
BioMed CentralBMC Genetics

ss
Open AcceProceedings
Comparison of missing data approaches in linkage analysis
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Abstract
Background: Observational cohort studies have been little used in linkage analyses due to their
general lack of large, disease-specific pedigrees. Nevertheless, the longitudinal nature of such
studies makes them potentially valuable for assessing the linkage between genotypes and temporal
trends in phenotypes. The repeated phenotype measures in cohort studies (i.e., across time),
however, can have extensive missing information. Existing methods for handling missing data in
observational studies may decrease efficiency, introduce biases, and give spurious results. The
impact of such methods when undertaking linkage analysis of cohort studies is unclear. Therefore,
we compare here six methods of imputing missing repeated phenotypes on results from genome-
wide linkage analyses of four quantitative traits from the Framingham Heart Study cohort.

Results: We found that simply deleting observations with missing values gave many more
nominally statistically significant linkages than the other five approaches. Among the latter, those
with similar underlying methodology (i.e., imputation- versus model-based) gave the most
consistent results, although some discrepancies remained.

Conclusion: Different methods for addressing missing values in linkage analyses of cohort studies
can give substantially diverse results, and must be carefully considered to protect against biases and
spurious findings.

Background
Prospective cohort studies, or longitudinal studies, are
generally regarded as being more definitive than case-con-
trol studies because they are not subject to numerous
potential biases that may affect case-control studies. In
particular, the cohort study design entails enrolling a dis-
ease-free population at baseline, assessing their exposures
at that and future time points, and then comparing the
ultimate occurrence of disease among those exposed ver-
sus unexposed [1]. Since exposure is assessed prior to the

occurrence of disease, cohort studies are not subject to
temporal ambiguity and recall bias.

While widely used in epidemiologic research, cohort stud-
ies have been rarely used in linkage studies. The preferred
study designs for linkage analysis has been large pedi-
grees, heavily loaded with affected individuals, or affected
sibling pairs. However, the incorporation of family infor-
mation, and continued recruitment into large cohort stud-
ies, such as the Framingham Heart Study, has provided a
valuable opportunity to undertake linkage analyses in a
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population-based cohort study. Such studies will allow
for temporal linkage analyses, and provide information
about genetic risks directly applicable to the general
population.

One potential problem with using repeated measures
from cohort studies in linkage analyses is the large poten-
tial for missing data. Missing data is common in longitu-
dinal studies, and may result in spurious or weakened
results, complicating their interpretation [2]. For example,
missing data can arise in cohort studies due to subject
attrition at individual follow-up points, or complete with-
drawal from the study [3].

The effect of missing data on one's results depends on the
process underlying the incomplete data collection. This
can be classified as follows: 1) missing completely at ran-
dom (MCAR), wherein the missingness is independent of
the observed and unobserved data; 2) missing at random
(MAR), wherein the missingness depends only on the
observed data; and 3) not missing at random (MNAR),
wherein the missingness is dependent upon the missing
values only [4]. The presence of the latter two situations
may introduce follow-up bias into a study. MAR is less
restrictive than MCAR because the probability of the miss-
ing value depends only on the observed data [5].

Methods for handling missing data can be categorized
with regard to the following four types of procedures: 1)
complete subject; 2) weighting; 3) imputation-based; and
4) model-based [4]. The complete-subject approach – the
simplest imputation method – removes all individuals
with missing data. If missing data is not random among
the exposed and unexposed groups, complete-subject
analysis may introduce a bias. In addition, complete-sub-
ject analysis may be less efficient than other approaches
[6]. In the weighting approach, individuals with and with-
out missing data are grouped on variables recorded for
both. The nonrespondents receive a weighting of zero,
while the matching respondents are assigned a propor-
tionately inflated weight to compensate for the missing
values. The imputation-based procedures estimate and fill
in the missing values, commonly using mean- and regres-
sion-based values, allowing one to use standard analysis
methods on a complete data set. Finally, model-based
procedures define a model for the missing data and make
inferences on the likelihood or posterior distribution
under that model [4]. The impact of such methods on
linkage analysis of longitudinal data is unclear. Therefore,
we investigate here the effect of using six different tech-
niques for handling missing data on linkage analyses in
the Genetic Analysis Workshop 13 (GAW13) Framing-
ham data.

