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Abstract
Background: In human case-control association studies, one of the chi-square tests typically
carried out is based on a 2 × 3 table of genotypes (homogeneity of three genotype frequencies in
case and control individuals). We formulate the two degrees of freedom associated with a given
genotype distribution in terms of two biologically relevant parameters, (1) the probability F that an
individual's two alleles are identical by descent (IBD) and (2) the frequency p of one of the alleles.

Results: Imposing the restriction, F ≥ 0, makes some of the genotype frequencies invalid thereby
reducing noise. We propose a new statistical association test, the FP test, by focusing on allele
frequency differences between case and control individuals while allowing for suitable IBD
probabilities. Power calculations show that (1) the practice of generally carrying out two
association tests (allele and genotype test) has an increased type I error and (2) our test is more
powerful than conventional genotype and allele tests under recessive trait inheritance, and at least
as powerful as these conventional tests under dominant inheritance.

Conclusion: For dominant and recessive modes of inheritance, any apparent power gain by an
allele test when carried out in conjunction with a genotype test tends to be purchased entirely by
an increased rate of false positive results due to omission of a multiple testing correction. As an
alternative to these two standard association tests, our FP test represents a convenient and more
powerful alternative.

Background
In their well-known paper on homozygosity mapping
published 20 years ago, Lander and Botstein [1] showed
that fewer than a dozen unrelated inbred children should
suffice to map a recessive trait given a dense map of
genetic markers. They recommended that one should
search for extended regions of homozygosity shared by a
set of inbred individuals. The power of this approach was
demonstrated by the mapping of a gene for a rare recessive

trait in a genome-wide investigation of only three dis-
tantly related patients [2]: On chromosome 18, five of the
six disease chromosomes shared a region of 19 cM in
length.

Even individuals seemingly collected at random from the
population tend to exhibit extended regions of allele shar-
ing [3], which may be interpreted as the consequence of
the mating of (distantly) related individuals. Such
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homozygosity represents autozygosity, that is, the sharing
of two alleles that are copies of a single ancestral allele [3].

In recent years, researchers have shown renewed interest
in extended segments of homozygosity and have generally
done so by focusing on segments of specific lengths [4-7].
Our purpose here is to focus on individual SNPs rather
than on genomic segments of arbitrary lengths, and to
allow for biologically reasonable values of IBD while test-
ing for allele frequency differences. The reason for this is
not so much biological plausibility but rather statistical
power: By disregarding parameter values that are unlikely
to be of importance, we reduce the effect of statistical
noise and thereby gain accuracy and power. It will be seen
below that our approach is somewhat analogous to the
"possible triangle" method [8] in affected sib-pair linkage
analysis and is expected to lead to similar increases in
power.

Results
Statistical model for SNP genotype frequencies
Consider a SNP marker with two alleles, A and B, with p =
P(A). Let F denote the probability that the two alleles in
an individual are identical by descent (IBD) or
autozygous (implies homozygous) or, equivalently, F =
proportion of individuals who are IBD at that marker,
where F is the inbreeding coefficient. Given autozygosity
(F = 1), the frequencies of genotypes AA, AB, and BB are
given by p, 0, and 1 - p, respectively, and given allozygosity
(F = 0) we assume the corresponding frequencies to be p2,
2p(1 - p), and (1 - p)2 (Hardy-Weinberg equilibrium,
HWE). Then the genotype probabilities may be formu-
lated as given in Table 1.

As there are equal numbers (i.e., 2) of free (independent)
genotype classes and parameters, finding maximum like-
lihood estimates (MLEs) amounts to simply equating gen-
otype frequencies with their probabilities of occurrence
(Table 1). Solving the expressions for q1 and q2 in Table 1
for F and p leads to the following solutions:

The MLEs of q1, q2, and q3 are simply the proportions of
individuals with given genotypes. Because of the invari-
ance property of MLEs, the functions p and F of q1 and q2
(equation 1) are also MLEs. The inbreeding coefficient F
may be viewed as an indicator of how far the genotype fre-
quencies deviate from HWE. If q2 is smaller than expected
under HWE then F > 0.

The inbreeding coefficient F in human populations is
known to be small and positive. In North America, it is
generally much smaller than 0.01 [9] but in isolated pop-
ulations may reach value of around 0.10 [10]. However,
in samples of individuals affected with a heritable trait,
the inbreeding coefficient may be even higher. For exam-
ple, for the SNP most strongly associated with age-related
macular degeneration (AMD) [11], rs380390, application
of equations (1) leads to an estimated inbreeding coeffi-
cient of 0.13 in case individuals. Such increases occur
because of enrichment of a disease genotype due to ascer-
tainment of case individuals, and/or they may be a conse-
quence of the fact that individuals affected with a
heritable trait may be distantly related. Conversely, the
estimated (unrestricted) F value for rs380390 was -0.07 in
control individuals.

