pedigrees 1 and 2 were unrelated in the data. B was found to be a half-uncle to the siblings in C, 
and they in turn to be half-first-cousins to the siblings in D, supporting the joining of the two pedigrees as indicated with the 
dashed line.
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Distribution of double-recombinant genotyping errorsFigure 4
Distribution of double-recombinant genotyping errors The distribution of mistyping probabilities for the markers in 
chromosome 7 is shown on the left, and the proportion of genotypes blanked on the right, as determined by the mistyping 
probability thresholds on the x-axis. We chose to blank genotypes with mistyping probabilities greater or equal to 0.25.
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