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Abstract

Background: Defining measures of linkage disequilibrium (LD) that have good small sample
properties and are applicable to multiallelic markers poses some challenges. The potential of
volume measures in this context has been noted before, but their use has been hampered by

computational challenges.

Results: We design a sequential importance sampling algorithm to evaluate volume measures on
I x | tables. The algorithm is implemented in a C routine as a complement to exhaustive
enumeration. We make the C code available as open source. We achieve fast and accurate
evaluation of volume measures in two dimensional tables.

Conclusion: Applying our code to simulated and real datasets reinforces the belief that volume
measures are a very useful tool for LD evaluation: they are not inflated in small samples, their
definition encompasses multiallelic markers, and they can be computed with appreciable speed.

Background

Linkage disequilibrium (LD) is the term used in genetics
to indicate association between the qualitative random
variables corresponding to alleles at different polymor-
phic sites. Measuring the levels of linkage disequilibrium
is important for gene mapping and increasing our under-
standing of genome architecture. The current literature
documents agreement only on the definition of measures
of LD for biallelic markers. Consider two markers, with
alleles A, a and B, b. Their haplotype distribution can be
synthetically described as:

A p—x p
T3 g—x|1-p—q+x|1-p (1)
q I-q 1

Fixing the marginals p and g, the distribution 7 is com-
pletely identified by the probability x of the haplotype (A,
B). The discrepancy of a generic r from the distribution
under linkage equilibrium, can be quantified simply by D
= (x - pq). Measures of LD are defined as the standardized

values of D. Two common such measures are

R2 = (x—pq)*
pa(l—=p)(1-q)
min(p(1-4g), q4(1 - p)) when the numerator is positive, and
min(pq, (1-p) (1 - q)) otherwise. The definition of R2 can
be understood by considering the alleles as realizations of
quantitative random variables (with values 0 and 1),
among which we calculate a correlation coefficient. The
measure R? ranges between 0 and 1, and it is equal to 1
only when two entries of the table in (1) are equal to 0.

and D' = M, where Dmax is
Dmax
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The measure D' ranges, by definition, between -1 and 1,
and its absolute value is equal to 1 whenever one entry of
the table in (1) is equal to 0. There is a large literature dis-
cussing the choice of these measures (see, for example,
[1]). Typically, R2is preferred when the focus is on the pre-
dictability of one polymorphism given the other (and
hence it is often used in power studies for association
designs). D', instead, is the measure of choice to assess
recombination patterns (haplotypes blocks have often
been defined on the basis of D'). Despite their effective-
ness, these measures suffer from two limitations: (a) they
are not easily generalizable to multiallelic markers; (b)
they are defined on the population haplotype distribu-
tion, and their performance can be rather unsatisfactory
when applied to the empirical distribution derived from a
finite sample.

With regard to point (a), it is clear that the definitions of
R2and D' are based on properties of the joint distribution
of two biallelic markers and their generalization is not
immediate. A partial solution is to evaluate R2or D' on all
2 x 2 sub-tables obtainable from the joint distribution of
two multiallelic markers and then summarize these
results in one value. However, this measure is not easily
interpretable and does not have good small sample prop-
erties (see the discussion in the following paragraphs).

Finally, let us remark how the problem of defining meas-
ures of disequilibrium generalizable to I x ] tables remains
actual, even if the current high density genotyping efforts
are focused on biallelic markers as SNPs. Often we are
interested in studying the relation between SNPs haplo-
types at different loci: these can be considered as qualita-
tive variables with multiple levels, just as multiallelic
markers.

