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Abstract

Background: Among SNP markers that become increasingly valuable in molecular breeding of crop plants are the
CAPS and dCAPS markers derived from the genes of interest. To date, the number of such gene-based markers is
small in polyploid crop plants such as allotetraploid cotton that has A- and D-sub-genomes. The objective of this
study was to develop and map new CAPS and dCAPS markers for cotton developmental-regulatory genes that are
important in plant breeding programs.

Results: Gossypium hirsutum and G. barbadense, are the two cultivated allotetraploid cotton species. These have
distinct fiber quality and other agronomic traits. Using comparative sequence analysis of characterized GSTs of
the PHYAT, PHYB, and HY5 genes of G. hirsutum and G. barbadense one PHYAI-specific Mbo I/Dpn Il CAPS, one
PHYB-specific Alu | dCAPS, and one HY5-specific Hinf | dCAPS cotton markers were developed. These markers have
successfully differentiated the two allotetraploid genomes (AD; and AD,) when tested in parental genotypes of
Texas Marker-1" (TM-1"), 'Pima 3-79" and their F; hybrids. The genetic mapping and chromosome substitution
line-based deletion analyses revealed that PHYAT gene is located in A-sub-genome chromosome 11, PHYB gene is
in A-sub-genome chromosome 10, and HY5 gene is in D-sub-genome chromosome 24, on the reference TM-1" x
‘Pima 3-79" RIL genetic map. Further, it was found that genetic linkage map regions containing phytochrome and
HY5-specific markers were associated with major fiber quality and flowering time traits in previously published QTL
mapping studies.

Conclusion: This study detailed the genome mapping of three cotton phytochrome genes with newly developed
CAPS and dCAPS markers. The proximity of these loci to fiber quality and other cotton QTL was demonstrated

in two A-subgenome and one D-subgenome chromosomes. These candidate gene markers will be valuable for
marker-assisted selection (MAS) programs to rapidly introgress G. barbadense phytochromes and/or HY5 gene (s)
into G. hirsutum cotton genotypes or vice versa.
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Background

Single nucleotide polymorphisms (SNPs) and small in-
sertion/deletion (indel) polymorphisms are widely-used
molecular marker systems in plants [1]. SNP markers
have several advantages including their abundance and
stability, as well as opportunity for high-throughput
genotyping assays [2]. Because SNPs occur in both cod-
ing and noncoding regions, they can be used for genetic
diversity assessment, molecular evolutionary studies, and
genetic mapping for traits of interest in crop species. In
particular, ‘candidate’ gene SNP polymorphisms are of
great interest to reliably associate phenotypes with
potentially causal polymorphisms in crops [1]; therefore,
SNPs, in particular ‘candidate’ gene-based markers are
valuable tools for association mapping and marker-
assisted selection (MAS) [3].

A SNP can be detected and utilized through different
methods that include, but are not limited to, enzymatic
and chemical mismatch assays, allele-specific PCR (ASP),
nucleotide-amplified polymorphisms (SNAP), ligase chain
reaction, single stranded confirmation polymorphism
analysis (SSCP), di-deoxy fingerprinting, cleaved amp-
lified polymorphic sequences (CAPS) and derived-CAPS
[2, 4-6], and genotyping by sequencing (GBS) using next
generation sequencing technology [7]. Each method has
particular advantages and disadvantages, and the use of
particular SNP detection methods depends on many fac-
tors including prior expertise and the availability of the
suitable platform and equipment [2].

