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Abstract
Background: The early radiation of the Cetartiodactyla is complex, and unambiguous molecular
characters are needed to clarify the positions of hippotamuses, camels and pigs relative to the
remaining taxa (Cetacea and Ruminantia). There is also a need for informative genealogic markers
for Y-chromosome population genetics as well as a sexing method applicable to all species from
this group. We therefore studied the sequence variation of a partial sequence of the evolutionary
conserved amelogenin gene to assess its potential use in each of these fields.

Results and discussion: We report a large interstitial insertion in the Y amelogenin locus in most
of the Cetartiodactyla lineages (cetaceans and ruminants). This sex-linked size polymorphism is the
result of a 460–465 bp inserted element in intron 4 of the amelogenin gene of Ruminants and
Cetaceans. Therefore, this polymorphism can easily be used in a sexing assay for these species.

When taking into account this shared character in addition to nucleotide sequence, gene genealogy
follows sex-chromosome divergence in Cetartiodactyla whereas it is more congruent with
zoological history when ignoring these characters. This could be related to a loss of homology
between chromosomal copies given the old age of the insertion.

The 1 kbp Amel-Y amplified fragment is also characterized by high nucleotide diversity (64
polymorphic sites spanning over 1 kbp in seven haplotypes) which is greater than for other Y-
chromosome sequence markers studied so far but less than the mitochondrial control region.

Conclusion: The gender-dependent polymorphism we have identified is relevant not only for
phylogenic inference within the Cetartiodactyla but also for Y-chromosome based population
genetics and gender determination in cetaceans and ruminants. One single protocol can therefore
be used for studies in population and evolutionary genetics, reproductive biotechnologies, and
forensic science.
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Background
About 240 to 320 million years ago, shortly after the
divergence of mammalian and avian lineages, progressive
X-Y differentiation began, following chromosomal inter-
stitial rearrangements [1]. This resulted in a partial loss of
homology between both chromosomes which reached its
maximal extent in primates [2]. Amelogenin is the enamel
matrix protein that combines with hydroxyapatite crystals
to form enamel prisms in teeth [3]. The gene encoding the
amelogenin protein (Amel) is among the few genes
expressed from both X and Y chromosomes in placental
mammals (Eutheria) [4].

Evolutionary uncertainties about the basal diversification 
of Cetartiodactyla
The Cetartiodactyla (even-toed ungulates, whales and dol-
phins) radiated approximately 70–80 Myrs ago. The rela-
tive positions of the camelid, suiform (pigs),
hippopotamus, ruminant and cetacean (whales and dol-
phins) groups remain unclear, whether morphological or
molecular characters are used for attribution [5-9]. More-
over, polytomies (unresolved tree nodes) within some
Cetartiodactyla taxa [8] highlight areas for further data col-
lection (both species and markers) and phylogenetic
research. This is a particularly delicate problem within
cetaceans, probably due to adaptative radiations within a
short period of time [10,11].

Y-chromosome sequence markers are needed for 
population genetics
Males are the heterogametic sex in mammals, and usually,
unequal numbers of males and females transmit genes
from one generation to the next. Y-specific polymor-
phisms should allow the inference of sex-specific popula-
tion parameters and decryption of breeding system
patterns and dispersal strategies. Overall, the use of Y-spe-
cific markers has been restricted to evolutionary studies of
human history and some scarce studies in population
genetics, perhaps because of the low diversity of these
markers [12]. Within Cetartiodactyla, genetic structure or
admixture, e.g. in sheep [13] or cattle [14,15], has made
use of a few Y-specific markers including microsatellites,
SNPs and indels.

The matrilineally transmitted mitochondrial control
region is commonly used as an informative sequence for
population genetics. An equivalent had not been found to
date on the Y chromosome. We considered the well-
known amelogenin gene to be of particular interest
because parts of it do not recombine between X and Y
chromosomes.

Molecular sexing
Sex-chromosome recombination discrepancies have been
exploited to develop many molecular sexing techniques.

