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Abstract

Both haplotype-based and locus-based methods have been proposed as the most powerful
methods to employ when fine mapping by association. Although haplotype-based methods utilize
more information, they may lose power as a result of overparameterization, given the large number
of haplotypes possible over even a few loci. Recently methods have been developed that cluster
haplotypes with similar structure in the hope that this reflects shared genealogical ancestry. The
aim is to reduce the number of parameters while retaining the genotype information relating to
disease susceptibility. We have compared several haplotype-based methods with locus-based
methods. We utilized 2 regions (D2 and D4) simulated to be in linkage disequilibrium and to be
associated with disease susceptibility, combining 5 replicates at a time to produce 4 datasets that
were analyzed. We found little difference in the performance of the haplotype-based methods and

the locus-based methods in this dataset.

Background

It is widely accepted that for the fine-scale mapping of dis-
ease susceptibility loci, association-based approaches are
more appropriate than linkage methods. Although
genome-wide association studies are often forecast, asso-
ciation studies currently focus predominantly on rela-
tively small candidate regions. Such regions are suggested
either by strong evidence from linkage studies or from
functional arguments and are typically densely geno-
typed. More information about a candidate region is
retained by incorporating phase in the analysis. However
even in the presence of substantial linkage disequilibrium
(LD) many haplotypes may exist and it has been sug-
gested that for this reason haplotype-based studies lack
power compared to 'locus-scoring' approaches [1]. Recent
approaches [2,3] have sought to circumvent this problem
by grouping similar haplotypes in the hope that such sim-
ilarity will reflect a shared ancestry. Thus the parameter
space can be reduced while, it is hoped, retaining that

phase information relevant to disease susceptibility.
Locus-based methods have been similarly refined to
incorporate information on the estimated genealogical
structure prior to formal testing [4]. The power of such
approaches has been examined by Clayton et al. [5].

Using the Genetic Analysis Workshop 14 (GAW14) data
we have compared the performances of several 'locus-
scoring' and 'haplotype-sharing' approaches for detecting
and localizing gene-trait association using case-control
studies. Such methods should be extendable to nuclear
family data but as yet appropriate methodology has not
been developed.

Methods

The first 3 methods we investigated are what we term
'locus-scoring' methods and do not utilize haplotype
information. The last three are 'haplotype-sharing' meth-
ods and analyze the data by clustering similar haplotypes
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to reduce the dimensionality of the data. The 6 methods
which we have implemented are denoted (i)-(vi) and are
described below.

(i), (ii), (iii) Logistic regression is widely employed for the
modelling of association between genes and binary traits
[1,6]. Here the continuous trait Y is regressed on the gen-
otypes at the diallelic loci M under consideration, some of
which may be etiological. The mt genotype is coded X,,
according to the number of rare alleles at the mt locus.
The model is

pY=1 \_ .,
log(m J— a+ "Z’l ﬁme. (1)

We implicitly assume multiplicative penetrance. We con-
sider models with M =1 (i), M = 6 (ii) and M = 6 with 5
pair-wise (adjacent loci) interactions (iii).

(iv) For sliding windows of M single-nucleotide polymor-
phisms (SNPs) Durrant et al. [3] suggest grouping similar
haplotypes using hierarchical clustering. This requires cal-
culation of a distance measure. For the case of no missing
data and denoting alleles as 0 or 1, the distance between
haplotypes i and j is measured as

M
1—[24"/1\4}, 2)
m=1

where p,, is the (observed) frequency of allele 1 at locus m
and

2 =(1—pm)I(Hl-m = HJ' =1)+me(Him = Hj' =0)'

where I(.) represents an indicator variable and H}"

denotes the allele at locus m of the haplotype. Durrant et
al. [3] recommend performing the hierarchical clustering
then fitting logistic regression models using haplotype
cluster membership as covariates. They search for the opti-
mal association across different numbers of clusters and
SNP window sizes and apply a Bonferroni correction.