One of the most widely used SNP genotyping systems
is composed of the CAPS [4] and dCAPS [5, 8, 9]
methods. CAPS are based on restriction enzyme site
polymorphisms detected after amplification of a locus by
PCR. When such restriction sites are not available within
the SNP locus, restriction site can be created during
PCR amplification by using primer design to introduce
new nucleotides adjacent to the SNPs of interest, making
a synthetic restriction site in the amplified product allele
(dCAPS). CAPS and dCAPS markers are widely used
because they are (1) usually based on a known gene, (2)
easy to develop and genotype using PCR and agarose gel
electrophoresis, (3) needing only small amount of starting
DNA, (4) feasible in a typical molecular biology labo-
ratory, and (5) easy to score in a co-dominant/dominant
fashion. Among them, the most important advantage is
the ‘candidate’ gene-based feature of genotyped CAPS/
dCAPS polymorphisms that increases the power of gen-
etic mapping and reliable marker utilization in breeding
programs [3]. As with other SNP genotyping methods, the
application of CAPS and dCAPS genotyping is compli-
cated in complex polyploid genomes (such as cotton and
wheat) due to the presence of both paralogous and home-
ologous gene copies. CAPS and dCAPS markers can de-
tect polymorphisms between homeologous sub-genomes
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(inter-homeologous SNPs) within individuals, as well as
orthologous SNPs between individual genotypes (known
as genome-specific polymorphisms or GSPs). CAPS and
dCAPS markers are effectively target the GSPs that differ-
entiate polymorphisms from only a single sub-genome of
allopolyploid species, providing the opportunity to analyze
polyploids as diploid organisms [10, 11].

In cotton, a SNP marker framework is being developed
that is based the analysis of candidate genes [12, 13],
EST and transcriptome sequencing [14—18] and whole
genome sequencing [19]. With the emergence and appli-
cation of high-throughput next generation sequencing
(NGS) technologies and GBS, a large number of SNPs
were detected and made available for the cotton research
and breeding [7, 19-21]. SNP markers were used to val-
idate fine mapping QTL regions associated with import-
ant fiber traits [22, 23] and genetic male sterility [24] in
cotton. However, cultivated cottons have a large and
complex tetraplpoid genome with two partially homo-
eologous sub-genomes: the A-sub-genome consisting of
chromosomes 1-13 and D-sub-genome consisting of
chromosomes 14—-26. To date, only a few examples have
been shown for the utilization of CAPS and dCAPS-based
SNP genotyping in cotton [13, 25] although the merits
and importance of these markers were clearly described in
early genetic mapping studies [26]. There is a special need
for the development of genome-specific CAPS and dCAPS
markers for important cotton genes in order to facilitate
rapid MAS programs that can be easily utilized by cotton
breeders with limited access to high-throughput, expan-
sive genomic facilities.

Here, the cotton phytochrome gene family and its
signal transduction factor sequences were targeted to
develop genome-specific CAPS and dCAPS SNP marker
sets using comparisons Upland cotton Gossypium hirsu-
tum and G. barbadense genome. Phytochromes and
their signal transduction factors are the particular targets
because of their multiple effects in plant development,
and their involvement in a wide range of genetic/bio-
chemical pathways [27], yield potential and productivity
[28-32], plant flowering and architecture [33], cotton
fiber quality [34-37], salt tolerance [38, 39], regulation
of nitrate reductase [40, 41], in cold/freezing and drought
tolerance [42—44], and in fungal disease resistance [45].
Previously, the cotton phytochrome gene family and its
signal transduction factor HY5 were characterized, and
their molecular evolution was studied by our group
[35, 46], and cotton phytochromes were preliminarily
associated with cotton fiber quality traits [35]. Re-
cently, the biotechnology potential of phytochromes
in the improvement of major fiber quality traits, early
flowering and maturity, and increased cotton yield poten-
tial in a targeted RNA interference study was also reported
by our team [37, 47].
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The objective of this study was to develop and map
cotton phytochrome (PHYAI and PHYB) and HY5-spe-
cific CAPS and dCAPS markers using GSP sites that are
polymorphic between G. hirsutum and G. barbadense.
Further, these markers were validated and integrated
into a reference genetic map of cotton, constructed by
Yu et al. [48, 49], and the chromosomal assignments of
CAPS and dCAPS markers were verified using chro-
mosome substitution (CS-B) lines [50-52]. Further, we
explored the association of these novel CAPS and dCAPS
markers with cotton fiber traits that may be useful for
MAS programs.

Results and discussions

Gene-specific CAPS and dCAPS marker development
Previously, one PHYA1 gene specific Bbv I CAPS marker
targeting the 213 bp hinge region of cotton PHYAI
genes and detecting a G to A transition, was developed
and validated in an interspecific mapping population
that was segregating for fiber length [35]. The G. barba-
dense allele of the D-genome specific PHYAI locus was
co-dominantly digested by Bbvl into the ~113 and
100 bp products, while G. hirsutum allele remained
undigested.