With regard to point (b), R? and D' are defined and stud-
ied assuming that the population haplotype distribution
is known [2]. In practice, this is rarely (if ever) the case: the
sample haplotype frequencies provide an estimate of the
population frequencies, and these estimates are used, fol-
lowing the plug-in principle, to obtain estimates of R2and
D'. This approach encounters some difficulties in the case
of D'. If a SNP has a low minor allele frequency, it is quite
possible that the rare haplotype that carries it, is not
observed in a small sample. This leads to a D' being equal
to 1, irrespective of the level of linkage disequilibrium.
Detailed analysis of this phenomena is available in [3]
and [4]. To avoid spurious results, researchers often calcu-
late empirical confidence intervals for D' using resam-
pling schemes (see, for example, [5]). While this certainly
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takes care of the variability of D', it does not result in a
"correct” measure of linkage disequilibrium and it clearly
comes with a substantial computational cost. Moreover,
the fact that the values of D' are inflated in the presence of
rare alleles makes it difficult to obtain a multiallelic ver-
sion of D' based on pooling statistics: as mentioned
above, it is quite likely for a particular haplotype of multi-
allelic markers to have very low population frequency,
resulting in zero observed counts. Volume measures [6-8]
both take effectively into account the variability due to
sample size and are immediately applicable to multiallelic
markers. Let us first recall the main idea of volume meas-
ures. For distributions like (1), volume measures can be
described as a different strategy for normalizing D with
reference to the class C of distributions with the same
marginals p and ¢. Rather than dividing the observed D by
its maximum value over distributions in C, one evaluates
the proportion of distributions in C that have a smaller
difference from the distribution under independence than
D. In general, we can consider any quantification of the
discrepancy between a generic distribution 7 and the dis-
tribution under independence. When x is known, a vol-
ume measure is defined as the probability that a
distribution selected uniformly among all possible ones
with the same margins as 7 results in a lower discrepancy
from equilibrium. If, however, the population haplotype
distribution 7 is unknown, and a sample of size n is avail-
able, volume measures are defined directly on the contin-
gency table summarizing the data, avoiding spurious
effects due to the sample size. To clarify this point, let us
consider again the case of two biallelic markers. If the
population distribution (1) is known, we define Dvol, the
volume measure equivalent to D', as the ratio of two vol-
umes V,/V,. V; is the volume of the space of all distribu-
tions with marginals equal to p and ¢, and Pr(0, 0) =z such
that (x - pq) (z- pq) =0 and |x - pq| > |z - pq|. V, is the vol-
ume of the space of distributions that satisfy all but the
last one of the constraints for V. A simple geometric argu-
ment shows that Dwol = D'. (See Additional file 1 for a
graphical illustration). Suppose now, instead, that we do
not know the population distribution (1), but we obtain
a sample of size n from it, leading to the contingency table

B b
Alfii|h2|n
F= ,
alfn|fn|n
Cl C2 n
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with row sums equal to r;, 7, and column sums ¢;, ¢,. Con-
sider now the set Q3 of tables T, with row and column sums
r=(ry, 1,)and ¢ = (¢;, ¢,). We define Dvol(F) as the fraction
of contingency tables T in Q that lead to a value |t;; - ¢;1,/
n| smaller than [f;; - ¢;7;/n| among those for which (¢, -

ricy/n) (fi1- ric1/n) > 0.

This Dvol value will be different from D', calculated by
treating f/n as population frequencies. For example, the
fact that one table entry is equal to zero will not be suffi-
cient to guarantee Dvol = 1. To make this point clearer,
however, it is appropriate to consider a more general and
precise definition. In the remainder of the paper, we will
only concern ourselves with volume measures defined on
haplotype sample frequencies.

Implementation
Consider the table of observed haplotypes counts F:

B, |B, || B
A | ha || Ay |n
F=: : A IR R
Al fn |\ iz | | fy |

Cl C2 C] n

where B, represent alleles at marker B and A, alleles at
marker A. Let Q) be the set of all tables T with row and col-
umn sums equal to 7, ..., r;and ¢y, ..., ¢, respectively.
Given a criterion to quantify the discrepancy between F
and the table expected under independence (linkage equi-
librium), a volume measure is defined as the proportion
of tables T € Q that lead to a smaller discrepancy value. If
the recorded discrepancy is the biggest possible, then the
volume measure will have value close to 1 (the exact value
1 will be attained as the sample size increases to «). Con-
versely, if all other tables lead to larger discrepancies, the
volume measure will be zero.

