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Abstract
Background: N-hydroxylated base analogs, such as 6-hydroxylaminopurine (HAP) and 2-amino-
6-hydroxylaminopurine (AHA), are strong mutagens in various organisms due to their ambiguous
base-pairing properties. The systems protecting cells from HAP and related noncanonical purines
in Escherichia coli include specialized deoxyribonucleoside triphosphatase RdgB, DNA repair
endonuclease V, and a molybdenum cofactor-dependent system. Fewer HAP-detoxification
systems have been identified in yeast Saccharomyces cerevisiae and other eukaryotes. Cellular
systems protecting from AHA are unknown. In the present study, we performed a genome-wide
search for genes whose deletions confer sensitivity to HAP and AHA in yeast.

Results: We screened the library of yeast deletion mutants for sensitivity to the toxic and
mutagenic action of HAP and AHA. We identified novel genes involved in the genetic control of
base analogs sensitivity, including genes controlling purine metabolism, cytoskeleton organization,
and amino acid metabolism.

Conclusion: We developed a method for screening the yeast deletion library for sensitivity to the
mutagenic and toxic action of base analogs and identified 16 novel genes controlling pathways of
protection from HAP. Three of them also protect from AHA.

Background
The accurate replication and repair of genetic material,
which is a prerequisite for normal functioning of the
eukaryotic genome and the prevention of cancer, relies on
coordinated and faithful DNA synthesis. One important
mechanism that ensures a high fidelity of DNA replication
is a "cleansing" of the DNA precursor pool from deoxyri-
bonucleoside triphosphates containing a modified base

[1-4]. Such modified bases may have ambiguous base-
pairing properties that will result in a high mutagenic
activity after their incorporation into DNA during replica-
tion. A classic example of the detoxification mechanism is
the elimination of dUTP and 8-oxo-dGTP from the dNTP
pool by the E. coli dUTPase and MutT proteins, respec-
tively [1,5].
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Purine analogs 6-hydroxyaminopurine (HAP) and 2-
amino-HAP (AHA) are powerful mutagens in bacteria,
yeast, and higher eukaryotes [6,7]. It has been suggested
that HAP-deoxyriboside-triphosphate (dHAPTP) is a pos-
sible endogenous contaminant of nucleotide pools under
peroxyl radical stress [8]. HAP and AHA closely resemble
the natural purines, hypoxanthine and xanthine (Fig. 1),
and therefore, could be exploited to investigate the mech-
anism preventing mutations that are caused by non-
canonical purine nucleotides [9-11].

It was proposed that purine salvage enzymes convert base
analogs to the corresponding deoxyribonucleoside tri-
phosphates, which are misincorporated or misreplicated
during DNA synthesis, resulting in induction of muta-
tions [12,13]. HAP-induced mutagenesis in yeast is ele-
vated in strains with defects in proofreading activity of
replicative DNA polymerases [14,15] and does not
depend on excision, mutagenic recombination, and mis-
match repair systems [14-16]. We have described several
systems protecting cells from the mutagenic and
inhibitory effects of HAP (see review [16]). One is the
novel molybdenum cofactor-dependent system in E. coli
[17]. It has yet to be determined if a similar system exists
in higher eukaryotes. Another, versatile HAP-detoxifica-
tion pathway relies upon the action of triphosphatase,
Ham1p, which hydrolyze HAP-containing ribo- and
deoxyribo-nucleotides to nucleoside monophosphates,
and which prevent incorporation of base analog into
DNA and RNA. We initially described the elevated sensi-

tivity to HAP in yeast due to mutations in the HAM1 gene
[18]. When we cloned and sequenced the HAM1 gene, we
found that it has homologs in many organisms, from bac-
teria to humans [13], and proposed that the gene might
code for new triphosphatase [16]. Then, the crystal struc-
ture of the Ham1p homologue from a thermostable bac-
terium (protein Mj0226) was determined [19]. It was
found that the Ham1p ternary structure has common fea-
tures with MutT. Homologs of the yeast Ham1p from
other organisms possessed triphosphatase activity on
dITP, ITP, XTP, and dHAPTP substrates (Kozmin and Pav-
lov, unpublished; Burgis and Cunnigham, personal com-
munication; and [19-21]).