In this study, to obtain better exploitation phytocrome
genes in our breeding programs, the flanking upstream
and downstream regions of previously characterized
GSTs [35, 36] were sequenced and additional CAPS and
dCAPS markers using commonly available restriction
enzymes were developed. Upon sequencing upstream
and downstream regions of cotton PHYA and HY5
genes, 2.2 kb long GSTs were obtained covering a part
of first exons, second exons, and a part of third exon as
well as the first and second introns of the cotton PHYA
genes. The first, second and a part of third exon as well
as first and second intron sequences for cotton HYS5
genes (data not shown) also were cloned and sequenced,
which then were used to develop GSP-specific CAPS
and dCAPS markers. The 2.1 kb cotton PHYB GSTs of
cotton corresponding to the part of first exon (covering
the hinge region), first intron and part of the second
exon of PHYB genes (PHYBI and PHYB2) were already
characterized [46], and these GSTs were searched to find
suitable GSPs for marker development.
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Using comparative sequence analysis of characterized
GSTs PHYAI, PHYB, and HY5 genes of G. hirsutum and
G. barbadense, a total of 10 pairs of CAPS and dCAPS
primer pairs were designed (not shown). Out of these 10
primer pairs, one cotton PHYAI-specific CAPS (with
Mbo I/Dpn II endonuclease digestion sites), one PHYB-
specific dCAPS (with Alu I restriction site), and one
HY5-specific (with Hinf I restriction site) dCAPS primer
pairs successfully differentiated between A- and D-sub-
genomes when tested in parental genotypes of “TM-1’
[(AD);], Pima-3-79” [(AD),], and interspecific F; hybrids
(Table 1; Figs. 1 and 2a-c).

In particular, a PHYAI CAPS marker was developed
for D-genome derived PHYAI in tetraploid cottons, in
which PHYAI CAPS primer pairs specifically amplified
and differentiated from PHYA2 locus. PHYA1 CAPS pri-
mer pairs amplified one 122-bp PHYAI fragment from
Gossypium genome, corresponding to a portion 743-bp
second exon of the cotton PHYAI genes. This exon at
the position of 334 had G to A transition mutation in G.
barbadense that created GATC recognition site (versus
GGTC in G. hirsutum). This G334A polymorphic site
was recognized and digested by Mbo 1/Dpn 11 endonucle-
ase (Fig. 1) resulting in digestion of the G. barbadense
PHYA1I amplicon into 71- and 51-bp fragments. In con-
trast, G. hirsutum amplicons remained undigested, giving
an opportunity to clearly differentiate G. hirsutum ampli-
con(s) from G. barbadense allele(s) in a co-dominant fash-
ion (Fig. 2a).

Restriction enzyme recognition site polymorphisms
targeted region of cotton PHYB genes were not found
targeted region of cotton PHYB genes, although GSPs
between G. hirsutum and G. barbadense were present.
When an additional nucleotide (C157T) was incorpo-
rated nearby one of the existing GSP (A155G) of 388-bp
first intron of G. barbadense using dCAPS primer mis-
match approach, resulting amplicon had an AGCT Alu 1
recognition site in G. barbadense allele (Fig. 1). Thus,
the PHYB dCAPS primer pair (Table 1) amplified 149-bp
PHYB PCR product from both cotton species. When
digested, G. barbadense allele yielded both thel49-bp
(undigested) fragment, as well as 125- and 24-bp digested
bands, while G. hirsutum amplicon(s) showed no diges-
tion (Fig. 2b; the 24-bp fragment migrates along with

Table 1 Cotton phytochrome and HY5-specific CAPS and dCAPS markers

#  CAPS markers Primer sequences (5'-3') PCR products  Restriction  Restriction products (bp)
(bp) enzyme G. hirsutum (TM-1)  G. barbadense (‘Pima 3-79')
1. PHYA1_CAPS F-5TGCAAAGCAGGAACTTGGCA 122 Mbo | 51/71 122
R-5'CATCCATTTGATAGTCCTTCCAC 3’ Dpn I
2. PHYB_dCAPS F-5'CAACCTCAAAATCTGATGAAGTAAAC3 149 Alu'l 149 125/149
R-5'CTATCAAAACTCAGAACTGCTAAAGC3
3. GhHY5-2_dCAPS  F-5’AACTATATCTGGGAATTACCGATT3' 97 Hinf | 27/70 97