Although it can be ambiguous in some small populations,
the amelogenin locus is the most commonly used for gen-
der determination in humans [16]. Accurate gender deter-
mination in mammals is crucial to various applications in
reproductive technologies, forensic investigations and
population management. Some techniques rely on spe-
cific amplification of loci localized on the Y chromosome
(such as Sry [17]) while others are based on amplification
of homologous fragments from both X and Y chromo-
somes (e.g. ZFX/ZFY [18]) or use both markers [19]. Each
of these has limitations, such as the need for multiplexing
with other markers or additional steps such as digestion,
labelling or sequencing. Several amelogenin-based tech-
niques have expanded the taxonomic coverage of molecu-
lar sexing for Artiodactyla [20-22] but they have not yet
been extended to Cetacea. Therefore, there is a need both
for new methods that apply to a greater number of species
and to increase the number of cross-checking sexing
methods, especially in conservation biology [23].

In this study, we found out that sequence variations in the
amelogenin locus can be applied in evolutionary and
population genetics as well as for molecular sexing in the
highly diversified Cetartiodactyla group. We therefore car-
ried out an evolutionary study of orthologous Amel-Y and
Amel-X sequences (exons 4 to 5) in Cetartiodactyla. We
studied four Cetacea (the striped dolphin, the bottlenosed
dolphin, Risso's dolphin and the fin whale) and three
Artiodactyla (cow, pig and sheep) species.

Results and Discussion
Amelogenin can be used for molecular sexing and 
evolutionary genetics in Cetartiodactyla
Amplification of the studied segment of the amelogenin
locus using the species-specific SC1-SC2 primers resulted
in an obvious sex-related size polymorphism in all Cetacea
(Fig. 1) with a unique 521 bp band for females (two Amel-
X copies) and an additional 980 bp band for the Amel-Y in
males. This pattern was obvious in male Baleen whales
(Mysticetes) but there was no corresponding Amel-X
amplification in male dolphins unless by using the prim-
ers X5-X6 derived from the human amelogenin sequence.
Previous studies showed that amelogenin amplification
was prone to allelic drop-out or at least to preferential
amplification [24]. These phenomena may be explained
by several factors. Usually, amplification of the lesser
sized allele is favoured when the amount of polymerase is
a limiting factor or in case of template DNA degradation
[25]. Small amounts o DNA may also increase stochastic-
ity of the annealing [26]. However, our results are not con-
sistent with these situations since the allele favoured
(Amel-Y) is always the greatest one. On the other hand,
differences in GC content and mismatches in the anneal-
ing sequences may account for differential amplification.
The amelogenin fragments that we studied are character-
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ized by a higher GC content when amplified from the X
chromosome (56%) than from Y-chromosome (47%).
This difference may result from a non-insertion in the
Amel-X fragment. This feature as well as a 2 bp-long mis-
match between dolphin's Amel-X and the 5' end of the
reverse primer SC2 (Fig. 2) may favour preferential ampli-
fication of the Y copy in dolphins (Fig. 1b). Indeed,
amplifying male dolphin samples SC3 (primer without
mismatch, see Fig. 2) instead of the SC2, restores the two
bands, seen in baleen whales. The presence of this large
insertion in the Amel-Y copy can be used for sex determi-
nation in probably all cetacean species.

In order to define the breakpoints of the Y insertion loca-
tion and investigate its evolutionary history, we
sequenced various cetaceans (listed in Methods;
sequences deposited under the following accessions:
EMBL:AM744958 to AM744971). After alignment with
available sequences from Artiodactyla (see list in Meth-
ods), we detected the same polymorphism in all other
Cetartiodactyla except the Pig (Fig. 3): a 460–465 bp inser-
tion (size is a function of indels within different individu-
als or species) located between the 4th and 5th exons (188th

to 651st position of Y sequences e.g. EMBL:AM744958).
Haplotype names and their corresponding accessions are
given in Table 1. Sequence similarity was checked by run-
ning BLAST (Basic Local Alignment Search Tool) over
GenBank nr/nt nucleotide collection sequences with
megablast algorithm (intended for high similarity
sequences). In addition to the bovine and ovine Amel-Y,
the only two relevant (78 and 83% homology, E-values
4.10-68 and 3.10-53) hits matched a fragment on the sev-
enth chromosome in pigs (ca. 250 bp), suggesting the
insertion might be a transposable element.