There are additional, less thoroughly studied, factors
modulating purine base analogues mutagenesis in yeast
(see [16] for review). For example, aah1 mutants are sen-
sitive to HAP, suggesting that adenine deaminase Aah1p
may deaminate HAP base to hypoxanthine [16].

In the present study, we carried out a genome-wide search
for HAP and AHA sensitive mutants. The release of several
complete sets of deletion mutants by the Yeast Deletion
Project provides a powerful approach for different types of
genome screens in yeast [22]. Haploid and diploid strains
have already been used to detect new genes controlling
sensitivity to different agents such as UV, ionising radia-
tion, iron, and methyl methane sulfonate (MMS) [23-27],
as well as spontaneous mutability [28]. This approach,
when combined with other genomics approaches, helps
to establish the biological functions of uncharacterized
ORFs in yeast, many of which have human orthologs. This
approach also allows us to decipher the network
responses to endogenous and environmental stress [29].
The present study is the first systematic, genome-wide
search for the mutations conferring sensitivity to muta-
genic purine base analogs.

Results
Development of the screening method
To develop a useful method for searching the yeast
mutants sensitive to base analogs, we calibrated the exper-
imental conditions using the wild-type strain, BY4742,
and two previously described HAP-sensitive mutants,
ham1 and aah1 (see [6,16]), created on BY4742 back-
ground. As shown in Fig. 2 and described in Materials and
Methods, yeast were grown in a 96-well microtiter plate
and then transferred, using a multiprong replicator device,
to YPD plates containing base analogs. An induction of
the Canr mutants was monitored by replica-plating to the
minimal-medium plates containing L-canavanine.

The results are presented in Fig. 3. The left panel of Fig. 3
shows the induction of canavanine-resistant mutants by
HAP and AHA; and the right panel represents the survival

Chemical structures of HAP and AHA and natural purine basesFigure 1
Chemical structures of HAP and AHA and natural purine 
bases.
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of the tested strains on YPD plates in the presence of base
analogs. In the wild-type strain, as in the ham1 and aah1
mutants, 1–3 spontaneous canavanine-resistant colonies
per spot arise in the absence of mutagen (Fig. 3A and 3B,
left panel). In our experimental conditions, 1 µg/ml of
HAP did not induce Canr mutants in the wild-type strain.
A moderate induction of Canr clones (fewer than ten per
spot) was observed at 10 µg/ml of HAP and a very strong
HAP-induced mutagenesis was observed in the wild-type
strain at 100 µg/ml of HAP (Fig. 3A, left panel). For com-
parison, 100 µg/ml of AHA were only moderately muta-
genic (compare Fig. 3A and Fig. 3E, left panel).
Furthermore, both HAP and AHA did not affect the viabil-
ity of the wild-type strain, even at the maximal concentra-
tion of 100 µg/ml (Fig. 3A and 3E, right panel).

In the ham1 strain, 1 µg/ml of HAP induced Canr mutants
with the similar frequency that was observed in the wild-
type strain at 2 orders in magnitude higher concentration
of analog, 100 µg/ml (compare Fig. 3A and 3B, left panel,
phenotype of hypermutability, HM). The hypersensitivity
of the ham1 mutant to the toxic action of HAP was clearly
detectable at 100 µg/ml of HAP (Fig. 3B, right panel). We
will refer later to this phenotype as hypersensitivity, HS.
Note that a reduction of the number of canavanine-resist-