R-5'GTTTCGCAACAACCTC CA3
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PHYA1 CAPS

PHYB dCAPS

CTATCAAAACTCAGAACTGCTAAAGC

HY5 dCAPS

AACTATATCTGGGAATTACCGaTT

Gh_GATAGGAAAATGCACCCAAGG TCATCATTCAAGGCTTTCCTTGAAGT TG Targeted GSP G334A, exon-2
Gb_GATAGGAAAATG CACCCAAGAT CATCATTCAAGGCTTTCCTTGAAGT TG
4_GATC (Mbo I'Dpn Il restriction site)

Gh_CTATCAAAACTCAGAACTG CTAAAAéCATAACTCTTTCT GAATTGATCCT Targeted GSP C157T, intron-1
Gb_CTATCAAAACTCAGAACTGCTAAAACTATAACTCTTTCTGAATT GATCCT

ﬁGCT (Alu | recognition site)

Gb_GAGGTAAAACTATATCTGGGAATTACCGTTTTACCCTTGGTAGTGGCATT Targeted GSP T28C, intron-2
Gh_GAGGTAAAACTATATCTGGGAATTACCGTTTCACCCTTGGTAGTGGCATT Inserted SNP T25A, intron-2

?ANTC (Hinf | recognition site)

Fig. 1 Targeted polymorphisms and restriction sites in phytochrome and HY5-specific CAPS and dCAPS markers. Gh - G. hirsutum, Gb - G. barbadense

Inserted SNP A155G, intron-1

primers and primer-derived artifacts, and was not distin-
guished in the agarose gel). Therefore, PHYB dCAPS
marker could only be scored as a dominant marker and
heterozygotes could not be distinguished. It is noteworthy
to mention here that one additional PHYB marker, desig-
nated PHYBdCAPS-2 with a Hpa I restriction polymorph-
ism (refer to the Additional file 1: Figure Sla) was also
designed. This dCAPS marker amplified 180-bp product
from both G. hirsutum and G. barbadense genotypes
(Fig. 5b). Hpa 1 digestion yielded 36- and 144-bp restricted
and 180-bp unrestricted bands in both genotypes. In that,
144-bp band was more intensive in G. hirsutum and the
unrestricted 180 bp band was more intensive in G. barba-
dense genotypes while 36-bp band was not visible to
detect in agarose gel. Heterozygotes showed both inten-
sive bands of 180- and 144-bp. This marker information is
not included in main part of this paper because of com-
plexity and a need for ‘band-intensity-based’ genotyping of

restricted fragments (see Additional file 1: Figure Sla) that
may generate inconsistent results by others when geno-
typed manually.

Further, using dCAPS approach, one HY5-specific
dCAPS marker (Hinf I restriction site) was designed, tar-
geting a T to C transition within the 90-bp second
intron of HY5 genes (Fig. 1). This dCAPS marker clearly
differentiated G. hirsutum and G. barbadense HYS5 gene
alleles (Fig. 2¢) in dominant marker fashion, where G.
barbadense HYS amplicon remained undigested (about
97 bp), whereas G. hirsutum amplicons were separated
into 97-bp (undigested) as well as 70- and 27-bp
digested fragments (where 27-bp fragment migrates on
primer pair zone and not distinguished in agarose gel).

Linkage mapping and QTL association analyses
Previously, the PHYAI CAPS marker specific to hinge
region and recognized by Bbv 1/Bse XI was amplified in

