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Abstract

Background: Accurate genotype calling for high throughput Illumina data is an important step to extract more
genetic information for a large scale genome wide association studies. Many popular calling algorithms use mixture
models to infer genotypes of a large number of single nucleotide polymorphisms in a fast and efficient way. In
practice, mixture models are mostly restricted to infer genotypes for common SNPs where their minor allele
frequencies are quite large. However, it is still challenging to accurately genotype rare variants, especially for some
rare variants where the boundaries of their genotypes are not clearly defined.

Results: To further improve the call accuracy and the quality of genotypes on rare variants, a new model calling
procedure, named M-D, is proposed to infer genotypes for the Illumina BeadArray data. In this calling procedure, a
Gaussian Mixture Model and a Dirichlet Process Gaussian Mixture Model are integrated to infer genotypes.

Conclusions: Applications to Illumina data illustrate that this new approach can improve calling performance
compared to other popular genotyping algorithms.

Keywords: Dirichlet Process Gaussian mixture model, Gaussian mixture model, Genotype, HapMap,
Single nucleotide polymorphism, Rare variants

Background
Genome-wide association studies (GWAS) have been
designed to discover many causal genetic variants con-
tributing to human diseases [1, 2]. The success of GWAS
relies heavily on the International HapMap Project where
millions of single nucleotide polymorphisms (SNPs) have
been widely identified on SNP arrays [3, 4]. With the rapid
development in biotechnology, a leading producer, Illu-
mina [5], is capable of offering SNP arrays with tremen-
dously wide coverage of genetic variants in a fast and
cost efficient way. A number of high dimensional inten-
sity data are generated by this manufacturer, and various
powerful genotyping algorithms are imperatively needed
to accurately infer genotypes. Recently, several popular
calling algorithms have been designed for Illumina plat-
form, such as: BEAGLE with BEAGLECALL software [6],
CRLMM [7, 8], GenCall [9], GenoSNP [10], and Iluminus
[11]. In general, Illumina chip catalogs millions of SNPs
and processes a large number of parallel samples, and the
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genotyping algorithms for the Illumina data is of the main
interest.
With the application of single base extension (SBE) bio-

chemistry technology [12], the Illumina data measures
the pair of intensities with two alleles (A and B) at every
SNP for each individual. Typically, a SNP with alleles
A and B makes three possible genotype clusters, named
AA, AB, and BB, and all possible genotypes of each SNP
are called by various genotyping algorithms. One strategy
is the population-based approach through which geno-
types of all individuals within a SNP are inferred at one
time, but its calling performances highly depend on the
size of population. Thus, this method is not applicable
for rare SNPs with low minor allele frequency (MAF).
Another approach, GenoSNP, is designed to infer all SNP
genotypes within one individual simultaneously, and is
referred to as a SNP-based calling method. The applica-
bility of this algorithm [10] relies on the assumptions that
response features of all probes are similar. Compared to
the population-based method, it would be unnecessary
to collect a large number of samples for rare SNP calling
due to the availability of high density SNPs. Unfortunately,
this method leads to a larger proportion of SNPs breaking
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the Hardy-Weinberg (HW) principle which violates the
assumption that commonly occurs in practice.
Most of the predominant calling algorithms employ the