So far, the expressions for the genotype frequencies in
Table 1 simply amount to a specific formulation of the
two df's associated with the three frequencies. Several
other such parametrizations have previously been pro-
posed [12]. The current transformation (1) of genotype
frequencies does not by itself yield any new insights.
However, in the next section we impose restrictions on the
range of parameter values, which will result in a new test.

Statistical test

We want to test the null hypothesis H0 of no association

versus the alternative hypothesis H1 of association. Under

H0, allele frequencies and F values are the same in case

and control individuals while under H1, allele frequencies

may be different between cases and controls and so may
be F values. Thus, this parametrization allows testing for
allele frequency differences but does so by working with
genotype frequencies. To make our test as powerful as
possible, we restrict estimates of inbreeding coefficients to
non-negative values as these are expected to occur prefer-
entially under H1. As outlined in detail in the Methods

section, we formulate this test as a likelihood ratio (LR)
test, the FP test. The log likelihood for case individuals is

given by  where n1, n2,

and n3 are the respective numbers of case individuals with

genotypes AA, AB, and BB, the qi are functions of F and p
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Table 1: Genotype parametrization

Genotype Frequency

AA q1 = Fp + (1 - F)p2

AB q2 = 2p(1 - p)(1 - F)
BB q3 = F(1 - p) + (1 - F)(1 - p)2

Sum 1

Parametrization of genotype frequencies (F = probability of 
autozygosity, p = frequency of A allele).
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(Table 1), pa and Fa are the parameter values in case indi-

viduals. For control individuals, the log likelihood log
[Lb(pb, Fb)] is obtained in an analogous manner. The test

statistic is T = 2{log [La(pa, Fa)] + log [Lb(pb, Fb)] - log [Lc(pc,

Fc)]}, where the subscript c refers to the combined data

(case and control individual), that is, common parameter
values. For unrestricted parameter values, the test statistic
T has an asymptotic chi-square distribution under H0.

However, because of the conditions imposed (F ≥ 0), T
does not follow a chi-square distribution. Therefore, as
outlined in the Methods section, we compute associated
significance levels numerically by computer-based permu-
tation testing. Another reason for applying permutation
tests is as follows. This single test may replace the conven-
tional two association tests (allele and genotype test) in
genome-wide association studies, where 100,000s of
markers are used. Test results for these markers are not
independent, which is optimally taken into account in
permutation tests but would be difficult to capture analyt-
ically.

Power calculations
To evaluate the performance of our new test with existing
tests, we carry out power calculations under a recessive
and a dominant model of disease inheritance, where we
assume a functional SNP fully associated with the disease
variant. Model parameters (penetrances and disease allele
frequencies) are calibrated to predict a trait prevalence of
5% for each model. The proportion of affected individuals
in the population whose disease is due to the given gene
is fixed at 10%. The "strength" of a model is measured by
the penetrance ratio, γ, where γ = 1 corresponds to the null
hypothesis.

We compare three tests, our FP test, the chi-square geno-
type test based on a 2 × 3 table of SNP genotypes versus
case and control individuals, and the chi-square allele test
based on a 2 × 2 table of SNP alleles. Power calculations
are carried out for a type I error (rate of false positive
results) of 0.05 and assumed numbers of observations of
100 case and 100 control individuals. In practice, most
researchers carry out both, the allele and the genotype test,
and emphasize whichever result has a smaller p-value
without correcting for the effects of multiple testing inher-
ent in this procedure. Thus, we capture the statistical prop-
erties of this practice by formulating a test statistic,
MaxGA, which is the smaller of the two p-values associ-
ated with the genotype and allele tests. Under our model
assumptions, if a result is declared significant whenever
either the allele test or genotype test is significant, this
practice has a type I error of 0.076 for recessive traits and
0.059 for dominant traits. In our power calculations, of

course, a type I error of 0.05 is imposed for the MaxGA test
statistic, that is, a critical limit is chosen such that the
"power" of the MaxGA statistic is equal to 0.05 under H0.

Figure 1 shows power curves for recessive disease models.
Clearly, our FP test has better power than any of the other
association tests. For dominant traits (Figure 2), if
researchers carried out only the allele test, that test has
higher power than the FP and genotype tests. As both the
allele and genotype tests are usually carried out at the
same time, the proper comparison is between the MaxGA
statistic and our FP test, where the latter exhibits a slight
advantage over the former. Thus, it is fair to say that the FP
test is more powerful than conventional test statistics
(allele and genotype tests) under our recessive and domi-
nant inheritance models. We have implemented it in a
computer program, FPtest, which is freely available on our
website [13].