-

prbucts

Fig. 2 Agarose gel electrophoresis for undisgested and digested CAPS and dCAPS marker products: a PHYAT CAPS, b PHYB dCAPS, and ¢ G.h.HY5
dCAPS. (M) — Molecular-weight size marker of 25 bp ladder, TM-1" and ‘Pima 3-79" — parents, F; - first-generation hybrid. Note: in (b) and (c) there
are 27 and 24 bp digestion products, migrating in a primer pair zone; therefore, hard to be relaibly detected
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fiber length segregating cotton population, an inter-
specific cross between ‘Pima S-7’ (G. barbadense) and
‘Tamcot SP37’ (G. hirsutum) consisting of 96 F, indi-
viduals. Amplified products were digested with Bbvl
endonuclease, and polymorphic bands were scored as
co-dominant fashion. QTL-mapping of Bbv I CAPS
marker polymorphism in a cotton fiber length segre-
gating population revealed that the PHYAI locus is
significantly linked to fiber length with LOD score of
4.27 and p-value of 0.00001 and explained about 6 %
phenotypic variation [35]. This QTL association gave
the preliminary molecular insights that phytochrome
genes, and the PHYAI gene in particular, could be
important in the fiber elongation process in cotton
[35, 37].
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To study the possible genetic associations of phyto-
chrome and HY5-specific CAPS and dCAPS markers
with a suite of multi-environmentally evaluated complex
traits (including all major fiber traits), these markers
were incorporated into the reference genetic linkage
map of cotton constructed using a large number SSR
and SNP markers [48, 49]. Toward this goal, our candi-
date gene-specific CAPS and dCAPS markers were ge-
notyped across all 186 RIL lines (Fig. 3a-c; Additional
file 1: Figure Sla) from an interspecific cross between
‘TM-1" and ‘Pima 3-79 [48, 49]. Based on these data,
the PHYAI CAPS marker was assigned into linkage
group of A-sub-genome chromosome 11 (Fig. 4a). The
PHYB dCAPS marker (Fig. 4b) and the PHYBdCAPS-2
marker (genotyped using band-intensity level) were

-
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Fig. 3 The examples of phytochrome and HY5-specific CAPS and dCAPS markers, segregating among TM-1" x ‘Pima 3-79' RIL lines. a PHYAT CAPS,
b PHYB dCAPS, and ¢ Gh_HY5 dCAPS. (M) — Molecular-weight size marker of 25 bp ladder, TM-1"and ‘Pima 3-79' — parents, F; - first-generation hybrid,
13-53 - RIL individuals
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Fig. 4 Genetic linkage maps with integration of phytochrome and HY5-specific CAPS and dCAPS markers. a PHYAT CAPS, A-subgenome
chromosome 11, b PHYB dCAPS, A-subgenome chromosome 10, and ¢ Gh_HY5 dCAPS, D-subgenome chromosome 24. QTL designations on the
map are follows as: InL - internode length; MsD - main stem diameter; LP - lint percent; GT - gin turnout; SI - seed index; LI - lint index; Ns - nep
size; Nn - number of neps; SCN - number of seed coats; UQL - upper quartile of fiber length by weight; SFC - short fiber content by weight g;
ALFw - average length of all fiber by weight; 5.0 L - fiber span length; 2.5 L - fiber span length; VFM — visible foreign matter in percentage;

FTX - fiber fineness; IFC - immature fiber content by weight g; MR - maturity ratio; MT - mean tenacity; and ME - mean elongation

assigned to chromosome 10 in the A-sub-genome, in a
very close proximity to each other (Additional file 1:
Figure S1b). The HY5 dCAPS marker was assigned to
linkage group 24 in the D-sub-genome [48, 49] (Fig. 4c).
When the gene-based CAPS markers were placed on
these three chromosomes, the mapping accuracy of

individual CAPS marker positions was tested. There was
no interspecific segregation distortion that would other-
wise affect these CAPS loci.

Detailed study of flanking markers and QTLs associ-
ated with regions nearby our candidate gene markers
revealed that PHYAI CAPS marker mapped between
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two SSR markers JESPER008 and MUCS399 at 3.925 cM
distance (Fig. 4a). This region and flanking SSR markers
were associated with such important fiber traits as short
fiber content by weight (SFC) and an average length of
all fibers by weight (ALFw) [48, 49]. In another inde-
pendent QTL mapping study using testcross mating-
design mapping population, Yu et al. [53] found associ-
ation of one of the flanking markers linked to PHYAI
CAPS, MUCS399, with micronaire (MC) and lint yield
(LY). These results indirectly associate the PHYAI CAPS
marker with these fiber quality traits and validate our
previous findings on association of PHYA1 Bbv 1/Bse X1
CAPS with the fiber length trait [35]. Moreover, the results
of our targeted RNAI study for PHYA1 gene(s), improved
fiber length and other key fiber quality traits, including
short fiber content, microniare, strength, and uniformity
[36, 37, 47], further support PHYAI CAPS marker associa-
tions with the related fiber QTLs discussed here.