mixture models [13–15] to infer three genotype clusters.
In particular, the mixture models developed from the
population-based strategy work well for common SNPs
but gradually lose their effectiveness for rare variants. To
improve calculation accuracy, the mixture models need a
sufficient number of observations in each genotype clus-
ter to precisely estimate parameters. However, rare SNPs
always contain a small number of individuals in one or
two genotype clusters, and some rare SNPs with extremely
small values of MAF may lose one or two clusters. This
phenomenon creates two problems: (1) the number of
components for rare SNPs is uncertain; (2) the bound-
aries of some genotype clusters are not clear for rare SNPs
with sparsely populated observations. The problem about
developing better inference for rare SNPs motivates the
use of the Dirichlet Process (DP) GaussianMixture Model
(GMM) [16–18]. One popular application of DP is clus-
tering in the fields of brain imaging, information retrieval
and genetics. To successfully perform a cognitive task, DP
has been applied to analyze activation structures in func-
tional magnetic resonance imaging [19]. DP has also been
used to model relationships among documents in the field
of information retrieval [20, 21]. For better understanding
of ancestry history in the genetic study, DP was smoothly
adopted to identify the sets of haplotypes corresponding
to subpopulation [21]. Due to its good characteristics in
clustering, this paper extends DP model to the genotyp-
ing area. Specifically, a DP prior plays a critical role in
clustering data through defining a mixture model with
a variable number of components. More importantly, its
clustering and discreteness properties allows an easy par-
titioning of the data into different groups, even though
some observations lack clear clustermembership. Besides,
empirical studies have showed that GenoSNP can improve
the genotyping quality for rare variants through calling
a large number of SNPs within one individual. However,
the genotype clusters implemented by GenoSNP may be
in a shift away from their expected positions, which could
result in many SNPs breaking the HW principle [5]. For a
DP Gaussian Mixture Model (DP-GMM), its model selec-
tion procedure is based on a rich-gets-richer phenomenon
[17], which indicates that the cluster with an extremely
small number of observations is still toughly estimated. A
reference SNP selection step [22] is incorporated here to
infer genotypes of rare SNPs with extremely lowMAF, and
this new method may solve the HW principle problem.
In this paper, a new model calling procedure (M-D) is

an approach that is made up of two models and one SNP
selection procedure, namely Gaussian Mixture Model, DP
Gaussian Mixture Model, and reference SNP selection.
In brief, this method partitions SNPs into three groups

in terms of the SNP’s MAF and the sample size of each
cluster. In this method, three models are applied in three
groups individually. The performance of M-D is evaluated
through comparison with other genotyping algorithms for
Illumina BeadArray data.

Methods
Illumina BeadArray data
The Illumina Omni BeadArray chip collects over one mil-
lion SNPs per sample, and increasingly covers the newly
identified variants. In the probe design, every beadtype
that is capable of assaying two SNP alleles represents a
SNP [12]. A large number of beadpools that include mil-
lions of beadtypes results in the ultimate production of
the Illumina microarray. Here, Illumina data measures the
pair of raw intensity at each beadtype for every sample,
and the genotype clusters are estimated at this scale.

Statistical models
Model I: Gaussianmixturemodel (GMM)
The pair of raw intensity xis = (ris, gis) for the ith individ-
ual at the sth SNP is the basic measurement. Within one
SNP, all subjects’ intensity data may fall into three geno-
type clusters corresponding to three genotypes (AA, AB,
BB) and one null component which collects the abnor-
mal raw intensity measurements. Model I is a Gaussian
Mixture Model [23] that is applied to the basic measure-
ment xis. In principle, this model assigns each pair of raw
intensities xis to one of the components with probability
πks for k = 1, 2 or 3. The relevant latent genotype class
is measured by an indicator variable zis generated from a
multinomial distribution (Mult3) where zis = 1, 2 or 3.
Then this Gaussian Mixture Model can be expressed as:

zis ∼ Mult3(1,π1s,π2s,π3s)

�(xs|�s, zs) =
ns∏
i=1

3∏
k=1

�(xis|μks,�ks)
I(zis=k)

i = 1,. . . , ns, s = 1,. . . , S, k = 1, 2 or 3

(1)

where ns is the total number of individuals observed at
the sth SNP, and S is the total number of SNPs. � denotes
a normal density with mean μks and variance-covariance
matrix �ks in the kth component at the sth SNP; all
pairs of raw intensity within the sth SNP are measured by
xs=(x1s, x2s,..., xnss); the unknown parameters of the GMM
is denoted by �s=(π s, μs, �s) where π s=(π1s, π2s, π3s),
μs=(μ1s, μ2s, μ3s), and �s=(�1s, �2s, �3s).
The maximum likelihood estimates of the parameters

are inferred [23]. For the indicator variable zis = k, the
(t + 1)th iteration is estimated by
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ks�
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The iterative estimates of mean μks and variance-
covariance matrix �ks are expressed as,

μt+1
ks =

∑ns
i=1 fk

(
xis;�t

s
)
xis∑ns

i=1 fk
(
xis;�t

s
) (3)

�t+1
ks =

∑ns
i=1 fk

(
xis;�t

s
) (

xis − μt+1
ks

) (
xis − μt+1

ks

)T
∑ns

i=1 fk
(
xis;�t

s
)

(4)

Two measurements Posterior Rate (PR: pkis) and the
Average Posterior Rate (APR: ps) for the sth SNP are
adopted to assess the quality of SNP calling [22]. Specif-
ically, PR quantifies the strength of every individual’s
cluster signal, and APR gives the average strength of all
individuals at the sth SNP [22].