Under both dominant and recessive models, the MaxGA
statistic has essentially the same power as the genotype
test. Thus, any superiority of the allele test, if carried out at
the same time as the genotype test, is wiped out by the
multiple testing correction. As the usual practice is to do
both, an allele and a genotype test, the potentially higher
power of the allele test is fallacious as it is entirely pur-
chased by an increased rate of false positive results.

We also considered Risch's genotype relative risk model
[14], in which the penetrances for the three disease geno-
types are given by f, γf, and γ2f so that this model may be
viewed as being intermediate between dominant and
recessive inheritance. For our assumptions on disease
inheritance, this model always predicts unrestricted
parameter values of F = 0 in case and slightly negative F
values in control individuals, where the latter would be
estimated to be zero under our restrictions. Thus, the FP
test is expected to essentially default to the genotype test
under Risch's penetrance structure but this is not further
pursued here.

Application to published data
We applied our FP test to published data on age-related
macular degeneration (AMD) [11,15] and Parkinson dis-
ease (PD) [16,17]. In these genome-wide studies, the
number of SNPs ranged from 100,000 (AMD) to 393,000
(PD). The empirical (experiment-wise) significance level
associated with each association test was estimated in
5,000 randomization samples (labels "case" and "con-
trol" randomly permuted) as the proportion of such sam-
ples exhibiting a test statistic at least as large as the
observed test statistic for any one of the SNPs. Table 2
shows the results of the genotype and FP tests in these
published data. For completeness, results for the allele test
are also shown. Significance levels in a given row of Table
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2 were computed on the basis of the same set of randomi-
zation samples but different samples were used for differ-
ent rows. For these calculations, we used the permutation
procedure [18] implemented in our sumstat program [19],
which employs the most recently published 64 bit ran-
dom number generator [20].

For each of the three studies in Table 3, all SNPs are listed
that achieved an experiment-wise significance level of
0.05 or less in either one of the three association tests. Of
the 13 resulting SNPs, 11 show a smaller p-value for the FP
test than the genotype test and one SNP shows the same
p-value. These results clearly demonstrate the usefulness
of our new association test. As expected, observed unre-
stricted F values are larger in case than control individuals
and in the latter are often negative.

Discussion
As mentioned in the introduction, researchers often look
for genomic regions of increased homozygosity or autozy-
gosity by sliding a window of fixed length across the
genome. Our test offers an elegant alternative to such win-
dows of fixed and arbitrary lengths. We propose to work
with scan statistics as previously developed [21]. This
method also employs a window of a fixed length (fixed
number of SNPs) and determines the maximum of the
sum of test statistics for all such windows in the genome,
which is the scan statistic of the given length. What sets
this approach apart from ad hoc approaches is that it
applies different window sizes from 1 up to a specified
maximum length and estimates optimal window length
by maximum likelihood. An updated version of our scan-

stat program is available that incorporates the FP test sta-
tistic [22]. This implementation allows users to determine
the most significant stretch of continguous markers with
high values of the FP statistic, which we interpret as a
genomic region of high IBD.

It is interesting to note unrestricted values of F predicted
by our disease models. For example, for γ = 5, the recessive
model predicts 0.316 in cases and -0.025 in controls. This
explains why our FP test has higher power than conven-
tional tests for recessive traits: Inbreeding coefficients tend
to be strongly positive in cases and only slightly negative
in controls (this implies strong deviations from HWE in
cases). Our parameter restrictions disallow negative F val-
ues, which reduces "noise" in the determination of signif-
icance levels. On the other hand, the dominant model
predicts unrestricted F values of -0.041 in cases and 0.002
in controls. These values are only slightly different from 0
and will become non-negative in the FP test, that is, the FP
essentially defaults to the genotype test with only a slight
advantage over it.

The null distribution of the FP test statistic (under F ≥ 0)
is not known and would be difficult to obtain, particularly
for large numbers of markers whose test results are non-
independent.

Conclusion
At least for the recessive and dominant models considered
here, our FP test is more powerful than allele and geno-
type tests. Thus, it represents an attractive alternative to

Power for dominant disease modelsFigure 2
Power for dominant disease models. Power (y-axis) as a 
function of the penetrance ratio, γ, (x-axis), for recessive dis-
ease model. The allele test, if carried out by itself, is most 
powerful but, if used in conjunction with the genotype test 
(MaxGA), is somewhat less powerful than the FP test. All 
three tests (genotype, FP, MaxGA) have essentially the same 
power.