ant clones at 10 and 100 µg/ml of HAP, in comparison
with 1 µg/ml of HAP observed in the ham1 mutant (Fig.
3B, left panel, another manifestation of hypersensitivity
phenotype, HS), is also due to a dramatic decrease of sur-
vival. When the aah1 mutant was tested (Fig. 3B, second
row, for HAP and Fig. 3F, first row, for AHA), the drop of
viability was less severe than that for the ham1 mutant
(phenotype of elevated sensitivity, S). HAP-induced
mutagenesis was detectable at a low dose of 1 µg/ml, but
was much less compared to the ham1 mutant (phenotype
of elevated mutability, M). Mutagenesis was somewhat
stronger at the dose 10 µg/ml and was not seen at 100 µg/
ml (another manifestation of elevated sensitivity, S). For
the aah1 mutant, AHA-induced mutagenesis was moder-
ate at the dose of 10 µg/ml and very strong at a concentra-
tion of 100 µg/ml. The aah1 mutant exemplified what we
expect to observe for mutants moderately sensitive to
both HAP and AHA. These data suggested that the proce-
dure we devised for micro-titre plate format is effective for
the detection of mutants with altered parameters of HAP
and AHA sensitivity and mutability.

Screening of the deletion strains library
We screened the yeast deletion strains library as described
above. After an initial screening of 4,823 deletion strains,

Scheme of the protocol for screening the yeast deletions library for base analog sensitivity and induced mutagenesisFigure 2
Scheme of the protocol for screening the yeast deletions library for base analog sensitivity and induced mutagenesis.
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Results of the screening of the yeast deletion library for elevated mutagenesis and sensitivity in micro-titer platesFigure 3
Results of the screening of the yeast deletion library for elevated mutagenesis and sensitivity in micro-titer 
plates. Left panel – Mutagenesis on selective plates with canavanine. Right panel – The estimation of the number of colony-
forming units on YPD medium.
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43 mutants strains appeared to affect base analog-induced
killing or mutagenesis. However, in subsequent testing of
candidate strains in same type of plate tests, we have con-
firmed HAP-sensitivity of 16 mutants (Fig. 3, Table 1, col-
umn 4, where we refer to phenotypes of mutants
according to abbreviations described in previous section).
Next, we examined the mutability and survival of these 16
mutants in quantitative tests with HAP (see Materials and
Methods). Based on the results of these two types of tests,
we categorize HAP-sensitive strains in three groups, as
shown in Table 1. Group I comprises, in addition to ham1
and aah1 strains, mutants ade12 and ade2. These strains
were hypersensitive to the mutagenic and lethal action of
HAP in both types of tests (Fig. 3 and Table 1, columns 4–
6). Strains of this group were sensitive to the low doses (1

and/or 10 µg/ml) of HAP, in contrast to the wild-type
strain. The ade12 mutant was almost as mutable as the
ham1 strain, but the hypermutability could only be dem-
onstrated in a quantitative test, due to poor plating effi-
ciency (compare Fig 3B, row 3 and Table 1, column 5, row
3). The ade2 mutant was as mutable as the aah1 mutant
(Table 1). Deletion mutants of the first group showed var-
iable degree of sensitivity to HAP-induced killing Table 1,
column 6).

Eleven mutants fall into Group II. Mutants of this class
were sensitive to the mutagenic effect of HAP, but their
growth was not severely inhibited on HAP-containing
medium. As a result, there is a smaller difference, in com-
parison to mutants of the group I, or no difference in the

Table 1: HAP-sensitivity of the mutants selected in our screening.

