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Abstract
Most methods for testing association in the presence of linkage, using family-based studies, have
been developed for continuous traits. FBAT (family-based association tests) is one of few methods
appropriate for discrete outcomes. In this article we describe a new test of association in the
presence of linkage for binary traits. We use a gamma random effects model in which association
and linkage are modelled as fixed effects and random effects, respectively. We have compared the
gamma random effects model to an FBAT and a generalized estimating equation-based alternative,
using two regions in the Genetic Analysis Workshop 14 simulated data. One of these regions
contained haplotypes associated with disease, and the other did not.

Background
Testing association in a region with confirmed linkage
may increase the rate of false positives in family-based
studies. In a linked region one expects similarity between
related individuals. If unaccounted for, this similarity may
be mistaken for association. Different remedies have been
suggested, ranging from using a robust variance estimator
[1] for the general test statistic FBAT (family-based associ-
ation tests) [2] to a model-based approach in which the
linkage is modelled in the covariance structure [3] (VCM,
variance components model). The VCM has been devel-
oped for continuous traits, while FBAT can be used with
both binary and continuous traits. In this article we con-
centrate on methods for testing association in the pres-
ence of linkage, using binary traits. We compare the
program FBAT for binary traits to both the gamma ran-
dom effects (GRE) method and also a GEE (generalized
estimating equation) [4] approach. For the purpose of our
comparisons we have used the simulated Genetic Analysis
Workshop 14 (GAW14) data. We have compared the
three methods' ability to pick up a signal in a region with

association, as well as their ability to avoid signalling in a
region with no association.

Methods
We consider a random effects model for binary events,
which is similar in spirit to the multivariate survival
model in Zhong and Li [5], which models association and
linkage as fixed effects and random effects, respectively.
We use a result for random effects models for binary out-
comes, which has been described by Conaway [6]. It is
shown that for gamma distributed random effects, the
unconditional distribution of the outcome using a log-log
link can be written as a sum of easily calculated terms.
Analytical tractability is only achievable for a few other
combinations of random effects distributions and link
functions, such as the beta distribution with a log(-log)
link [6]. The random effects model in Zhong and Li [5]
assigns one random effect for each of the two alleles of the
father and one random effect for each of the two alleles of
the mother. The notion of inheritance vector is used to
describe the alleles for all family members jointly. The
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method presented here works for all sizes of sibships, and
may also be easily adapted to extended pedigrees.

GRE model

Let (Yi1, Yi2, ..., ) be the binary trait vector for family i

and let j denote offspring (j = 1, 2, ..., Ji). We allow for dif-

ferent family sizes Ji. We use θmj and θpj to denote the effect

of the transmitted alleles to offspring j, with mj = 1, 2 the

maternal alleles and pj = 3, 4 the paternal alleles, respec-

tively. Conditional on the transmitted alleles, we write the
probability of the trait for offspring j in family i as P(Yij =

1|θmj, θpj). We consider a model with a log(-log) link of

the form

log(-log(P(Yij = 1|θmj, θpj))) = log(θmj + θpj) + Xjβ,

or equivalently

The effects θ of the transmitted alleles act multiplicatively
on the offspring trait probability, and the effect of each
transmitted allele is multiplied by a term involving the

parameter vector β describing the fixed genetic effects. Fol-
lowing Li [7] and Li and Zhong [8] we assume that the
maternal and paternal alleles are independent and that
each allele contributes an effect to the trait which is ran-

dom and follows a gamma distribution with scale α/2 and

shape λ. The model has a tractable closed form for the
joint unconditional trait probabilities for the offsprings in

a sibship. Let Ψ denote all ordered subsets of 1, 2, ..., Ji, Ψ

= {{0}, {1}, {2}, {1, 2}, {3}, ..., {1, 2, ..., Ji}. Let 

denote the joint unconditional probability of Yij = 1 for all

j ∈ T, where T ∈ Ψ. Calculating the probability 

requires integrating over θ1, θ2, θ3 and θ4. There is a tracta-

ble solution [6]. It turns out that

The elements of vector ak, ajk, indicate whether allele k has
been transmitted to offspring j, j = 1, 2, ..., Ji. The proba-
bilities for all T ∈ Ψ can be placed in a vector π*. It has
been shown [6] that the unconditional probability for all
possible outcomes of Y can be written as π = Z-1π*.

The matrix Z indicates all subsets of T. In order to get the
probability of the observed Yij one needs only to pick the
corresponding row in π.. In Table 1, an example of T,
matrix Z and vector π for three sibs is given. The likeli-
hood for the observed data, for families i (i = 1, 2, ..., n), is

.

We used the statistical software R (version 1.9.1) [9] to
implement the likelihood and maximize it with respect to
the association parameter β.