We interpret the presence of this insertion as a synapo-
morphy (shared character) of the Cetartiodactyla excluding
pigs and probably other early derived groups (camels,
hippopotamuses; [27], see Fig. 3). In addition to this long
insertion, 46 other indels were detected by sequence
alignment (positions and sizes detailed in Figure 5).
Indels are particularly useful for testing phylogenic
hypotheses, as they can provide information about
ancient divergences rather than population information.
We therefore assessed whether phylogenetic topologies
differed if we took into account or not the information

Sex-related size polymorphism of amelogenin fragment in CetaceanFigure 1
Sex-related size polymorphism of amelogenin fragment in Cetacean. (Molecular weight markers is Biolabs' 1 kb + 
ladder): a) Agarose gel showing differences between male amplification in a Baleen (toothless) whale (left of the ladder) and 
Toothed whales (on the right). b) Agarose gel showing differences between males and females in Striped dolphin. 1,000 bp 
band for Amel-Y, 500 bp band for Amel-X. Each lane represents a single sample (#1 to 5). Symbols � and � are for male and 
female samples respectively.
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contained in these indels. Thus, the cetacean sequences
summarized in Table 1 as well as Artiodactyla sequences
were analyzed first classically, with gaps coded as missing
characters, and secondly, with gaps coded as supplemen-
tary binary characters (see Fig. 5). For each analysis, two
independent Bayesian searches were performed. The phy-
logenetic trees presented in Figure 4 result from a consen-
sus of 20,000 trees sampled after standard deviation
between the two runs dropped below 0.01. They show
highly supported nodes. The phylogenetic analysis per-
formed on the complete segment (Fig. 4a) confirmed the
clustering by sex-chromosome copy in Cetartiodactyla
(Stenella cœruleoalba, Balænoptera physalus, Grampus griseus,
Tursiops truncatus, Bos taurus and Ovis aries) whereas Amel-
X and Amel-Y clustered together in other mammals (Homo
sapiens, Sus scrofa) together with Amel-X from Cetartiodac-
tyla. On the other hand, phylogeny inferred without tak-
ing into account the insertion gave a different result (Fig.
4b): whereas haplotypes also clustered by chromosome in

cetaceans, no signal related either to species history or to
chromosome bearing could be seen in the other Cetartio-
dactyla. Hence, the phylogenetic signal related to species
history seems to strengthen as we follow the tree from
Cetartiodactyla towards primates. This partial, homoplasic,
persistence of the phylogenetic signal may be explained
by the influence of the region surrounding the insertion.
This could be the result of the old age of the insertion
(74–87 myrs [27]). The subsequent loss of homology may
have given rise to a more divergent evolution between
chromosomes in some taxa (Cetacea) than in others (Arti-
odactyla).

It would be interesting to study this region at the whole
clade level by combining sequence and indel characters in
the same analysis. This could give clues to test the many
hypotheses about basal radiation of Cetartiodactyla (e.g.
[5,6,8]). Given the presumably basal position of the Suio-
idea and Tylopoda in the Cetartiodactyla phylogeny ([7] and

Sequence alignment of the oligonucleotide primers with target sequences in Cetacea, Cattle and ManFigure 2
Sequence alignment of the oligonucleotide primers with target sequences in Cetacea, Cattle and Man. Species 
and chromosomal location are given on the right side. Shaded columns represents the nucleotide mutated in Dolphins. Acces-
sion numbers of sequences follow: Dolphins (EMBL:AM744958–AM744964, EMBL:AM744970–AM744971, EMBL:AM744968, 
EMBL:AY787743S2 – Y and EMBL:AM744965 – X) and Whales (EMBL:AM744967, EMBL:AM744969 -X- and EMBL:AM744966 
– Y), Cattle (GenBank:AB091789 -X- and GenBank:AB091790 – Y) and Man (GenBank:NT_011757 -X- from 9098117 to 
9098612 and GenBank:NC_000024 -Y- from 6796200 to 6796719).