Class of mutants Gene or ORF name 
deleted

Functional group Response HAP in spot 
tests†

Induced mutant 
frequency (×10-7) by 

HAP#

Survival in presence of 
HAP#

Wild type - 400 100%

Class I: mutants 
hypersensitive to HAP

HAM1 DNA1 HM, HS 13000 17%

ADE12* DNA HM, HS 10000 30%
AAH1* DNA M, S 5500 30%
ADE2 DNA M, S 4400 70%

II class: Mutants 
sensitive to mutagenic 

effect of HAP

VIP1 Cell2 M, S 840 76%

VID27 Metabolic3 M, S 600° 82%
IPK1 Metabolic M, S 1400 100%

ADE5,7 DNA M 1900 100%
ADE8 DNA M 1500 100%
ADE6 DNA M 1100 100%

RIM101 meiosis M 1100 100%
ADE3 DNA M 940 100%
ADE1 DNA M 860 100%

YGR035c unknown M 500° 100%
Yjl055w* Metabolic M 500° 100%

Class III: Mutants 
sensitive to killing

YMl013c-a Unknown S 230° 60%

SHE4 Cell S 600° 30%
TRP2 Metabolic HS 250° 60%

†- HM – hypermutable, M – more mutable than wild-type, HS – hypersensitive, S – more sensitive than wild-type, see first paragraph od the Results 
Section for the explanation.
# – 25 µg/ml
1 – 'DNA' – includes genes involved in the control of DNA precursor metabolism, purine salvage, DNA repair.
2 – 'Cell' – includes genes involved in cytoskeleton organization, cell walls and organelles.
3 – 'Metabolic' – includes genes involved in general metabolic pathways.
* – These mutants were also sensitive to the mutagenic or toxic effect of AHA (see Fig. 3).
° – small difference from the wild-type strain was reproducible and statistically significant by Wilcoxon-Mann-Whitney test.
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number of Canr mutants induced by 10 and 100 µg/ml of
HAP in spot-tests (Fig. 3C, Table 1, column 4). These
strains produced some HAP-induced Canr mutants at 10
µg/ml of HAP, whereas the parental strain was non-muta-
ble at this HAP concentration. We also did not detect any
substantial drops of viability after growth in liquid media
containing 25 µg/ml of HAP (Table 1, column 6). Group
II was not homogeneous in respect to HAP mutability and
sensitivity. The six most sensitive mutants in the group are
vip1, vid27, ade1, ade5,7, ade6, ade8, ipk1 and rim101 (see
Table 1). These mutants showed a decrease in the number
of Canr mutants in a qualitative test when concentration
of HAP increased ten-fold (up to 100 µg/ml), which is an
indication of some cell death at very high doses of HAP
(Fig. 3C). Mutants yjl055w, ygr035c, and ade3 were more
resistant to HAP, since the number of Canr colonies was
similar at 10 and 100 µg/ml of HAP. As could be seen
from the results of quantitative assay, mutant classifica-
tion is quite conditional and there is substantial variation
in responses between mutants of the Group II, but all of
them were more mutable that the wild-type strain.

Finally, Group III includes mutants she4, trp2, and
yml013c-a; which were sensitive to HAP-induced killing,
but not to HAP-induced mutagenesis (Fig. 3D and Table
1, column 6). In quantitative tests the yml013c-a and trp2
mutants were even less sensitive to the mutagenic action
of HAP than the wild-type strain (Table 1). The she2
mutant was slightly more mutable that the wild-type
strain only in quantitative test. The existence of such a
type of mutants suggests that the toxic effect of HAP in
yeast may be not only due to the induction of lethal muta-
tions, but also due to inhibition of certain metabolic
pathways.

In the present study, we have also characterized three
AHA-sensitive mutants, aah1, ade12, and yjl055w (Fig. 3E
and 3F). Remarkably, all of these mutants were also sensi-
tive to HAP (Fig. 3C and Table 1). Two of those mutants,
aah1 and yjl055w, were AHA-hypermutable; whereas
ade12 strain did not mutate in the presence of AHA, but
was sensitive to AHA-induced killing. In a quantitative
test, 50 µg/ml of AHA did not inhibit survival of the wild-
type strain, aah1 and yjl055w strains; whereas survival of
the ade12 mutant was reduced to 50%. In the aah1 and
yjl055w strains, 50 µg/ml of AHA induced canavanine-
resistant mutants with the frequencies 120 × 10-7 and 270
× 10-7, respectively, that was 4–9-folds higher than
observed in the wild-type and ade12 strains (30 × 10-7, in
both strains).