We have so far not described how to deal with incom-
pletely observed inheritance vectors. In the context of test-
ing association in the presence of linkage, Zhong and Li
[5] suggest using GENEHUNTER to obtain the distribu-
tion for inheritance vectors at any arbitrary point along
the chromosome. In our single-point analysis we treat all
inheritance vectors compatible with the data as equally
likely and construct a weighted mean of πi. We return to
the choice of weights in the discussion.
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Table 1: Matrices for Ji = 3 offspring

T Z matrixb π subscriptsc

ø 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 0 1 0 1 0 0 1 1
2 1 1 0 0 1 1 0 0 1 0 1
1, 2 1 0 0 0 1 0 0 0 0 0 1
3 1 1 1 1 0 0 0 0 1 1 0
1, 3 1 0 0 0 0 0 0 0 0 1 0
2, 3 1 1 0 0 0 0 0 0 1 0 0
1, 2, 3 1 0 0 0 0 0 0 0 0 0 0

aAll ordered combinations of 1, 2, 3. Each row in T corresponds in choosing a set off offspring (j = 1, 2, 3) and setting their trait.

Yij = 1.  is the probability of offspring set T being affected.
bThe matrix for which π* = Zπ. The inverse of Z is used to calculate π, given π*.
cThe subscripts for matrix π. For example, row two corresponds to the outcome Yi1 = 0, Yi1 = 1, and Yi3 = 1.

πT
*
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FBAT and GEE
We compare the GRE with FBAT (version 1.5.1) [2] and a
generalized estimating equation (GEE)-based alternative
[4]. For FBAT we assume a linear allele-dose model, and
for the GEE-based alternative we assume a linear allele-
dose on the logit scale and an exchangeable covariance
structure.

We used FBAT option -o to find the optimal weight. We
then applied the optimal weight to the phenotype score
and used FBAT option -e to test our data. The function gee
(in package gee) in R (version 1.9.1) was used for the GEE
analysis. The gee package can be found at the R web page
[9].

GAW14 simulated data
For details concerning how the simulation was performed
see the GAW14 Data Description [10].

All analyses were performed with knowledge of the data
simulation process. We chose to analyze the data with
respect to trait A. Trait A is known to be associated with
haplotypes in the Region D3, while markers in the D2
region are known to not be associated with trait A. For the
purpose of our comparison we therefore chose to "pur-
chase" markers in the D3 region (B05T4135–B05T4142)
as well as markers from the D2 region (B03T3048–
B03T3067). Our aim was to use regions D2 and D3 to
gain some insight into the performance of the different
methods. More specifically, we were not expecting a signal
in region D2, but were hoping for one in region D3.

The Aipotu population (one of four simulated popula-
tions) only consists of nuclear families, although these are
of different sizes. For simplicity, we chose to concentrate
on the Aipotu population and to only include families of
maximum size six (i.e., two parents and at most four off-
spring).

We merged 10 (out of 100) replicates in order to get a
sample with reasonable power. This provided us with a
total of 481 independent nuclear families. There was no
missing data and we did not simulate any.

We selected the markers described above and analyzed
each marker separately in a set of single-point analyses.
The method we have described can, however, be extended
to multiple markers and a multipoint analysis.

Results
We analyzed the ten merged replicates in regions D2 and
D3 and we were able to identify interesting markers in
both regions. In region D2, all three methods (FBAT, GEE
and GRE) indicated marker B03T3056 had borderline sig-
nificance with a p-value of around 0.01 (Figure 1). The
peak was slightly less using FBAT. In Region D3, which
harbored a haplotype-based association in the simulated
data, we were able to detect association with marker
B05T4136. The detected association had a slightly smaller
p-value when GEE and GRE (p-value ~0.0001) were used,
compared with the FBAT procedure (Figure 2).

Conclusion
In the simulated data, region D2 harbored no locus asso-
ciated with trait A. All three methods (FBAT, GEE, and
GEE) gave a signal for association with marker B03T3056
with a p-value around 0.01. However, taking the multiple
testing into account, this p-value does not reach statistical
significance. The results from all markers in the region are
showed in Figure 1. Across the markers, no one method
produced consistently higher or lower p-values than any
other method.

In region D3, association with trait A was simulated at the
haplotype level. We still chose to perform single-point
analyses with each marker in turn. The GEE and the GRE
turn out to be slightly better in detecting significant mark-
ers than FBAT.

The GRE model presented here seems to work well, com-
pared to both GEE and FBAT. It would be useful to per-
form simulation studies to assess validity and power of
the three procedures under different genetic models. The
GRE model requires more computational time, stemming
from the fact that in spite of the closed form in (3) it is
time consuming to evaluate and to maximize the likeli-
hood.

A problem with the GRE model is how to handle the miss-
ing information on transmission. In our single-point algo-
rithm we propose using a weighted sum (with equal
weights) over all compatible inheritance vectors, given
parental and offspring genotypes. Following Zhong and Li
[5] we compute the distribution over inheritance vectors

Trait A region D2, -log10 of the p-valuesFigure 1
Trait A region D2, -log10 of the p-values.
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without attention to phenotype. However, given that link-
age is assumed, the probabilities of transmission are not
invariant to offspring phenotypes. It would be useful to
investigate the impact of using our suboptimal weights on
the GAW data, and more generally in comparing the valid-
ity and power of the different approaches using simula-
tions under different genetic models.

Abbreviations
FBAT: Family based association tests

GAW14: Genetic Analysis Workshop 14

GEE: Generalized estimating equation

GRE: Gammar random effects

VCM: Variance components model
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Trait A region D3, -log10 of the p-valuesFigure 2
Trait A region D3, -log10 of the p-values.
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