--CAAGCATGCATTTCAATTCCC-----   Forward Primer “SC1” (5’-3’) 
ATCAAGCATGCATTTCAATTCCCTTTTA   Dolphin AMELY 
ATTAAGCATGCATTTCAATTCCCTTTTA   Dolphin AMELX 
ATCAAGCATGCATTTCAATTCCCTTTTA   Whale AMELY 
ATCAAGCATGCATTTCAATTCCCTTTTA   Whale AMELX 
GTGAAGCATGCATTTCAATTCCCTTTTA   Cattle AMELY 
ATTAAGCATGCATTTCAATTCCCTTTTA   Cattle AMELX 
ATTAGGCATGCATTAAAATTCCCATATT   Man AMELX 
 
 
  CT--------CCGATGTTCCCC--ATGCAG       Reverse Primer “SC2” (3’-5’) 
GCCT--------CCGATGTTCCCC--ATGCAGAATC Dolphin AMELY 
GCCT--------CCGATGTTCCCCGCATGCAGCCCT Dolphin AMELX 
GCCT--------CCGATGTTCCCC--ATGCAGAATC Whale AMELY 
GCCT--------CCGATGTTCCCC--ATGCAGAATC Whale AMELX 
GCCT--------CCGATGTTCCCC--ATGCAGAATC Cattle AMELY 
CAGCCCCAGTCACCCATGCACCCC--ATCCAGCCCT Cattle AMELX 
CAGCCCCAGCCACCTGTGCACCCC--ATGCAGCCCC Man AMELX 
  CT--------CCGATGTTCCCCGCATGC       Reverse Primer “SC3” (3’-5’) 
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Fig. 3), we hypothesize that the major evolutionary event
represented by the insertion (illustrated by an arrow Fig-
ure 4a) occurred once in the Cetacea-Ruminantia clade and
not in the remaining Cetartiodactyla.

The presence of this large insertion in the Amel-Y copy can
be useful for sex determination.

Evolutionary history also indicates that our sexing tech-
nique is applicable, in addition to cetaceans, to over a
wide range of Cetartiodactyla species including domestic
and wild species, in particular the widespread Ruminantia
(Bovidae, Capridae and most likely Cervidae). It is however
not suitable to Suiformes and further studies are required
to confirm that the technique is also not applicable to
Camelidae, given their even more basal position in the
Cetartiodactyla phylogeny.

Use in pedigree assessment and population genetics
In dolphins, the Amel-Y fragments amplified with the
SC1-SC2 primer pair were easily sequenced without the

need of cloning since amplification was Y chromosome-
specific. From the ten Striped dolphin samples sequenced,
nine were males, and we could deduce seven distinct Y-
haplotypes (one haplotype represented by three individu-
als and four individual haplotypes) bearing 64 polymor-
phic sites (nucleotide diversity π = 0.004 ± 0.0007). Half
of these were in the ~460 bp insertion. An alignment of
polymorphic sites is presented in Figure 5 (a). Strikingly,
these sequences showed two highly divergent haplo-
groups, diverging by a mean of 49 substitutions. This con-
cords with our results that support the probable existence
of two subspecies within the Mediterranean sea (unpub-
lished data). Moreover, one of these haplogroups dis-
played a high degree of polymorphism, with 24
informative sites, whereas the others showed only eight.
These values are sufficient for use in pedigree analysis and
population genetics, as the Y chromosome counterpart of
the mitochondrial d-loop in this species. Indeed, in
striped dolphin the intra-specific (inter-group) divergence
is greater than inter-specific divergence with a mean of 45
nucleotide substitutions between the striped dolphin and
fin whale sequences. There is an average of 0.048 ± 0.01
substitutions per site when comparing the two striped
dolphin populations. This is comparable to the diver-
gence observed between each population and the Com-
mon dolphin (0.058 ± 0.03) and confirms that nucleotide
diversity is one order of magnitude higher than the range
observed (10-4) for Y chromosome markers in mammals
[12]. As for the mitochondrial d-loop, the size of the
amplified fragment slightly limits the use of the tech-
nique. Some degraded samples do not amplify; even so, a
particularly degraded sperm whale sample was still ampli-
fiable (data not shown).