One may notice that this definition of volume measure is
similar to one minus the p-value for a test of independ-
ence. Indeed, volume measures are related to the "volume
test," an original notion introduced by Hotelling [8], and
the effect of sample size on the measures is very much the
same as its effect on a p-value. The key difference between
volume measures and variants of the commonly used
Fisher's exact test for independence is that in the case of
volume measures, the relevant proportion of tables is
evaluated assuming that all tables with the same margins
are equally probable, while in the case of Fisher's exact test
tables are generated under the hypothesis of independ-
ence. Because of this, volume measures and Fisher's exact
tests answer two very different questions: the first com-
pares the observed table to all tables with the same mar-
gins, while the second one assesses the likelihood of the
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observed table under independence. A thorough discus-
sion of the different interpretations and uses of these two
approaches can be found in [7]. In order to concretely
evaluate volume measures, one has to choose a criterion
for discrepancy and be able to explore the space of tables
with fixed margins to evaluate the required proportions.
We start illustrating the first point by focusing on three
specific measures: a) Dvol, which is defined only on 2 x 2
tables and coincides with D' when the population haplo-
type distribution is known; b) Mwol, which is a generaliza-
tion of Dwol to multiallelic markers; ¢) Hwvol, which is
based on expected homozygosity and captures informa-
tion that is close to the one described by R?, although it
can be defined on tables with any number of entries.

WhenI=]=2letQ,={T:t, =1, t,;=c, (t;;-116,/n)(f1s
- 1,¢,/n) > 0}. We then define Dvol as

1
DUOZ(F) = m Z 1{M(T)<M(F)}'
11TeQ,

2
ti —1ici [n
where M(T) = 2”%
it

For general I x J tables, recall that Q) denotes the set of all
contingency tables with the same row and column sums
as F: Q= {T:,=r, t,;=¢}. Then, we define

1
Muol(F) = o 2 Lm(ryem(r)y-
TeQ

The definition above should clarify how Muvol is closely
related to Dvol, and the difference between the two is that
Muwol does not consider the "sign" of the association, a
notion that is undefined in generic I x J tables.

Letting H(T) = Zi,jti? - Zirizzjc]z /n%, we can define

the measure Hvol:

2 e MHHER D20}

X reMHH(ER0)

We have mentioned how Hwol captures information
closely related to that of R2. A careful discussion of the
interpretation of LD measures based on homozygosity
can be found in [9]. Here it suffices to recall that joint
homozygosity relates to a measure of agreement between
the two markers and excess in homozygosity indicates
that knowledge of the allele value at one marker increases
predictive accuracy of the allele values at the other marker.
The results of a recent empirical study conducted using
homozygosity-based measures are documented in [10].

Huwol(F) = sign(H(F))
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Note that all the above definitions use the strict inequality
sign. The choice of this over < is irrelevant for large n, but
it makes a difference in the case of small n, where strict
inequality allows us to better discriminate against appar-
ent association due to small samples.

To evaluate these measures, we need to explore the space
of all tables with the same margins. In the case of [ =] = 2,
this can be done by simple enumeration. For multiallelic
tables enumeration is impractical. An obvious alternative
is to restrict one's attention to a sample of possible tables.
However, obtaining a sample of tables according to the
uniform distribution among all tables with fixed margin
(as opposed to according to the Fisher-Yates distribution)
is not easy. It is indeed the computational difficulty asso-
ciated with volume tests [7] and measures [6] that has
substantially hindered their wide-spread application. Pre-
vious solutions have been proposed with Markov chain
Monte Carlo algorithms in [11], as well as rejection sam-
pling (see [12] for a review). The main contribution of this
paper is that we have successfully implemented a sequen-
tial importance sampling (SIS) algorithm, originally
introduced in [12], to evaluate volume measures accu-
rately and in a timely manner. This implementation
makes volume measures applicable to high throughput
analysis.

To enumerate all tables in Q, (I = J = 2), it is useful to
notice that t;, must satisfy

max(0, 1, + ¢, - 1) £t <min(ry, ¢;),  (2)

and after ¢, is chosen, we can fill in other entries of the 2
x 2 table by the marginal sum constraints. Therefore we
can enumerate tables in Q, by assigning all possible inte-
gers satisfying (2) to t;;, and keeping those tables such
that (¢, - r,¢;/n) has the same sign as in F.