PR : pkis = P(xis|k)πks∑3
u=1 P(xis|u)πus

APR : ps =
∑3

k=1
∑nks

i=1 p
k
is∑3

k=1 nks
Note that P(xis|k) is a conditional probability of the ith

individual given that this subject is assigned to the kth
cluster, and nks is the sample size of the kth cluster at the
sth SNP.

Model II: Dirichlet Process Gaussianmixturemodel (DP-GMM)
Model I is a fast and efficient genotyping model for SNPs
having large values of MAF. In real experiments, many
SNPs with low MAF may result in the disappearance of
one or two genotype clusters. Also even though some
SNPs with low MAF display three genotype groups, some
clusters may lack sufficient data to support and recog-
nize. In this case, Model II, DP Gaussian Mixture Model,
is motivated by the need to carry out the model selec-
tion for SNPs with an uncertain number of genotype
clusters [24]. Generally speaking, this is a nonparametric
Bayesian method that potentially allows a flexible number
ofmixture components and also provides estimates for the
mixture component parameters and the relevant mixing
proportions.
A DP Gaussian Mixture Model [24] fits the pair of

raw intensity xis into K-component Gaussian Mixture
Model with K approaching a large number. The model is
expressed as,

�(xs|�s, zs) =
ns∏
i=1

K∏
k=1

�(xis|μks,�ks)
I(zis=k)

i = 1,. . . , ns, s = 1,. . . , S, k = 1,. . . , K

(5)

where K is the total number of clusters. �s=(π s, μs, �s)
denotes the unknown parameters at the sth SNP where
π s=(π1s, ..., πKs), μs=(μ1s, ..., μKs), and �s=(�1s, ..., �Ks).

Generally, the number of observations within the sth SNP
(ns) are partitioned into K components (n1s, n2s, ..., nKs)
with relevant mixing proportions (π1s, π2s, ..., πKs). The
distribution of n1s, n2s, ..., nKs follows a multinomial dis-
tribution and its probability mass function is written by,

p(n1s, n2s, . . . nKs|π1s,π2s, . . . ,πKs, ns)= ns!
n1s! n2s! . . . nKs !

K∏
k=1

π
nks
ks

(6)

where ns =
∑K

k=1 nks denotes the total number of individ-
uals at the sth SNP. Then each pair of raw intensity for the
sth SNP xis has its own indicator zis (i = 1, ...,ns), and the
distribution of indicator variables is expressed as,

p(z1s, z2s, . . . znss|π1s,π2s, . . . ,πKs) =
K∏

k=1
π
nks
ks (7)

The model can then be expressed as:

πs|α ∼ Dir
( α

K
,
α

K
, ...,

α

K

)
zis|πs ∼ Discrete(π1s,π2s, ...,πKs)

Rks|ν, S ∼ W
(
ν, S−1)

μks|m, r,Rks ∼ N(m, rRks)

xis|zis,�s ∼ N(μziss,Rziss)

(8)

where α is the DP concentration parameter and can be
thought as the inverse variance of DP. The distribution of
the reciprocal of α follows a Gamma distribution with 1
degree freedom andmean 1. K is the maximum number of
clusters, then πs is distributed with a symmetric Dirichlet
distribution with parameter α

K . m and r are hyperparam-
eters being the mean and relative precision of μks, and
the hyperparameters ν and S−1 are degrees of freedom
and inverse mean of Rks where Rks follows a Wishart
distribution with parameters ν and S−1, respectively.
The inference on Model II relies on the posterior distri-

bution of each parameter conditional on all other parame-
ters, then the parameters, hyperparameters and indicator
variables are repeatedly sampled from their posterior
distributions. In particular, the conditional posterior
probabilities are proportional to the likelihood function
multiplying priors. Then the posterior probabilities of
the cluster indicator variable zis conditional on all other
variables are expressed as:

p(zis = k|z−is,μs,Rs,α,m, r, ν, S) ∝⎧⎪⎪⎨
⎪⎪⎩

n−i,ks
ns−1+α

N(xis|μks,Rks)

if k is an existing cluster, and n−i,ks > 0
α

ns−1+α

∫
p(xis|μks,Rks)p(μks,Rks|m, r, ν, S)dμksdRks

if k is a new cluster
(9)
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Note that p(xis|μks,Rks) and p(μks,Rks|m, r, ν, S) are the
likelihood function and the joint function of parameters
(μks and Rks), respectively. Once the optimal genotype
clusters and their relevant component parameters are
obtained, two measurements Posterior Rate (PR) and the
Average Posterior Rate (APR) measuring the quality of the
sth SNP can be calculated in the similar way.