Methods
The sample included 348 pedigrees consisting of 4639
individuals from the Framingham cohort study (GAW13).
The population was 49% male and 51% female. The fol-
lowing traits were investigated here: body mass index
(BMI); cholesterol (CHL); systolic blood pressure (SBP);
and a principal component (PC) variable. The latter was
the first principal component of the first three traits (fol-
lowing imputation of their missing values, as described
below). As a composite of CHL, BMI, and SBP, the princi-
pal component trait attempts to capture the interrelated
complexity of these measures in a single trait value. (The
proportion of variance attributable to the first principal
component ranged from 44% to 56% (mean = 49%).)
Trait and covariate information selected from five time
points were used within the analysis. The percentage of
missing data at the five time points for the variables and
covariates is shown in Table 1.

Six different techniques were used to impute missing
information for the traits BMI, CHL, and SBP. The first
three are imputation-based procedures using a single
imputation. Specifically, Method I imputed missing data
from the gender-specific mean of the population accord-
ing to the sex of the individual with missing data. Method
II used a linear regression approach: for each individual
and each time point, the known values of the trait were
used to predict the missing observation. Method III
imputed missing data from the gender-specific mean of an
individual's pedigree. If the pedigree mean could not be
computed due to missing values, then the gender-specific
population mean was used instead. The fourth approach
(Method IV) was a complete-subject procedure: individu-
als with missing values were simply removed from the
analysis for that (missing) variable. Finally, the last two
approaches were model-based single imputations. In par-
ticular, Method V modelled the missing values using the
expectation-maximization (EM) likelihood-based algo-
rithm. Method VI used the data augmentation Monte
Carlo Markov chain method (MCMC) algorithm to
model the missing values. Since the traits are quantitative,
a Gaussian model was assumed to handle the missing val-
ues for both approaches [7]. Both model-based algo-
rithms are implemented in the S-PLUS MISSINGDATA
library.

Once missing data were imputed, a univariate linear
regression for each of the four traits was performed across
time while controlling for smoking (SMK), the number of
cigarettes smoked per day, and the number of grams of
alcohol consumed per day (ALC). Age served as a proxy
for time. Missing age values for individuals were calcu-
lated based on the fact that exams occurred every four
years for the second generation, except for the first time
interval of eight years, and at two-year intervals for the
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first generation. The family mean for SMK and ALC,
adjusted for gender, provided a value for those with miss-
ing data for the covariates in the first four methods. In
Methods V and VI, the missing covariates and traits were
treated identically by using the EM or data augmentation
algorithms under a Gaussian model. The linear regression
of the four traits provided a coefficient predicting their
change, which was then used as the outcome trait in a
genome-wide linkage analysis using Haseman-Elston
regression [8]. The complete data for Method IV included
1073 observations, while the other five methods had
2885 observations. We used the modified Haseman-
Elston method, which computes the mean-corrected cross
product as the dependent trait [8]. Seventeen original ped-
igrees were broken into two separate family pedigrees, one
family was broken into four separate family pedigrees,
and two pedigrees consisting of 53 individuals were
removed in order to assess the identity by descent (IBD)
distribution in SAGE [9]. (GENIBD in SAGE breaks pedi-

grees with more than 18 individuals into nuclear families
to compute the IBD distribution.)

Results
Genome scans with the six imputation methods indicated
nominally statistically significant (p < 0.05) linkages for
the four traits at a total of 107 markers. Method IV gave
the largest number of markers with p < 0.05 (n = 105),
while Method III had the fewest (n = 19). The number of
markers showing p < 0.05 for Methods I, II, V, and VI were
38, 32, 23, and 36, respectively. A pair-wise comparison of
the significant linkages detected with methods across the
three traits, CHL, SBP, and PC, indicated only 3 matches
out of 45 (Table 2). However, a pair-wise comparison of
the methods with the trait BMI always shows a match. If
the methods for handling missing data are of similar type,
the matching increases with the BMI trait. In particular,
Method I, II, and III agree 72.7-83.4% of the time (I&II:
19/22; I&III: 16/22; II&III: 15/19), while Method V and VI