We now consider the SIS procedure for I x J tables. Let
u(T) be the uniform distribution over all tables in Q. Then
Muwol(F) can be treated as the expectation of the indicator
function 1, (ry<u(ryy with respect to u(T). Itis hard to sam-
ple directly from u(T). The idea of importance sampling is
to sample tables from another proposal distribution g(T),
and then estimate Mvol(F) by

L U(TI/) L 1
1 —= 1 —
2 MM MY 7 ) 2 MMM ey

L H(Tf) zL 1
= g(Ty) = g(Ty)
where T}, ..., T; are L independent and identically distrib-

uted (i.i.d.) samples from g(T). SIS generates a table cell
by cell by decomposing the proposal distribution g(T) as
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8(T)=g(t11)8(ta11t11) - 8(tyltrrs jv - ta1)-

Notice that the support for the first entry ¢, is max(0, r; +
¢, - n) £t;; £min(ry, ¢;). We sample an integer uniformly
from the above range for in, i.e., g(t,;) is the uniform dis-
tribution on the support of ¢, ;.

Recursively, suppose we have chosen t;; = tj; fori=1, ...,

k- 1. Then the support for ¢, Iis

k-1« I . k-1«
max(O,(t.l —Zi:I til)_zi:kﬂri ) <ty < mm(rk,c1 _zizl th )
. We sample an integer uniformly from the above range
for t,;. The procedure is continued until all the entries in

the first column have been considered. Then we update
the row sums by subtracting the realization of the first col-
umn from the original row sum, and sample the second
column of the table in the same way.

The computing time and precision of the algorithm are
different for 2 x 2 or larger size tables. For 2 x 2 tables, our
algorithm simply lists all possible tables with fixed mar-
gins. CPU time is then proportional to the total number
of tables: usually their enumeration takes a fraction of a
second. The algorithm is exact and we do not have
approximation errors in the output. For the general case of
I x ] tables, the CPU time depends on the number of gen-
erated uniform random variables: I x J x L for L Monte
Carlo samples. It is important to keep in mind that the
output of the algorithm is not exact, but an estimate of the
true volumes ratio (so different runs will give slightly dif-
ferent results). The precision of the final estimate depends
on the number L of Monte Carlo samples and how well
the proposal distribution in the SIS algorithm approxi-
mates the target distribution for a given table. Indeed, the
value of the parameter L has to be specified by the user. It
is advisable to conduct multiple trial runs to estimate the
precision of the estimate and select a value of L that
assures an acceptable precision.

Results
We now illustrate the performance of our algorithm and
the relevance of volume measures with three examples.

The effect of small sample size on D' and Dvol

It has been noted that D' tends to be biased upwards in
small samples [3,4]. We conducted a simulation study to
illustrate how this problem is less severe when using Dvol.
We generated 100 two-markers haplotype tables with 200
observations, each under the hypothesis of linkage equi-
librium between the markers. The distribution of the fre-
quency of the minor alleles of the simulated SNPs
matched a random sample of markers on chromosome 22
that were used in [13]. In a situation where the true pop-
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ulation value of D' is equal to zero, any sample based esti-
mator is going to be upward biased, since 0 is the
minimum value that D' can achieve. The point of our
investigation was to compare the severity of this bias. Fig-
ure 1 illustrates the results: D' is always larger than Dwol,
and it is occasionally equal to 1; Dol is actually equal to
zero in the majority of cases.

Patterns of LD between multiallelic markers

Our next example focuses on the application of volume
measures to multiallelic markers. The data consists of 157
phase-known non-transmitted chromosomes 2 of parents
of BP-I persons from the Central Valley of Costa Rica. The
chromosomes were typed with 85 markers in the course of
the study by [14]. Using volume measures Mvol and Hvol
we were able to evaluate the level of disequilibrium
between all the possible marker pairs in this sample. Fig-
ure 2 gives a graphical representation of the values of Mol
and Hvol in this data set as well as the negative of log10 p-
value for a Fisher exact test of independence. This last one
is reported for comparison purposes, as it is often used as

(a)
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a measure of dependence, despite the fact that it is rather
inappropriate with this goal [7]. Volume measures make
it unnecessary to resort to this unsatisfactory surrogate
when comparing multiallelic markers. To analyze these
tables, we used L = 1, 000, 000 Monte Carlo sample. The
average time to evaluate the measures on one table was 48
seconds on a Dell desktop with 2.19 GHz CPU and 384
MB ram.