Since the Y chromosome population is expected to have a
small effective size, it is more likely to be affected by
genetic drift. Thus, it reflects more recent demographic
events such as bottlenecks, expansions or founder effects
[28]. To study this sort of event, one needs a marker
whose diversity is high enough to allow the reconstruc-
tion of gene genealogies with the least ambiguities and in
regions where recombination does not interfere with the
uniqueness of the trees. For this purpose, highly variable
microsatellites represent valuable markers but they
require intensive computing methods to take into account
uncertainties in the trees arising from alleles that are iden-
tical by state and not by descent (homoplasies) [29,30].
Adding a new sequence marker is therefore of interest for
Y-chromosome population genetics in Cetartiodactyla.
Moreover, the Bayesian estimate of mutation rate on each
edge of both trees in Fig. 4, jointly computed with phylo-
genetic inference, shows high values for a marker of
nuclear DNA: between 10-8 and 10-10 substitutions per site
and per year in all Cetartiodactyla branches. This value is

Table 1: List of Amel-X and Amel-Y haplotype names in Cetaceans 
and their EMBL accession numbers

Haplotype Name EMBL Accession

Stenella cœruleoalba YA1 AM744963

Stenella cœruleoalba YA2 AM744964

Stenella cœruleoalba YB1 AM744958

Stenella cœruleoalba YB2 AM744959

Stenella cœruleoalba YB3 AM744960

Stenella cœruleoalba YB4 AM744961

Stenella cœruleoalba YB5 AM744962

Delphinus delphis Y1 AM744970

Delphinus delphis Y2 AM744971

Stenella cœruleoalba X AM744965

Grampus griseus Y AM744968

Balænoptera physalus Y AM744966

Balænoptera physalus X AM744967

Eschrichtius robustus X AM744969

Tursiops truncatus X AY787743S2
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intermediate between those of mitochondrial d-loop and
nuclear DNA in mammals [31,32].

Functional perspectives in amelogenin evolution
We found two stop codons at amino acid positions 98 and
99 of exon 5 in all Y chromosome copies of amelogenin
in the four studied cetacean species (positions 988–993 of
sequence EMBL:AM744959). The Amel-Y gene product
may therefore be truncated in these species or represent a
pseudogene as already observed in species from most of
the other eutherian clades [33]

Conclusion
The 460 bp insertion studied represents a single-event
synapomorphy among most Cetartiodactyla. Together with
the presence of other numerous indels informative at the
order-level, it could help resolve the phylogenic discrep-
ancies between hippopotamuses, pigs, camels and other
Cetartiodactyla observed by many authors [7-9]. In addi-
tion, we demonstrate higher diversity within a single
sequence than has yet been observed in multi-sequence
assays [34]. This high diversity should allow the use of this
sequence as the male counterpart of the mitochondrial

control region. The applications would include inference
of male-driven evolution in population genetics as
applied to breeding management; domestication studies
in archaeogenetics [35]; conservation biology (popula-
tion history, sex-biased dispersal, admixture); or for test-
ing sex-biased selection [28]. Amelogenin intron 4
amplification will also be an efficient tool for sexing Rumi-
nantia and Cetacea. This will be useful for many fields of
veterinary and forensic science (embryo technologies, in
vitro fertilization, meat products). Finally, amelogenin
amplification could also be a helpful tool for conservation
biology through sampling of dead animals, faecal remains
and biopsies of free-ranging animals like whales and dol-
phins. Amelogenin amplification in Cetartiodactyla there-
fore is a simple, single-step procedure with a wide range of
applications.