Similarly, the PHYB dCAPS marker, on A-sub-genome
chromosome 10, flanked by BNL3071 and Uccgl0239_93/
MUSS347b markers at 0.766 c¢cM distance (Fig. 4b,
Additional file 1: Figure S1b) were reported to be associ-
ated with fiber fineness (FTX) by Yu et al. [48, 49]. In an-
other independent QTL mapping effort, Guo et al. [54]
reported that BNL3071 marker, also tightly linked with
PHYB dCAPS marker, was associated with the node of
first fruiting branch (NFB) in a mapping population (F,.5)
from the cross between T1107 and T1354, a day-neutral
cultivar Deltapine 61 and photoperiodic G. hirsutum ac-
cessions, respectively. These findings further suggest the
importance of phytochrome and light signal transduction
for both fiber development and for flowering time/earli-
ness in cotton.
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The HY5 dCAPS marker was flanked by markers
JESPR157b and MGHES029 at 10.617 ¢cM distance in
the D-sub-genome chromosome 24 (Fig. 4c) [48, 49]. In
an independent QTL mapping study mentioned-above,
Yu et al. [53] reported the association of these two flank-
ing markers linked to HY5 Hinfl CAPS, JESPR157b and
MGHES029, with fiber uniformity (FU). A comprehen-
sive meta-QTL analysis conducted by Said et al. [55] as-
sociated JESPR157a and CIR026 markers at 3.51 cM
distance with a micronaire hotspot (‘c24-Micronaire-
Hotspot-15’) including 4 QTLs, (Fig. 4c) [48, 49]. Yu et
al. [48, 49] at the same time also associated this distal re-
gion of D-sub-genome chromosome 24 around CIR026
with immature fiber content (IFC), fiber fineness (FTX),
and mean tenacity (MT). Additionally, Wang et al. [56] as-
sociated DPL461 marker with fiber elongation (FE) trait in
a mapping population derived from an interspecific cross
between G. hirsutum and G. darwinii Watt. The DPL461
is located at 21.255 cM distance to HY5 dCAPS marker in
D-sub-genome chromosome 24 (Fig. 4c) [49]. All these
observations suggest the potential role of HY5 genes in
cotton fiber quality regulation.

Verification of chromosomal locations using CS-B lines

In addition, deletion analysis of dCAPS markers recon-
firmed the chromosomal localization of cotton PHYAI
and PHYB genes via linkage mapping analysis (Figs. 4
and 5). In both analyses, PHYBACAPS-2 marker was
assigned to an A-sub-genome chromosome 10 (Fig. 5b;
Additional file 1: Figure S1b), with detailed linkage in-
formation of this marker with other ordered markers in
relation to adjacent cotton QTLs (Fig. 4b) [48, 49].
Chromosomal localization of cotton PHYAI genes using
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cytogenetic stocks revealed that chromosomes 2 (not
confirmed by mapping results) and 11 may bear PHYAI
as the CS-B02 and NTN17_11 stocks showed the Pima
specific band. However, neither CS-B17 (full) nor CS-
B11 short arm (only available stock) had Pima specific
allele; therefore, considering linkage mapping results it is
likely that PHYA1I is located on long arm of chromo-
some 11 (Fig. 5a).

Conclusions

This study reports the genome mapping of three cotton
phytochrome genes with newly developed CAPS and
dCAPS markers. The proximity of these loci to fiber
quality and other cotton traits was demonstrated in two
A-sub-genome, and one D-sub-genome chromosomes.
‘Candidate’ gene specific CAPS and dCAPS markers
developed for important plant genes such as PHYAI,
PHYB, and HYS5 of cotton will be useful for cotton
breeding programs worldwide for precise, targeted intro-
gression important fiber and flowering traits from G.
barbadense into G. hirsutum cultivars or vice versa. Fur-
ther, flanking SSR markers closely linked with these
CAPS and dCAPS markers, identified herein, and ready
exploitation of these CAPS and dCAPS markers by
breeders would further enhance the efficiency of MAS
programs and foster the development of improved cotton
cultivars.