(v), (vi) We have modified approach (iv) by considering
2 alternative measures of similarity. The similarity
between a pair of haplotypes is now measured without
restriction to a window of markers. The distance measure
used in (v) is based upon the length of the segment shared
identically by state (IBS) around a putative locus in the
studied region. Distance is measured simply as 1-L,/L,,
where L, is the number of consecutive alleles shared either
side of the putative locus, and L, is the total number of
markers in the region being studied. The putative locus is
assumed to be located between a pair of adjacent markers.
Each marker interval in the region is tested in turn as the

putative locus. This is approach (v). Method (vi) modifies
the distance measure used in (v) by incorporating allele
frequency weights in a similar manner to (2). If k markers
a, .., a+k-1 are shared IBS then the distance is measured as

a+k-1
-y (l—pm)I(Him=H;”=1)+pml(Him=H]'~”:0)}/L2. 3)

m=a

The clustering proceeds as in method (iv). Note that we do
not incorporate physical distances between markers into
our measures of haplotype distances. One approach for
measuring haplotype distances, incorporating marker dis-
tance information is described by Molitor et al. [7].

Other, more flexible, approaches to haplotype clustering
have been proposed but are computationally demanding
and have not been included here for that reason. Thomas
et al. [2], for example, propose assigning haplotypes to
clusters probabilistically, using the Potts model and using
reversible jump Markov chain Monte Carlo (MCMC)
methods to update the number of clusters and the loca-
tion of the variant. This is more flexible because it allows
partitions other than those formed by cutting at various
points on the dendogram/genealogical tree; it instead
attaches higher prior weight to more likely partitions of
haplotypes.

Results

We focused on susceptibility regions D2 and D4, simu-
lated to be in LD. To ensure sufficient power we created
four datasets of 500 cases (one affected individual from
each family) and 250 controls by combining 5 replicates
at a time from the Danacaa population. These datasets are
referred to as Study 1 to Study 4. We used 3 locus-scoring
methods. Firstly, we tested a single locus at a time, referred
to as method (i). (For region D2 SNPs 1-27 refer to
B03T3041 to C04R0282; and for D4 SNPs 1-38 refer to
B09T8321 to B09T8360). Then, using a window covering
6 markers, we applied two variants-the first, (ii), incorpo-
rated only single-locus main effects from each of the 6
markers, and the second, (iii), additionally included pair-
wise interactions between adjacent loci (11 parameters).

Haplotypes were reconstructed haplotypes from the avail-
able genotype data using maximum likelihood methods.
Haplotypes were then grouped by hierarchical clustering,
defining similarity either by the number of loci shared in
common within the window (iv), or the maximum con-
tinuous length shared in common without weighting for
allele frequency (v), and (inversely) weighting for allele
frequency (vi). We tested different numbers of partitions
and chose the optimal partition.

Results for each of the different methods for LD mapping

are plotted as -log,, p-values, for each of the studies, for
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Comparison of results for the 6 different analysis methods around the D2 region. For the single locus method (i)
the position of each locus is plotted. For the window-based methods ((ii)—(vi)) the position of the midpoint of each window is
plotted. The true location of the susceptibility haplotype is indicated by the pink bar. Study | (a), study 2 (b), study 3 (c) and

study 4 (d) are shown in the four plots.

regions D2 (Figure 1) and D4 (Figure 2). Regions harbor-
ing the disease susceptibility loci are indicated in the fig-
ures by a solid line labelled associated haplotype. Within
each region we found that all groups of replicates give very
similar results. In both regions there is very strong evi-
dence for association. For each of the studies within each
of the regions, all three haplotype methods ((iv), (v) and
(vi)) perform similarly. Comparing haplotype-sharing
with locus scoring methods, we find that haplotype-shar-
ing methods can provide stronger evidence of association