Discussion
In this study, we elaborated the technology for testing
base analog-induced mutability and killing of thousands
of yeast strains in microtiter format (see Fig. 2). We found

that the method is quite sensitive and reliable. Next, we
screened the library of haploid yeast strains carrying dele-
tions in all nonessential ORFs for the sensitivity to muta-
genic base analogs HAP and AHA. We have found 16
novel HAP-sensitive mutants that fall into several groups,
based on the sensitivity profiles (Fig. 3 and Table 1). One
group comprises the mutants that are HAP-hypermutable
and grow poorly in the presence of HAP. Another class
comprises strains with elevated HAP-mutability that grow
normally on medium containing HAP. Finally, the third
group includes the mutants sensitive to HAP-induced kill-
ing, but not to HAP-induced mutagenesis. We have also
isolated three AHA-sensitive mutants. All of them were
HAP sensitive as well. We summarized the properties of
the genes found in our screening in Additional file 1.

One interesting result from our study is that none of the
genes involved in the control of base analogs sensitivity
except two genes, YML013c-a and ade12, were found in
screenings for genes controlling sensitivity to the other
types of mutagens, MMS, UV, and ionizing radiation [23-
27] or for elevated spontaneous mutagenesis [28]. It was
previously reported that deletion of the YML013c-a and
ADE12 open reading frame specifically enhanced sensitiv-
ity to killing (as in case of HAP) induced by γ-radiation
and bleomycin, but did not affect sensitivity to MMS, UV,
and hydroxyurea [23,30]. It is known that there are over-
laps of the sets of genes detected in genome screenings for
the MMS-, UV- or ionizing radiation-sensitive strains [29].
Usually, those spectra include genes controlling DNA rep-
lication, recombination, and DNA repair. In our study, we
did not find any of those genes. This is consistent with our
earlier observation that the mutagenic action of HAP in S.
cerevisiae does not depend on nucleotide excision repair,
mutagenic repair, and mismatch repair [16]. A system to
repair non-canonical purines and, probably HAP and
AHA, in DNA has been recently characterized in E. coli
[9,10]. It is possible that yeast S. cerevisiae lacks such a
repair system.

Based on our data, we propose that, in yeast, the major
base analogs protective mechanism is a control of the
quality of DNA precursor pool that prevents incorpora-
tion of base analogs into DNA. This mechanism may work
at several levels: transport of analogs into cells, detoxifica-
tion of analogs by metabolic enzymes, maintenance of
nucleotide pools, and fidelity control of DNA replication
(Fig. 4). HAP and AHA are likely transported into the yeast
cell by the same permeases, which are involved in trans-
port of natural purines. One candidate is purine-cytosine
permease, Fcy2p, a major purine (adenine, guanine, and
hypoxanthine) and cytosine transporter in yeast [31].
According to our unpublished data, fcy2 mutants are
resistant to HAP. Thus, the active transport of HAP is the
first critical step in the HAP mutagenic pathway. The next
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step is a conversion of the base analog to the correspond-
ing ribonucleoside monophosphate by enzymes of the
purine salvage pathway. Previously we observed that the
inactivation of the APT1 gene, encoding adenine phos-
phoribosyl transferase, led to a severe decrease of the
mutagenic effect of HAP [16], suggesting that this enzyme
plays a key role in the biosynthesis of HAP-riboside-5'-
monophosphate (HAPMP). HAPMP then may be con-
verted to the corresponding nucleoside triphosphate,
which could be ambiguously incorporated into DNA by
DNA polymerases and provoke replication errors in the
subsequent replication cycles [13].