Table 1: Percentage of missing values for five time points

Time7 Time12 Time13 Time14 Time15

BMI 5% 20% 21% 21% 25%
CHL 7% 51% 23% 22% 25%
SBP 5% 20% 20% 21% 24%
ALC 11% 20% 21% 21% 25%
SMK 5% 20% 20% 21% 24%

Table 2: Counts of markers with significant p-values (<0.05) in four traits comparing six imputation methods in a genome linkage 
analysisA

Meth
od

I II III IV V VI

BMI SBP PC BMI SBP PC BMI PC BMI CHL SBP PC BMI CHL BMI

I BMI 22 0 3 19 0 2 16 0 1 0 2 1 8 1 2
SBP 1 0 0 1 0 0 0 0 0 0 0 0 0 0
PC 15 2 0 9 0 1 0 0 0 0 4 0 5

II BMI 19 0 2 15 0 1 0 2 1 8 1 9
SBP 1 0 0 0 0 0 0 0 0 0 0
PC 11 4 0 0 0 0 0 3 0 4

III BMI 18 0 1 1 2 1 6 1 7
PC 1 0 0 0 0 0 0 0

IV BMI 28 10 18 26 2 0 3
CHL 23 11 9 0 0 0
SBP 26 17 1 0 2
PC 27 2 0 3

V BMI 20 1 17
CHL 3 1

VI BMI 36

ATraits not listed (for specific methods) did not exhibit any statistically significant linkage results.
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agree 47% of the time. Chromosome 2 has nine signifi-
cant markers seen only in Method V. Removing this chro-
mosome from the analysis results in the agreement
between Methods V and VI increasing to 63%. Method IV
agrees with Method I-III, Method V, and Method VI only
1/28, 2/28, and 3/28, respectively. Of the 401 markers,
chromosome 10 marker 2 (063 × f4) had significant p-val-
ues across the six different imputation methods.

Discussion
Missing data is a critical issue in observational studies,
especially those with longitudinal data. Methods for han-
dling missing data have received little attention in genetic
epidemiology. Therefore, we undertook an empirical
investigation of how six different missing data approaches
compared with regard to the number of significant link-
ages observed across four traits. The six different
approaches represent three of the four categories for meth-
ods handling missing data: complete subject analysis,
imputation-based procedures, and model-based proce-
dures. Since a complete data set was needed for the link-
age analysis, the weighting procedure was not performed.
Our results demonstrate that there can be substantial var-
iability in linkages when using different methods to han-
dle missing data.

The complete-subject approach (Method IV) generated
the most significant p-values (n = 105), while the other
methods gave from 19 to 38 significant p-values. Thus, the
elimination of individuals with missing values may have
introduced a bias into the study, leading spurious results.
Most likely individuals with missing values are not MCAR.
Those with higher values for the measured health indica-
tors are more likely to miss exams due to poor health or
the embarrassment from having previous high values. The
smaller sample size used with this method may have also
led to an increased number of false-positive results.

The traits we focused on are indicators for health status
and are risk factors for many common diseases. For exam-
ple, CHL, BMI, and SBP are risk factors for cardiovascular
disease and stroke. For each trait (CHL, BMI, SBP, and
PC), we choose to perform a linkage analysis aimed at
identifying the genes involved in the change of these traits
through time.

Note that our analyses did not adjust the degrees of free-
dom for multiple imputation. In practice, this should be
done because the imputed values are not truly observed,
but instead are based on the existing observed values [10].

Further studies using simulation methods should be con-
ducted comparing the results from different missing data
imputation methods. In addition, original data sets from
studies finding linkage could be re-examined after using

data imputation for comparison and possibly improving
previous results.

Conclusions
Applying different imputation methods for missing data
to linkage analyses of longitudinal data can substantially
influence one's results. We found that the number of sta-
tistically significant results differed quite a bit for each of
the six methods used here. As expected, similar types of
methods agreed the majority of the time. In summary,
while longitudinal studies are critical for evaluating link-
age to traits that may vary over time, the treatment of
missing data in such studies may greatly affect linkage
results and should be considered with caution.
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