Model III: Dirichlet Process Gaussianmixturemodel with
reference SNP selection (DP-Ref)
A DP Gaussian Mixture Model with reference SNP
selection step (DP-Ref) combines the benefits of the
population-based method with the SNP-based approach.
In this context, the reference SNP selection plays an
important role in determining the effectiveness of Model
III. A reference SNP is referred to as a good quality SNP
providing sufficient information about three genotypes
clusters, thus each SNP in the third group will be called
with assistants of the carefully selected reference SNP.
Practically, the final reference SNP is selected by a three-
step procedure [22]. Through out this section, each SNP
in the third group is denoted as the “T-SNP” that needs to
be called with the support of a reference SNP, and the final
reference SNP having good quality is defined as “R-SNP”
Step I. High MAF SNPs are selected as candidate refer-

ence SNPs. In fact, SNPs with large MAF (> 0.15) before
the T-SNP are selected as R1-SNPs.
Step II. Good clustering property SNPs from R1-SNPs

are further selected (denoted as R2-SNPs). This step
requires three genotype clusters of R1-SNPs to contain at
least 10 % of entire observations individually.
Step III. A SNP from R2-SNPs being remarkably similar

to the T-SNP is selected (denoted as R-SNP). The resem-
blance between the T-SNP and each R2-SNP is measured
by the cluster distanceDt [22]. For simplifying the calcula-
tion, two dimensional raw intensity vector xis is projected
to an univariate variable yis [11], and the T-SNP and all R2-
SNPs are classified into three genotype clusters in terms
of this univariate variable.

yis = ris − gis
ris + gis

⎧⎨
⎩
yis if yis < 0.5
yis if −0.5 ≤ yis < 0.5
yis if yis ≥ 0.5

(10)

Empirical studies show that the initial cutoffs dividing
the univariate variable ys = (y1s, ..., ynss)T into three clus-
ters can be fixed as 0.5 and −0.5. The cluster label of
each individual would be roughly determined by the above
equation.
We select one SNP from the third group as the T-SNP,

then the cluster measure (Dt) is to find the minimum dis-
tance between the T-SNP and R2-SNPs [22]. The SNP

from R2-SNP gives the minimum distance will be the
R-SNP. The cluster measure is calculated by,

Dt = min
d;d∈�

{ 3∑
k=1

trace
{
(xkt − μkd)((�kt + �kd)/2)−1(xkt−μkd)

T
}}

(11)

Note that� is the set of R2-SNPs selected for the T-SNP;
xkt and �kt are the raw intensity vector and variance-
covariance matrix in the kth cluster for the T-SNP; μkd
and �kd are the mean and variance-covariance matrix of
the dth R2-SNP; In brief, The final R-SNP will provide
sufficient clusters information to assist the testing T-SNP.
A new augmented vector is generated by combining the

T-SNP with the final reference SNP,

mt =
(
xt
xd

)

where d ∈ �, and the second model DP-GMM (Eqs. 6–9)
will be applied to the combined raw intensities to identify
the genotype clusters through the aid of the reference SNP.

Application of newmodel (M-D)
This section focuses on the application of M-D. Specifi-
cally, entire SNPs are classified into three groups, and an
appropriate model is selected to fit in each group. The
classification standard relies on the calculations of MAF
and the sample size of each genotype cluster through
Model I. The reason for choosing this model is that GMM
can quickly estimate the SNP’s MAF and the sample size
of each genotype cluster. Other advanced models (Model
II and III) will be applied to the selected SNPs with small
MAFs. According to this calling procedure, any SNP will
be classified by,

xs =

⎧⎪⎪⎨
⎪⎪⎩
xs ∈ g1 if MAF ≥ 0.05.
xs ∈ g2 if MAF < 0.05 and b1 ≤ nks < b2

for any one of clusters.
xs ∈ g3 otherwise.