The mechanism preventing HAP- and AHA-induced toxic-
ity most likely involves the conversion of base analogs to
non-mutagenic metabolites by purine salvage enzymes.
The main argument for this hypothesis is that HAP could
be utilized by yeast cells as a sole purine source
[13,18,32]. The first enzyme in this HAP and AHA detoxi-
fication pathway is adenine aminohydrolase, encoded by
the AAH1 gene. Aah1p from several microorganisms has
been biochemically characterized (see [33]). Is has a
broad substrate specificity and is capable of converting
both adenine and its six-substituted analogs into hypox-
anthine in vitro. According to our data, yeast Aah1p may
convert HAP to hypoxanthine [12] and AHA to guanine in
vivo, since the inactivation of the AAH1 leads to a defect in
this conversion that is readily detected by UV spectros-
copy of yeast medium (unpublished observation). In the
aah1 mutant, the base analog intracellular concentration
increases. We propose that this causes the elevation of
base analog-induced mutagenesis (Fig. 3B and 3E, Table
1).

Interestingly, in our screening we did not detect the amd1
mutant, deficient in AMP aminohydrolase, that catalyze
deamination of AMP to IMP [34]. We disrupted this gene
by the kanMX cassette in several yeast strains and did not
see any effect on HAP-induced mutagenesis anywhere.
Thus, deamination of HAP at the mononucleotide level
does not play an important role in HAP detoxification.
This can be due to several reasons: the inability of the
Amd1p to hydrolyse HAPMP, the minor role of the AMD1
gene in yeast, or the short life-time of the HAPMP in yeast
cells.

We have found that inactivation of adenilosuccinate syn-
thase (ASS or Ade12p) encoded by the ADE12 gene
strongly enhanced HAP-induced mutagenesis and AHA-
induced killing (see Fig. 3B and 3F, and Table 1). The pri-
mary function of this enzyme is the conversion of IMP to
SAMP in the pathway of AMP biosynthesis de novo (Fig. 4).
We propose that the reason for this hypersensitivity is the
dysregulation of purine biosynthesis, as follows. First, the
blocking of this step of purine biosynthesis causes accu-

mulation of IMP in the cell. The excess of IMP is probably
toxic for the cell, since ade12 mutants have a slow-growth
phenotype that can be rescued by blocks of the earlier
steps of the de novo purine biosynthesis pathway (Dr. A.
M. Zekhnov {St-Petersburg State University}, personal
communication). Accumulated IMP can be phosphor-
ylated to ITP by nucleotide phosporylases. Thus, we pro-
pose that, in the ade12 mutant, an excess of ITP may
saturate Ham1p triphosphatase, an essential enzyme for
the destruction of HAPTP and dHAPTP, which leads to
increased HAP-sensitivity (see Fig. 3). The data obtained
recently in bacteria are consistent with this hypothesis. It
was shown that, in vitro, E. coli Ham1p homologues pro-
tein, RdgB, is a triphosphatase that acts to hydrolize non-
canonical DNA precursors, dIPT and dXTP. The Ham1p
protein was shown to possess a similar activity on dITP,
dXTP, and dHAPTP substrates (Kozmin and Pavlov,
unpublished; Burgis and Cunnigham, personal commu-
nication; and see refs. [19-21]). In E. coli, the rdgB muta-
tion is synthetically lethal with recA. As proposed, absence
of RdgB leads to a dramatic increase of hypoxanthine and
xanthine in DNA. Accordingly, base excision repair of
such modified bases occurring in opposite strands may
generate double strand breaks that require the RecA func-
tion to be repaired. However, over-expression of
adenilosuccinate synthase PurA (homolog of yeast
Ade12p) suppresses this lethality [9]. This suggests a criti-
cal role of ASS in the regulation of intracellular concentra-
tion of genotoxic hypoxanthine-containing nucleotides.