Methods
Laboratory procedures
Biological material was isolated from soft tissues sampled
from dead stranded cetaceans and extracted using a classi-
cal phenol-chloroform protocol [36]. We used heterolo-
gous primers, X5 (5'-GTGCTTACCCCTTTGAAGTG-3')

Schematic representation of the sex-related polymorphism of the amelogenin locus in an evolutionary perspectiveFigure 3
Schematic representation of the sex-related polymorphism of the amelogenin locus in an evolutionary per-
spective. Insertion and intron 4 are represented by a white bar, whereas exon 5 is in black. Shaded bars stands for absent 
data, deduced from evolutionary relationships. The vertical order links to the "tree of life" view (according [27] among others) 
provided on the right.
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and X6 (5'-CTTCCTCCCGCTTGGTCTTG-3'), designed
from the amelogenin intron 4 and exon 5 of Homo sapiens
X chromosome (GenBank:NC 000023,
chrX:11221454–11228802) reference assembly Build
36.3, to amplify the homologous region in cetacean amel-
ogenin. This region of Amel-X is 92% identical to Amel-Y.

We subsequently cloned and sequenced these PCR frag-
ments and designed oligonucleotide primers specific to
the Artiodactyla. They are anchored in exons 4 and 5 of
Amel-X and Amel-Y, which allows complete amplification
of the 4th intron (SC1: 5'-CAAGCATGCATTTCAATTCCC-
3' and SC2: 5'-CTGCATGGGGAACATCGGAG-3'). Opti-
mal PCR conditions were adjusted by using temperature
(49–62°C) and MgCl2 (1–2.5 mM) gradients. Following
this optimization step, the PCR amplifications were con-
ducted in a reaction mix consisting of 477 mM KCl, 1 mM
Tris/HCl pH 8.3, 1.5 mM MgC12, 250 μM each dNTP, 2
pmol/μl of each primer, 3 units of Taq polymerase in a
final volume of 25 μl. Cycling was conducted as follows:
95°C for 2 min, followed by 30 cycles of denaturation at
94°C for 1 min, annealing at 55°C for 45 s, extension at

72°C for 1 min, and a final extension at 70°C for 10 min.
PCR products were run on 1.2% agarose gel ethidium bro-
mide stained, alongside a 1 kbp ladder (New England
Biolabs, County Road, MA). In order to validate the assay,
the gender, if identified during examination of the
stranded carcasses, was recorded (22 out of 38 samples).
These amplifications were conducted in eight Cetacean
species: 20 Striped dolphin (Stenella cœruleoalba), five Fin
whales (Balaenoptera physalus), four Bottlenosed dolphins
(Tursiops truncatus), three Common dolphins (Delphinus
delphis), three Gray whales (Eschrichtius robustus), two
Sperm whales (Physeter macrocephalus), one Minke whale
(Balænoptera acutorostrata) and one Risso's dolphin
(Grampus griseus).