(12)

Note that nks is the sample size of the kth cluster at the
sth SNP. The first group (g1) collects SNPs with high MAF
(≥ 0.05), and a large proportion of SNPs is in this group.
The second group (g2) includes SNPs with low MAF
(< 0.05) and a certain number of subjects in either exist-
ing genotype clusters. In this study, b1 and b2 are fixed
as 3 and 10 to determine the number of SNPs recruited
in g2. The last group (g3) collects the rest SNPs with low
MAF and a small number of observations in one or two
genotype clusters. In fact, SNPs in g1 can display three
genotype clusters (one major homozygote, one minor
homozygote and one heterozygote) with a large number
of subjects in each cluster. The rest poor SNPs with low
MAF are contained in g2 and g3 where some SNPs may
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not display three genotype clusters, either one or two clus-
ters disappear and the existing cluster may contain very
few observations. In particular, the classification between
g2 and g3 is not fixed, and scientists can easily manage the
allocation of SNPs between g2 and g3 through adjusting
the values of b1 and b2.
The proposed new calling procedure is based on the

partitions of SNPs.
⎧⎨
⎩
g1 : GMM
g2 : DP-GMM
g3 : DP-Ref

(13)

In the first group,Model I (GMM) is applied to genotype
SNPs. A sufficient number of observations are observed in
three genotype clusters, which will greatly help the geno-
typing procedure identify the boundary of each cluster.
In the second group, SNPs with low MAF, Model II (DP-
GMM) can implement the model selection to search the
appropriate number of clusters for each SNP, and DP’s
clustering and discreteness properties assures the opti-
mum partition of observations, even for a small number
of observations in a genotype cluster. In the third group,
the number of genotype clusters for each SNP is uncer-
tain and an extremely small number of observations are
observed in either one or two clusters. In this case, apply-
ing a DP-GMM alone for clustering is not enough due
to a rich-gets-richer phenomenon [17] where the larger
genotype cluster can greatly attract sparsely populated
observations that originally belong to another cluster. In
view of this situation, the reference SNP strategy [22] is
applied to help DP-GMM call rare SNPs (DP-Ref). More

importantly, the selection of models can be determined
through adjusting b1 and b2 in Eq. 12. For example, when
b1 takes a large value, a smaller proportion of rare SNPs
may enter g2 and more rare SNPs are allocated to g3, thus
GMM and DP-Ref will become major methods. If b2 takes
a large value, a larger proportion of rare SNPs may be
assigned to g2, then GMM and DP-GMM will become
main methods. This flexible option provides more solu-
tions for scientist who are interested in this genotyping
method.
In this study, b1 and b2 are fixed as 3 and 10, then 88.6 %

of SNPs are in g1, 4.03 % and 7.37 % of SNPs will
be assigned to g2 and g3, respectively. More impor-
tantly, DP Gaussian Mixture Model is powerful to infer
the cluster containing a certain number of observa-
tions, thus Fig. 1 displays the genotyping results of three
SNPs inferred by DP-GMM (rs1003505 MAF: 0.0479,
rs1004262 MAF: 0.0404, rs1009148 MAF: 0.0439). For the
extremely rare variants in g3, DP-Ref is used to infer geno-
types (rs10084633 MAF: 0.0166, rs1003945 MAF: 0.0118,
rs1008185 MAF: 0), and the calling results are summa-
rized in Fig. 2. To clearly illustrate the effect of the refer-
ence SNP on rare SNP calling in g3, Fig. 3 displays how
the reference SNP help rare SNP be genotyped. It is clearly
seen that our model could actively infer genotypes of rare
SNPs under the support of the reference SNP.

Results and discussion
Illumina BeadArray data description
The proposed method M-D is applied to an Illumina
data consisting of 1 million SNPs and 3258 samples.
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Fig. 1 Performance of the DP Gaussian Mixture Model on genotyping three rare SNPs (rs1003505, rs1004262, rs1009148)
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Fig. 2 Performance of the DP Gaussian Mixture Model with reference SNP selection on genotyping three rare SNPs (rs10084633, rs1003945,
rs1008185)

Specifically, there are 38 different HapMap samples
[3] measured multiple times to produce 141 repeated
HapMap samples in this data. SNP calls from the chro-
mosome 22 are analyzed. The performance of M-D is
compared to those of GenCall representing a population-
based method and GenoSNP standing for a SNP-based
approach. The compatible cutoffs of all three calling algo-
rithms are carefully selected, such as: GenCall score (GC
score≥ 0.15) is used to filter good quality SNPs; GenoSNP

and M-D collect good quality SNPs and samples through
the posterior probability (≥ 85 %).