We found that certain mutations affecting IMP biosynthe-
sis de novo enhance HAP-induced mutagenesis (Table 1).
Seven of sixteen newly identified genes controlling HAP
and AHA sensitivity are involved in AMP biosynthesis (see
Additional file 1 and Fig. 3). It is known that the regula-
tion of the AMP biosynthesis pathway by adenine is medi-
ated by SAICAR, one of the precursors in adenine
biosynthesis de novo [35]. The accumulation of certain
purine biosynthesis by-products may play a role in the
regulation of the nucleotide pool. A defect in endogenous
purine biosynthesis probably alters nucleotide pools to
favour dHAPTP mis-incorporation into DNA or leads to
HAP toxicity. In respect to this hypothesis, it is important
that there is a difference in the level of HAP-induced
mutagenesis among the strains carrying mutations in the
genes of AMP biosynthesis. The less sensitive mutant is
ade3 (Fig. 3 and Table 1). The ADE3 does not directly con-
trol any steps of purine biosynthesis. It encodes the C1-
tetrahydrofolate synthase that provides C1-tetrahydro-
folate, an indispensable precursor for AMP, histidine,
thymidylate, and methionine biosynthesis (see Fig. 4). In
this respect it is of interest that ade4, ade16 and ade17
mutants, also defective in IMP biosynthesis, were not
found in our screen and were not sensitive to HAP or AHA
when constructed de novo and tested directly (data not
Page 7 of 11
(page number not for citation purposes)



BMC Genetics 2005, 6:31 http://www.biomedcentral.com/1471-2156/6/31
shown). The ADE4 stands apart because PRPP, a substrate
of the product of the ADE4 gene, serves as a precursor for
additional biosynthetic pathways. This prevents by-prod-
uct accumulation and might be one of the explanations of
lack of HAP sensitivity of the ade4 mutants. The single
ade16 and ade17 mutants also do not lead to byproduct
accumulation because ADE16 and ADE17 are isozymes
and the inactivation of one gene does not block the
pathway.

We have found that 6 genes detected in our screening,
VIP1, VID27, IPK1, YGR035c, YML013c-a and SHE4, are
putatively involved in cell organization or genetically
interact with cell-cycle control genes (see Additional file
1). This observation provides new perspectives on the
mechanisms of base analogs-induced mutagenesis. It is
possible that there is a specific structural route, mediated
by cell cycle and cytoskeleton components, initiated by
penetration of the analog inside the cell to its final target.
We have also identified several hypothetical genes critical
for the HAP and/or AHA resistance. This may be an initial
clue to their functional significance.

Finally, we would like to mention that out of the 18 genes
we found to be involved in HAP and AHA sensitivity con-
trol, 11 (60%) have orthologs in all groups of organisms,
including mammals. Therefore, the results have relevance
to higher eukaryotes and humans as well (see Additional
file 1).

Conclusion
We identified novel mutants sensitive to mutagenic and
toxic effects of purine base analogs. AHA sensitivity was
not previously described for three of the mutants identi-
fied in this study. The results reveal a complex control of
base analogue mutagenesis by genes encoding the compo-
nents of metabolic pathways and cytoskeleton.

Methods
Yeast strains and media
We have used a set of 4,823 S. cerevisiae mutants carrying
deletions of all non-essential ORFs created in the haploid
strain BY4742 (MATα his3∆leu2∆lys2∆ura3∆). The infor-
mation about the deletion strains set is available from the
Yeast Deletion Project site: ftp://ftp.resgen.com/pub/dele
tions/mat_alpha_041902.txt. Deletion strains were
constructed by replacement of the ORF's with the kanMX4
cassette, which confers resistance to geneticin [36].

The standard yeast complete media (YPD) and minimal
synthetic media (SD) were used [37]. Deletion strains
were cultivated on YPD medium, supplemented with 200
µg/ml of geneticin. Sensitivity to HAP and AHA was exam-
ined on YPD media containing analogs in concentrations
100 µg/ml, 10 µg/ml and 1 µg/ml. SD medium containing

40 µg/ml of L-canavanine was used for the selection of
Canr mutants.