Of these, we sequenced striped dolphins (9 males and one
female), fin whales (two males and two females), com-
mon dolphin (2 males), gray whale (one female) and
Risso's dolphin (one female). Sequencing was performed
on an ABI Prism sequencer (Applied Biosystems, Foster
City, CA) with the dye terminator protocol directly for
fragments amplified using the same (SC1-SC2) primer

Comparison of phylogenic trees of the Amel-X and Amel-Y fragments inferred (a) with the insertion (b) without the insertionFigure 4
Comparison of phylogenic trees of the Amel-X and Amel-Y fragments inferred (a) with the insertion (b) without 
the insertion. (a) The phylogenic tree of the complete fragment shows trans-specific clustering by sex chromosome in Cetarti-
odactyla. Tip labels are haplotypes as deposited in the EMBL database; Y and X are for Amel-Y and Amel-X haplotypes respec-
tively. Stenella cœruleoalba haplotypes were named according to population origin (YA/Group 1, YB/Group 2, see Methods). (b) 
The inferred phylogeny after removing the insertion gives a slightly different picture: trans-specific clustering by sex-chromo-
some is lost except in Cetaceans.
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pair or after cloning in pGEM-T (Promega, Madison, WI)
for fragments amplified using the X5-X6 pair. Each sample
was sequenced from at least two independent amplifica-
tions for greater reliability.

Bioinformatic analyses
The obtained sequences were aligned using ClustalW, a
clustering-based sequence alignment algorithm [37], with
bottlenosed dolphin (GenBank:AY787743S2), cow (Gen-
Bank:AB091789–AB091790), pig (GenBank:AF328419
and AB091792), sheep (GenBank:AY604731) and human
(GenBank:NT_011757 from 9098117 to 9098612 and
GenBank:NC_000024 from 6796200 to 6796719)
sequences. Striped dolphin haplotypes were named
according to membership in one of the two Mediterra-
nean populations inferred by population genetic data on
mitochondrial and microsatellite DNA (data not shown).
Stenella cœruleoalba YAn thus represents the nth haplotype
from population 1 while Stenella cœruleoalba YBn repre-
sents the nth haplotype from population 2.

Phylogenic inference was performed using a Bayesian
Monte Carlo Markov Chain (MCMC) approach, imple-
mented in Mrbayes [38], that allows determining poste-
rior probability of each node of the tree.

Given the high indel density in this region, data were
divided into two partitions: a sequence matrix (1120 char-
acters corresponding to nucleotides) and a binary charac-
ter matrix (presence/absence of the indels). Gap coding
was achieved using Modified Complex Indel Coding [39]
in which parsimony-informative gap characters were
scored from pairwise unambiguously aligned sequences.
Hence, a total of 47 gap characters were included (sum-
marized in Figure 5b). We used a General Time Reversible
(GTR) model, allowing for a proportion of invariant sites
for sequence partition, and a binary F81-like model with
a variable ascertainment bias for the insert's absence/pres-
ence (state 0/state 1) for the binary partition. In this
model, π0 and π1 are the stationary probabilities of the two
states and π0/π1 the rate of transition from state 1 to 0.

Patterns of genetic diversity were computed using DnaSP
[40]. Specifically, the average number of substitutions was
computed using Nei's equations 10.5, 10.6, 10.7 [41].

Authors' contributions
MM performed the experiments, manuscript writing and
editing.

Polymorphic sites and indels in the Amel-X and Amel-Y regions in the Cetacean species studiedFigure 5
Polymorphic sites and indels in the Amel-X and Amel-Y regions in the Cetacean species studied. (a) Nucleotide 
positions are represented above and on the left side the names of the haplotypes. All positions are represented on the first 
sequence and each matching nucleotide on the other haplotypes is represented by a dot. (b) Indels are numbered (first row) 
following their order on the aligned sequences. They are characterized by their position (second row) and their length (third 
row). In both tables, shaded areas corresponds to the region holding the large insertion.

(a) 
                                                                                                                                1111111 

                       1111111111111111222222222222333333334444444455555555556666666777777777777777888888889999999999999999999900000900 

                57788990112224444566679001333457899112233883446788811122356880300889012233334446899002225590112334444467788889900123544 

                20545573682481459512881246123597549494835142136735734537237454523680191402492395903011233570173180124953803460413542212 

Stenella_YA1    TATGGGAATATAAGGTTTCGATATCG---T-AGTAAGAATAAATGACTTAGTTTATTTTTCAA-GCTTAAAATGACCTTGTATACTAT-ATGAAACTCATGACCTCTCTGACGATTCCT 

Stenella_YA2    ..G.......................---.-............CT...ACT.CG.GA.C..GT-....T......T...A.G.GT..G-...G.......................... 