Results
The performances of three calling algorithms are com-
pared in terms of the call rate

(
genotypes that can be inferred

genotypes that are supposed to be genotyped

)
and the concordance rate measuring the genotype agree-
ment between any two algorithms. The overall compar-
ison results are given in Table 1. It is clearly seen that
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Fig. 3 Performance of the reference SNP selection on genotyping three rare SNPs (rs10084633, rs1003945, rs1008185)
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Table 1 The comparisons of call rate and concordance rate
among GenCall, GenoSNP and M-D

Algorithm 1 Algorithm 2 Call rate (%) Concordance (%)

Algorithm 1 Algorithm 2

GenCall M-D 96.71 99.71 99.93

GenoSNP M-D 99.12 99.71 99.65

GenCall GenoSNP 96.71 99.12 99.71

Note: The unit of Call Rate and Concordance Rate is percentage %;M-D: a new
model calling procedure

genotypes inferred from M-D, GenCall and GenoSNP are
highly consistent, and genotypes fromM-D are more con-
sistent with those inferred from GenCall (99.93 %), than
those from GenoSNP (99.65 %). This is because M-D is a
population-based method in a wide sense, and the model
selection of a DP and the reference SNP selection step
in M-D greatly improve its call accuracy and call rate
(Table 1).
Because most samples in this Illumina data are collected

from the hospital, true genotypes of these sample are not
known totally, so the high agreement among 3 algorithms
can not tell us which method performs best. Fortunately,
141 HapMap samples are contained in this data, and the
true genotypes of these HapMap samples are explored by
the HapMap project as a gold standard. Table 2 provides
the comparison results between each discussed method
and a gold standard in terms of the call accuracy and the
call rate. In brief, M-D gives the best call accuracy and the
largest call rate, followed by GenoSNP and GenCall. For
example: the largest call rate is achieved byM-D (99.78 %),
followed by GenoSNP (99.14 %) and GenCall (96.79 %).
Moreover, M-D offers the best call accuracy (99.44 %),
followed by GenoSNP (98.52 %), and GenCall (96.63 %).
Compared to the population-based methods (GenCall)

and the SNP-based approaches (GenoSNP) [9, 10], the
newmodel (M-D) is expected to perform better because it
integrates a model selection step of DP and predominance
of the population-based and the SNP-based strategies. In
this study, SNPs are classified into 3 groups according to
Eq. 12, and the comparison results corresponding to these
3 groups are summarized in Table 3. In brief, M-D gives
the best call accuracy and largest call rate, followed by
GenoSNP and GenCall. In particular, g2 and g3 collects

Table 2 The comparisons of call rates and accuracy on HapMap
samples for overall SNPs

Criterion Item GenCall (%) GenoSNP (%) M-D (%)

All SNPs Call rate 96.79 99.14 99.78

Accuracy 96.63 98.52 99.44

Note: M-D: a new model calling procedure; Call rate: the percentage of valid
genotypes; Accuracy: the percentage of consistent genotype between each calling
method and the gold standard

Table 3 Comparisons of call rates and accuracy on HapMap
samples for three SNP groups

Class Prop Item GenCall GenoSNP M-D

g1 88.60 % Call rate 96.59 99.13 99.77

Accuracy 96.40 98.44 99.31

g2 4.03 % Call rate 97.62 99.56 99.75

Accuracy 97.53 99.45 99.59

g3 7.37 % Call rate 96.60 99.14 99.70

Accuracy 96.45 98.71 99.40

Note: M-D: a new model calling procedure; Call rate: the percentage of valid
genotypes; Accuracy: the percentage of consistent genotype between each calling
method and the gold standard; Class: indicates the three SNPs categories, such as:
g1, g2 and g3; Prop: indicates the percentage of SNPs which belong to three groups,
respectively