Methods

Plant materials

The ‘Texas Marker-1’ (‘TM-1, G. hirsutum L.), ‘Pima 3—
79" (G. barbadense L.) and 186 recombinant inbred lines
(RILs) derived from an interspecific cross between ‘TM-1’
and ‘Pima 3-79" were used in this study [48, 49]. These
cotton genotypes were obtained from the USDA-ARS
Cotton Germplasm Unit, College Station, Texas, USA.
The cytogenetic stocks and CS-B line collection of tetra-
ploid cotton [50-52] were used for the verification of
chromosomal localizations of CAPS and dCAPS markers.
The cytogenetic stocks and CS-B lines were kindly pro-
vided by Prof. D.M. Stelly, Texas A&M University, College
Station, Texas, USA, and USDA-ARS partner laboratory,
Starkville, Mississippi, USA through USDA-Uzbekistan
cotton germplasm exchange program.

DNA extraction and sequencing

Genomic DNAs were isolated from young leaves using
the cetyltrimethylammonium bromide (CTAB) method
[57]. The characterization, cloning, and sequencing of
cotton phytochromes and HY5 genes were performed as
described by Abdurakhmonov [35] and Abdurakhmonov
et al. [46].
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CAPS and dCAPS marker development

To develop phytochrome gene-specific CAPS and dCAPS
markers, a PCR-walking experiment was designed to
sequence upstream and downstream of previously se-
quenced hinge region [35, 46] of PHYA genes of Gossy-
pium species. We successfully generated 2.2 kb PHYA
GST sequences from G. hirsutum, G. barbadense, G.
herbaceum and G. raimondii genomes (Abdurakhmonov
et al. unpublished) that were aligned to design CAPS and
dCAPS markers. Similarly, using PCR-walking approach,
the first and second exons, part of the third exon, and first
and second introns of Gossypium HY5 were sequenced
that include previously characterized HY5 GST [35]. A
2.1 kb long PHYB GSTs of Gossypium species reported by
Abdurakhmonov et al. [46] was used for development
of PHYB specific markers. Sequencing, cloning and
characterization of upstream and downstream regions
via PCR-walking from the hinge region of targeted genes
were conducted according to detailed methodology de-
scribed by Abdurakhmonov et al. [46].

GSTs were aligned using Sequencher program ver. 4.1
(Gene Codes, USA) and GSP sites polymorphic between
G. hirsutum and G. barbadense were determined. The
polymorphic sites in cloned candidate genes were used
to design gene-specific PCR-based CAPS markers. If
identified polymorphism was recognized by commer-
cially available restriction endonuclease CAPS markers
were directly generated [4]; otherwise, a new SNP was
artificially inserted near the GSP site to create a new re-
striction endonuclease recognition site using dCAPS
Finder 2.0 [5, 9]. Marker primers were synthesized by
Integrated DNA technologies Inc., (Iowa, USA) and used
for genotyping experiments (Table 1).

CAPS and dCAPS marker genotyping

For genotyping, the PCR amplifications were performed
in a 10 pl reaction mixture containing 1 pl 10 x PCR
buffer with MgCl,, 0.5 pl 25 mM of a dATP, dGTP,
dTTP, and dCTP mix, 0.5 ul 25 ng/ml of each reverse
and forward primer, 1 pl 10 ng/pl template DNA, and
0.1 U Taq DNA polymerase. PCR amplification was per-
formed on a GeneAmp 9700 thermal cycler using the
program consisting of an initial denaturation at 95 °C
for 5 min, followed by 40 cycles of: denaturation at 95 °C
for 45 s., annealing at 55-68 °C (depending on primers)
for 45 sec. and elongation at 72 °C for 2 min., and finished
with a final elongation at 72 °C for 10 min.

PCR products were purified using a 26 % PEG (poly-
ethylene glycol) solution (PEG 8000, 6.5 mM MgCl,,
0.6 M NaOAc - pH 6.0-7.0) and digested with commer-
cial restriction enzymes recognizing CAPS and dCAPS
sites. Restriction analysis of each sample was performed
in 10 pl of reaction mixture containing 1 pl 10 x restric-
tion enzyme buffer, 2 pl purified PCR product, 0.2 Unit
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restriction enzyme and 6.5 pl sterile water. The digested
products were electrophoresed on 3.5 % high-resolution
agarose (HiRes Agarose) gel in 0.5 x TBE buffer, with a
mode voltage of 5.3 V/cm. After electrophoresis, gels
were stained with ethidium bromide (EtBr) solution for
5-10 min and photo-documented using Gel Imaging
Documentation System (Alphaimager 2200, Alpha Inno-
tech, USA) with exposure under the UV light.