Stenella_YB1    ..GCTAG..CGGC......ACC.CGATGT.AGCGCGATGG.CGA...C....CG.GAGC..G.-.A.GT......T-.G..G.GT..G-..T........A.....G.CAC.AGGC... 
Stenella_YB2    ..GCTAG..CGGC......ACC.CGATGT.A.CGCGATG..CGA........CGGGAGC..G.-.A..T......TT.G..G.GT..G-..T........A.....G.CAC.AGGC... 

Stenella_YB3    ..GCTAG..CGGC......ACC.CGATGT.AGCGCGATG..CGA...C....CG.GAGC..G.-.A..T......T-.G..G.GT..G-..T........A.....G.CAC.AGGC... 

Stenella_YB5    ..GCTAG..CGGC......ACC.CGATGT.A.CGCGATG..CGA........CG.GA.C..G.-.A..T......TT....G.GT..G-..T........A.....G.CAC.AGGC... 

Stenella_YB4    ..GCTAG..CGGC......ACC.CGATGT.A.CGCGATG..CGA........CG.GA.C..G.-.A..T......T...A.G.GT..G-..T........A.....G.CAC.AGGC... 
Stenella_X      CGG....G.CG..AACCGTA.CG----------------------------------------------.GG........CG...G..-CCT.GG.GAC-ACGACGGGCACG.GGCG.. 

Balaenoptera_Y  ..-A......................---CA.........T.....T............CT..-.A..T...A..TT.G..G.GT..G-..T........A.....G.CAC.AGGC... 

Balaenoptera_X  CGG....G.CG..AACCGTA.CG----------------------------------------------.GG.....C..CG...G..GC.T.GGGGAC-ACG.CGG.CACG.GGCG.. 

Eschrichtius_X  .GC.....CCG..AACCGTA.CG----------------------------------------------.GG.........GC...G.-CCT.GG....CA...C.G.CAC..GGC... 

Delphinus_Y1    ..GCTAG..CGGC......ACC.CGATGT.A.CGCGATG..CGA........CG.GA.C..G.-.A..T....C.TT....G.GT..G-..T........A.....G.CAC.AGGC... 
Delphinus_Y2    ..GCTAG..CGGC......ACC.CGATGT.A.CGCGATG..CGA........CG.GA.C..G.GTA..T.....CTT....G.GT..G-..T........A.....G.CAC.AGGC... 

Tursiops_X      ..GCTAGG.CGGC......A.CG----------------------------------------------.GG.........G.GT...-...........A.....G.CAC.AGGC... 

Grampus_Y       ..GCTAG..CGGC......A.CGCGATGT A.CGCGATG..CGA.T.....-CG.GA.C..G.-.AC.TT.....TT....G.GT...-...........A.....G.CAC.AGGC... 

 

 

(b) 
                    1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 

Indel Nr 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 

Position                                                                                             1 

        1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 8 8 9 9 9 0 

  1 2 7 2 2 2 3 4 5 9 9 0 1 3 3 5 6 3 3 3 4 6 7 8 9 0 0 1 4 1 2 2 4 7 2 5 6 8 0 4 4 3 5 4 9 9 4 

  2 1 5 0 8 9 0 2 1 4 8 1 4 1 1 9 3 0 6 6 8 3 2 3 1 8 9 3 9 3 6 7 0 9 0 4 2 7 4 2 6 4 3 2 5 9 3 

Length  1 1 1 1 6 5 4 1 4 2 1 5 1 2 3 1 1 1 1 9 8 1 1 4 2 1 1 1 5 1 9 8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 6 

                        1         2                 9 8______________________ 4     2 

                        7 ___________________________________________________ 
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