whole rare SNPs, again, M-D still outperforms GenoSNP
and GenCall on call accuracy and call rate.
Hardy-Weinberg Equilibrium (HWE) test is another

important criteria to examine the quality of SNPs.
In this Illumina data, most samples are from four
populations: Hispanic African-American, non-Hispanic
African-American, Hispanic European-American, and
non-Hispanic European-American. The HWE test (P-
value < 0.0001) is applied to four populations separately.
The total number of SNPs failing the HWE test are sum-
marized in Table 4. A SNP-based method, GenoSNP, con-
siders all SNPs calls within a sample at a time to improve
genotyping quality for rare variants, but a large number
of SNPs corresponding to four populations break the HW

Table 4 Comparisons of Hardy-Weinberg Equilibrium test
among GenCall, GenoSNP and M-D

Population Num-Sample Algorithm # of failed SNPs

AA I 2005 GenCall 224

GenoSNP 907

M-D 422

AA II 83 GenCall 20

GenoSNP 254

M-D 80

EA I 867 GenCall 486

GenoSNP 1024

M-D 643

EA II 158 GenCall 40

GenoSNP 348

M-D 133

Note: AA I: African-Americans not of Hispanic Origin; AA II: African-Americans of
Hispanic Origin; EA I: European Americans not of Hispanic Origin; EA II: European
Americans of Hispanic Origin; Num-Sample: the number of subjects within each
population; Algorithm: three algorithms in this table, that is, GenCall, GenoSNP, and
M-D; # of failed SNPs: the number of SNPs fail the Hardy-Weinberg Equilibrium test
within each population
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principle. In contrast, GenCall applies the population-
based strategy to call all individuals within one SNP, so the
calling results are less biased, and a small number of SNPs
fail the HWE test. M-D is also a population-based model
in a wide sense, and the quality of SNP calls is much bet-
ter than that from GenoSNP, a moderate number of SNPs
break the HW principle. In summary, M-D performs well
on genotyping rare variants and controlling the quality
of SNPs.

Discussion
The principle of a DP Gaussian Mixture Model is to run a
model selection procedure to explicitly estimate the num-
ber of components for rare variants. The concentration
parameter measures the inverse variance of DP, which
suggests that a larger concentration parameter implies an
increasing number of components [17]. It brings a new
problem of how to select the appropriate strength of the
prior to control the number of components. In partic-
ular, this parameter is sensitive to SNPs where sparsely
populated observations are in one or two components.
There might be better ways to define this parameter to
help the DP Gaussian Mixture Model more efficiently call
genotypes for rare variants.
The DP mixture model incorporates the reference SNP

selection step to take advantage of the population-based
strategy and the SNP-based strategy for improving the
missing rate and call accuracy for rare SNPs. The success-
ful application of M-D is also based on the selection of the
reference SNP across the genome. In practice, it is difficult
to search the reference SNP from the entire genome due
to the heavy calculation burden. In these cases, the instru-
mental SNPs before the testing SNP are picked out. When
some probes break the assumption about identical probe
responses for various SNPs, searching the best reference
SNP is still challenging. In particular, the method about
accurately measures the similarity between the testing
SNP and the reference SNP still needs to be improved.

Conclusion
One classical genotyping approach is the population-
based method, GenCall, and it requires a large number
of observations to achieve a nice call accuracy. When the
increasing number of rare variants are commonly iden-
tified on the large scale Illumina array, it is extremely
difficult to successfully call genotypes for rare variants.
A SNP-based method, GenoSNP, was designed to solve
this challenging problem, but many more SNPs inferred
from GenoSNP break the HW principle. In this paper, a
new model calling procedure (M-D) is proposed to take
benefits of a model selection step of a DP and the advan-
tage of GenCall and GenoSNP to improve the quality of
rare SNP calls. In brief, the new model calling proce-
dure partitions SNPs into three classes in terms of MAF

and the sample size of each cluster, and a DP Gaussian
Mixture Model with or without reference SNP selec-
tion are applied to rare SNPs with low MAF. The finest
performance of M-D is evaluated by comparing geno-
types inferred by each discussed calling method to those
from the HapMap project. Compared to GenCall and
GenoSNP, M-D performs better on genotyping rare SNPs,
and it also infers better quality of SNP calls than that from
GenoSNP.
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