than testing a single locus at a time (i), (in particular, the
D4 region). However, if the locus-scoring method uses
several loci at once ((ii) and (iii)), there seems to be little
difference between locus-scoring and haplotype-sharing
methods, in terms of the sizes of the signals for associa-
tion. We consider that it is most interesting to compare
the different approaches without adjustment for multiple-
testing. It is clear, even without a correction for multiple
testing, that the haplotype-sharing methods do not out-
perform the best locus-scoring methods here. Any multi-
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Comparison of results for the 6 different analysis methods around the D4 region. For the single locus method (i)
the position of each locus is plotted. For the window-based methods ((ii)—(vi)) the position of the midpoint of each window is
plotted. The true location of the susceptibility haplotype is indicated by the pink bar. Study | (a), study 2 (b), study 3 (c) and

study 4 (d) are shown in the four plots.

ple-testing correction applied to these data would
reinforce this result, but may inadvertently give the
impression that the superior performance of the locus-
scoring method is due to the correction. Appropriate
approaches for adjusting for multiple testing that are less
conservative than the Bonferroni corrections used by Dur-
rant et al. [3], are Nyholt et al.'s procedure [8] and the per-
mutation step-down procedure described by Westfall et al.
[9]- We have also tested for genexgene interaction effects

using D2 and D4. Interactions were not detected by any of
the haplotype-sharing methods (at a significance level of
0.05), but were detected in two of the four studies using
the single-locus scoring method (i).

In order to better understand our results and, ultimately,
the factors that determine the relative performances of the
different methods, we investigated the structure of the LD
in the studied regions. It is not clear how LD across the
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two studied regions can be formally compared. The extent
of haplotype diversity can be informally judged by the
proportion of theoretically possible haplotypes that are
actually observed. We noticed that this proportion was
markedly higher in the D4 region than it was in the D2
region. If we infer from this that the LD structure is more
complex in D4 than D2, we might expect the haplotype
methods to perform slightly better in D4 than in D2. We
saw some evidence of this, but we recognize that the LD is
confounded with the disease model, which differs
between the two regions. Below we discuss possible
approaches for more formally assessing the performance
of LD mapping methods in relation to the LD structure of
regions being studied.

Conclusion

Although our results are not encouraging for researchers
developing haplotype-sharing methods, it is important to
be aware that such methods are dependent on haplotypes
with similar risks having a shared ancestry, and the data
considered here were not generated in such a way. Even in
the D2 region, where the disease susceptibility haplotypes
were chosen to be similar, a shared population history
was not explicitly modelled and so it is difficult to know
how well our results would generalize to real-world prob-
lems.

More thorough comparisons of the different strategies for
fine mapping are needed to understand which tests are
most appropriate and powerful in which situations. The
types of comparisons that we have in mind are not possi-
ble using only the GAW14 simulated datasets. One
approach would be to compare the performances of dif-
ferent methods for LD mapping when phenotypic data is
simulated on the basis of different LD structures, in terms
of conditional independence structures of markers in
genomic regions. We are currently considering the use of
log-linear models [10] for the simulation of LD structure.
Log-linear models express logarithms of expected cell
counts (in this case, cell counts are haplotype counts) in
terms of a linear predictor including main effects and
interaction terms (up to an order equal to the number of
loci). We vary the highest order of interaction included in
the model, as well as the strength of the interaction terms,
and study the performance of the various LD mapping
methods under different scenarios. The idea is not entirely
new. Clayton et al. [5] have recently examined the extent
to which phase is relevant to association, comparing hap-
lotype-based and locus-based tests more formally, with
the use of (linear) graphical models. They have consid-
ered some simple scenarios, such as under complete LD
(where the value of Lewontin's D', but not R?, is equal to
1 between every pair of markers). The use of graphs in
connection with log-linear models is described by
Edwards [10]. The choice of test may ultimately be best

guided by LD structure within a region, and it is hoped
that the types of studies which we have described can shed
some light on how to do this in practice.

Abbreviations
GAW14: Genetic Analysis Workshop 14

IBS: Identical by state

LD: Linkage disequilibrium

MCMC: Markov chain Monte Carlo
SNP: Single-nucleotide polymorphism
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