Construction of linkage maps and QTL analysis

To incorporate phytochrome and HYS5-specific CAPS
and dCAPS markers into the tetraploid cotton linkage
map, we genotyped these markers in the bi-parental
progenies of 186 RILs, which were developed from an
interspecific cross between ‘TM-1" and ‘Pima 3-79’
[48, 49]. The genetic linkage relationships with the refer-
ence genetic maps were constructed from the genotypic
data of markers in RILs, using the program JoinMap ver-
sion 3.0 [58]. Assignment of linkage groups to the respect-
ive chromosomes was based on the reference genetic
maps of Yu et al. [48, 49]. For a graphical representation
of QTL maps and linkage groups, the program Map
Chart version 2.2 [58] was used. Previously mapped
QTL information on specific linkage groups [48, 49]
were also placed into CAPS and dCAPS marker-
incorporated linkage groups to predict and interpret
genetic association of targeted regions of cotton
genome.

Deletion analysis using chromosome substitution lines

The CS-B chromosome substitution lines were used for
verification of chromosomal localization of CAPS and
dCAPS markers. Each individual CS-B line is composed
of G. hirsutum cv. “TM-1" with a single chromosome or
chromosome segment substituted from G. barbadense
cv. ‘Pima 3-79’ [52]. In addition, an individual mono-
somic or monotelodisomic F; stocks that lack a chromo-
some or one arm of a chromosome from the recipient,
‘TM-1, and have the homologous chromosome or
chromosome arm from the donor ‘Pima 3-79’ line was
used. Amplified products of CAPS and dCAPS markers
were assigned to the substituted chromosomes based on
GSP polymorphisms and deletion method, in which the
cytogenetic stock exhibited a hemizygous-banding pat-
tern, with the “TM-1" band is missing, in such cases, it
could be considered that the locus was situated on that
missing or the substituted chromosome or chromosome
arm of the aneuploid or CS-B line. DNAs from G. hirsu-
tum cv. ‘TM-1, G. barbadense cv. ‘Pima 3-79, and
monotelodisomic and monosomic substitution lines
(BCyF;) for different chromosomes and chromosome
arms of G. barbadense were used to identify the chromo-
somal location of CAPS and dCAPS markers following
the deletion analysis strategy used previously [59, 60]. The
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DNAs from individual aneuploid substitution lines were
provided by Dr. D.M. Stelly at Texas A&M University,
College Station, Texas [52].

Additional file

Additional file 1: Figure S1a. The examples of PHYBACAPs-2 markers
segregating among TM-1 x 3-79 RIL lines. (M) — Molecular-weight size
marker of 25-bp ladder, TM-1" and ‘Pima 3-79' - parents, F; - first-
generation hybrid, 13-51 - RIL individuals. Note: the 144-bp band is more
intensive in G. hirsutum and the 180-bp band is more intensive in

G. barbadense genotypes, while 36-bp band is not visible to detect.
Heterozygots show two intensive bands of 180- and 144-bp, respectively.
Primer information for PHYBACAPs-2: F-5'GAAGATCATAAAAAGGCTAT
ATACGTGGTGGTTAS3'; R-5'CAAAGGATTGGGACTATGAACAATGG3';
Figure S1b. Genetic linkage maps with integration of PHYBACAPs and
PHYBACAPs-2 corresponding to chromosome 10 of the A-sub-genome

[48, 49]. QTL designations on the map are follows as Ns - nep size;

Nn - number of neps; UQL - upper quartile of fiber length by weight;

SFC - short fiber content by weight g; ALFw - average length of all fiber by
weight; 5.0 L - fiber span length; 2.5 L - fiber span length; VFM - visible
foreign matter in percentage; FTX - fiber fineness; IFC - immature fiber
content by weight g; MR - maturity ratio; MT - mean tenacity; and

ME - mean elongation. (DOCX 820 kb)
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