Consistency of LD patterns on chr 22 in 12 populations

We have used the measures D', |R|, Dvol, Mol and Hwvol to
assess the distribution and extent of linkage disequilib-
rium on chromosome 22 in samples of 200 persons from
each of eleven population isolates and in an out-bred
Caucasian sample, using 2486 SNP markers spaced at a
density of approximately one marker every 13.8 kb.
[10,13]. To conduct a complete analysis of the linkage dis-
equilibrium patterns in the 12 population samples, we
restricted our attention to the SNPs with sample minor
allele frequencies larger than 0.1. We did so for uniformity
with previous studies (for example, [15]) and to make

(b)

1.0
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0.0
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Figure |

I I
0.8 1.0

Comparison of D' and Dvol. Comparison of D' and Dvol on tables generated under linkage equilibrium, (a) Scatterplot of

the values of D' and Dvol. (b) Boxplot of the values of D".
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Figure 2

Measuring LD between multiallelic markers. Measure of disequilibrium between microsatellites. Each square in this sym-
metric picture corresponds to a marker pair (the same markers are reported on both rows and columns). The three panels
report, from left to right, Mvol, Hvol, and the negative of the logl0 of the p-value for a Fisher's exact test of independence.
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Figure 3

LD pattern on Chr 22 in a Costa Rican population. Linkage disequilibrium of chromosome 22 in Costa Rica according to
five different measures. D', R, Dvol, Mvol and Hvol are represented, respectively, with a solid yellow, a broken green, a solid
blue, a broken magenta, and a solid red line. The average value of the measures, between markers that are within a 1.7 Mb win-
dow, is plotted against the middle point of the window, with the x axis representing the length of chromosome 22.
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sure that our results were not strongly influenced by the
rare markers with exceptionally high homozygosity. This
leads us to work with 1920 SNPs. Phase was unknown
and the two markers haplotypes counts necessary to eval-
uate pair-wise disequilibrium measures were recon-
structed using EM [16]. Five measures, D', Dvol, Mvol, R?
and Hvol were calculated for each of the 1,842,240 pairs
of SNPs. The results were summarized by averaging the
measured disequilibrium within windows of 1.7 Mb slid-
ing along chromosome 22. Figure 3 reports the values of
the five measures in the Costa Rica population. The
observed relation between the measures is consistent
across populations. In particular, it can be noted that the
average values of Dvol are lower than the ones of D', while
clearly exhibiting very similar patterns. This testifies that
even if the sample size is moderately large (200 individu-
als) and only markers with minor allele frequency >0.1
are considered, D' is inflated, making a strong case for the
use of Dvol over D'. The values of Mvol are very close to the
one of Dvol, even if Mol are often smaller as expected
given the differences in definitions. As far as Hvol, one can
notice that its values are closer to those of R? than to those
of any other measure. Finally, let us observe that the com-
putational time required for evaluating all the volume
measures above amounts to an average of 5 minutes for
each population on a Dell desktop with 2.19 GHz CPU
and 384 MB ram (this is after pairwise haplotypes counts
were reconstructed, which required approximately the
same amount of time). The substantial difference in com-
putational time with the results reported in the previous
subsection is due to the fact that here we are dealing with
2 x 2 tables.

Conclusion

We describe a novel implementation of a sequential
importance sampling algorithm to evaluate volume meas-
ures of linkage disequilibrium. We focus on three meas-
ures. Dvol corresponds conceptually to D', but we show
that Dvol is not inflated for small sample size. Mvol repre-
sents a generalization of Dvol that can be evaluated on
generic I x ] tables. Hvol is based on expected homozygos-
ity and measures agreement between markers, so that it
captures information similar to that of R2. However,
unlike R2, Hvol can be evaluated on generic I x ] tables.

Availability and requirements

The source code for evaluating the volume measures
described in this paper is available at the following url:
http://www.stat.uiuc.edu/~yuguo/software/volume/.

It is a C program that can be compiled with gcc and
requires the libraries math.h, stdlib.h, malloc.h, time.h,
and stdio.h.
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Additional file 1

Measures of disequilibrium between biallelic markers. This .pdf file
contains a detailed description of measures of disequilibrium for popula-
tion haplotype distributions for biallelic markers. We recall the definition
of D" and R2 as well of Dvol and Mvol. We graphically illustrate the dif-
ference in normalization procedure between all of these measures. This
makes it easy to see the identity of D' and Dvol when the population hap-
lotype frequency is known.
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