Base analogs sensitivity tests
HAP was purchased from MP Biomedicals (Irvine, Cali-
fornia, USA). AHA was custom- synthesized by Dr. I.
Kuchuk at the Department of Chemistry of Indiana
University (Bloomington, Indiana, USA) by the method
of Janion [38]. Both chemicals were dissolved in DMSO
(Fisher, USA) with mild heating. A single colony of each
tested strain was inoculated into a well of 96-well micro-
titre plate containing 200 µl of liquid YPD medium (see
Fig. 2). Microtiter plates were incubated for 2 days at 30°C
with agitation, to reach a stationary phase (approximately
108 cells/ml). For mutagenesis assay, cells were then
plated by a multiprong replicator device (approximately 5
µl of cell suspension per prong) to the YPD plates contain-
ing various concentrations of HAP or AHA, as shown on
Fig. 2. After one day of incubation, the plates were replica-
plated on SD minimal-medium plates containing L-cana-
vanine. The plates were incubated 5 days and inspected
for induction of Canr mutants.

For the survival test, cell cultures from the microplates
were diluted in water in series of 96-well microplates,
using a multichanel pipette (see Fig. 2). Diluted cells sus-
pensions were plated to YPD plates containing HAP or
AHA by a multiprong replicator device. After 2–3 days of
incubation, the number of colonies was recorded. Strains
that produced smaller colonies or a smaller number of
colonies on the HAP-containing medium, relatively to
wild-type strain, were classified as sensitive to killing.

Quantitative assay of the base analog-induced 
mutagenesis
For each strain and each concentration of base analogs to
be tested, we prepared six independent cultures by inocu-
lating a single colony into 1 ml of liquid YPD medium
with or without mutagens. After two days incubation in
the roller drum, the mutant frequencies were determined
by plating of appropriately diluted cell suspensions on
minimal-medium SD plates supplemented with L-cana-
vanine (to determine the number of canavanine-resistant
cells per culture), and on YPD plates (to obtain the total
number of cells per culture). Then the frequency of
mutants was calculated as described [14]. Each
experiment was repeated at least three times. We have
used several doses of HAP and found that in this type of
test the most reproducible results are obtained at dose 25
µg/ml. The statistical significance of differences between
variants was estimated by Wilcoxon-Mann-Whitney non-
parametric criterion.
Page 8 of 11
(page number not for citation purposes)

ftp://ftp.resgen.com/pub/deletions/mat_alpha_041902.txt
ftp://ftp.resgen.com/pub/deletions/mat_alpha_041902.txt


BMC Genetics 2005, 6:31 http://www.biomedcentral.com/1471-2156/6/31
Purine salvage and purine biosynthesis de novo in yeast Saccharomyces cerevisiaeFigure 4
Purine salvage and purine biosynthesis de novo in yeast Saccharomyces cerevisiae. Intermediates of the purine bio-
synthesis de novo are designated in blue. The salvage pathway is presented in black. Genes, whose deletions lead to HAP and/or 
AHA sensitivity are highlighted by red boxes. The proposed conversions of HAP and AHA are represented in brackets below 
the adenine and guanine metabolites, respectively. Dashed arrows represent hypothetical pathways that were not demon-
strated experimentally for a given substrate. Abbreviations:Purine biosynthesis de novo: PRPP – 5-phospho-ribosyl-1α-pyro-
phosphate, PRA – 5-phospho-β-D-ribosylamine, GAR – 5-phosphoribosylglycinamide, FGAR – 5'-phosphoribosyl-N-formyl 
glycinamide, FGAM – 5'-phosphoribosyl-N-formylglycinamidine, AIR – 5'-phosphoribosyl-5-aminoimidazole, CAIR – 5'-phos-
phoribosyl-5-aminoimidazole-4-carboxylate, SAICAR – 5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole, 
AICAR – 5'-phosphoribosyl-4-carboxamide-5-aminoimidazole, FAICAR – 5'-phosphoribosyl-4-carboxamide-5-formamidoimi-
dazole, SAMP – adenylosuccinate, 5,10-methylene-THF – 5,10-methylenetetrahydrofolate, 10-formyl-THF – 10-formyltetrahy-
drofolate. Salvage: Ade – adenine, AdeRib – adenosine, Hyp – hypoxanthine, Gua – guanine, Xan – xanthine.
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