Power for recessive disease modelsFigure 1
Power for recessive disease models. Power (y-axis) as a 
function of the penetrance ratio, γ, (x-axis), for recessive dis-
ease model. The FP test is most powerful while the MaxGA 
test (- - -) is slightly more powerful than the genotype test (-
-- --- ---).
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these conventional tests. A potential disadvantage of the
FP test might be that it requires permutation testing for an
appropriate determination of p-values. However, permu-
tation testing is one of the best approaches to correct for
multiple testing in genome-wide association studies and
is often carried out anyway, so the FP test does not repre-
sent an additional burden.

Methods
The restriction of F and p to non-negative values reduces
the parameter space of genotype frequencies, q1 and q3.
Simple algebraic manipulation (not shown here) of equa-
tions (1) demonstrates that 0 ≤ p ≤ 1 is always satisfied
and so is F ≤ 1. However, F ≥ 0 is only satisfied for 2p(1 -
p) ≥ q2. Figure 3 shows the parameter space for the three
SNP genotypes. Because of q1 + q3 ≤ 1, the unrestricted
parameter space corresponds to the lower triangle in Fig-
ure 1. The requirement that F ≥ 0 translates into the ine-
quality,

The resulting restricted parameter space corresponds to
the area marked "F > 0" in Figure 3, that is, the area
between the convex solid line and the diagonal. The
restricted parameter space is only 2/3 of the surface of the
unrestricted parameter space.

For power calculations, we assume disease models with
two alleles and three genotypes, dd, Dd, and DD. The
respective penetrances are f1, f2, and f3, where we set f2 = f1

for recessive models and f2 = f3 for dominant models. The
"strength" of a model is measured by the penetrance ratio,
γ = f3/f1, which is very approximately equal to the odds
ratio. Thus, we have three genetic parameters, p, f1, and γ,
which predict trait prevalence as

K = γf1p2 + f1(1 - p2) for recessive traits and as

K = q2f1 + (1-q2)γf1, q = 1 - p, for dominant traits.

Also, the proportion of genetic cases among all affected
individuals is

Q = γp2/(γp2 + 1 - p2) for recessive traits and

Q = (1 -q2)γ/[(1 - q2)γ + q2] for dominant traits.

Fixing K = 0.05 and Q = 0.10 leaves one free parameter,
which we vary to generate power curves. For a fixed set of
genetic parameter values, Bayesian calculations yield con-
ditional genotype frequencies in case and control individ-
uals, from which random samples (replicates) are drawn.

For each of dominant and recessive models, with a value
of the penetrance ratio, γ = 1, critical limits for test statis-
tics are chosen so as to make the type I error for each of
them equal to 0.05. That is, the critical limits are chosen
such that the proportion of randomization samples
exceeding this limit is equal to 0.05 (in other words, we

q q q q q1 3 3
2

3 31 1 2 1≥ + − + + − −( ) ( ) .

Parameter space for SNP genotype frequenciesFigure 3
Parameter space for SNP genotype frequencies. 
Parameters q1 and q3 are frequencies for genotypes AA and 
BB, respectively; F = probability of autozygosity, inbreeding 
coefficient.

Table 2: Test results for observed data

Data SNP pgenotype pFP pallele Fcase Fcontrol

AMD rs380390 0.0380 0.0090 0.0056 0.215 -0.073
rs10272438 1.0000 0.9068 0.0194 0.733 0.611

AMD HK rs10490924 0.0002 0.0002 0.0002 0.243 -0.062
rs10504152 0.0058 0.1286 0.2222 0.132 -0.271
rs584244 0.1824 0.0996 0.1010 -0.011 -0.149

PD rs9952724 0.0004 0.0002 1.0000 0.788 0.022
rs850084 0.0022 0.0002 0.9932 0.828 0.243
rs10963676 0.0058 0.0004 0.0072 0.817 0.086
rs4746675 0.0062 0.0004 1.0000 0.839 0.048
rs557074 0.0068 0.0012 1.0000 0.736 0.029
rs1504212 0.0088 0.0014 1.0000 0.494 -0.023
rs12364577 0.0174 0.0020 1.0000 0.519 0.014
rs1468375 0.0240 0.0042 0.0002 0.452 -0.040

Results of the genotype, FP, and allele tests applied to three published 
datasets: AMD in Caucasians [11], AMD HK in data from Hong Kong 
[15], and PD [16]. Estimated F values based on observed numbers of 
genotypes in case and control individuals are unrestricted, that is, may 
be negative.
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are using the 95th percentile of the computer-generated
null distribution of the test statistic as the critical limit).
Then power is determined for penetrance ratios ranging
from 1 through 8. All power calculations were carried out
based on 5,000 replicates.
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