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Abstract

Background: New Zealand has some unique Terminal Sire composite sheep breeds, which were developed in the
last three decades to meet commercial needs. These composite breeds were developed based on crossing various
Terminal Sire and Maternal breeds and, therefore, present high genetic diversity compared to other sheep breeds.
Their breeding programs are focused on improving carcass and meat quality traits. There is an interest from the
industry to implement genomic selection in this population to increase the rates of genetic gain. Therefore, the
main objectives of this study were to determine the accuracy of predicted genomic breeding values for various
growth, carcass and meat quality traits using a HD SNP chip and to evaluate alternative genomic relationship
matrices, validation designs and genomic prediction scenarios. A large multi-breed population (n = 14,845) was
genotyped with the HD SNP chip (600 K) and phenotypes were collected for a variety of traits.

Results: The average observed accuracies (± SD) for traits measured in the live animal, carcass, and, meat quality
traits ranged from 0.18 ± 0.07 to 0.33 ± 0.10, 0.28 ± 0.09 to 0.55 ± 0.05 and 0.21 ± 0.07 to 0.36 ± 0.08, respectively,
depending on the scenario/method used in the genomic predictions. When accounting for population stratification
by adjusting for 2, 4 or 6 principal components (PCs) the observed accuracies of molecular breeding values (mBVs)
decreased or kept constant for all traits. The mBVs observed accuracies when fitting both G and A matrices were
similar to fitting only G matrix. The lowest accuracies were observed for k-means cross-validation and forward
validation performed within each k-means cluster.

Conclusions: The accuracies observed in this study support the feasibility of genomic selection for growth,
carcass and meat quality traits in New Zealand Terminal Sire breeds using the Ovine HD SNP chip. There was
a clear advantage on using a mixed training population instead of performing analyzes per genomic clusters.
In order to perform genomic predictions per breed group, genotyping more animals is recommended to increase
the size of the training population within each group and the genetic relationship between training and validation
populations. The different scenarios evaluated in this study will help geneticists and breeders to make wiser
decisions in their breeding programs.
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Background
The New Zealand meat sheep industry plays a very
important role in the international market, being the
third largest sheep meat producer [1]. In 2015 the coun-
try produced 488,000 tonnes of sheep meat with 98%
available for export to a variety of countries (e.g. China,
United Kingdom and United States of America) [2].
Well-designed breeding programs have sustained indus-
try competitiveness, with substantial genetic progress in
several traits of high economic relevance (e.g. increase
of 83% in kg of lamb produced per ewe and up to 28%
overall in carcass weight from 1990 to 2012, [3]).
Increased production efficiency is directly related to
profitability. However, to maintain this change and to
increase the proportion entering the premium markets,
both meat presentation and quality have to be improved
continuously. Historically, this has included the use of
electrical stimulation in post slaughter, and a shift from
frozen to chilled product primarily improving tender-
ness. In addition to tenderness, other meat quality traits
now should be also incorporated into breeding programs
in order to further genetically improve or maintain the
meat quality. It is a challenge to improve meat quality
traits by traditional breeding methods due to the fact
that most of these traits are expensive to measure and
may require slaughter of the potential selection candi-
dates. Progeny testing implies additional costs for the
producers and an increase in generation interval, which
limits genetic gains per year that could be achieved if pro-
genitors were selected early in life. Genomic selection
(GS) [4] is revolutionising livestock breeding programs
worldwide and is one of the most promising tools to
genetically improve quality and production of sheep meat.
Genomic predictions for a number of standard

production traits are already implemented in the New
Zealand and worldwide sheep industries [5–10]. New
Zealand has some unique genetic resources that include
Terminal Sire composite breeds which were developed
in the last three decades to meet commercial needs. These
composite breeds include Primera, Lamb Supreme, Land-
mark and Highlander composites. As reported by Brito
[11] and Kijas et al. [12], these composites and the breeds
involved in their formation have high genetic diversity and
large effective population sizes (Ne). For instance, Ne of
974, 380 and 227 have been reported for Primera, Lamb
Supreme and Texel breed groups, respectively [11]. Ne is
negatively related to levels of linkage disequilibrium,
which is an important factor to successfully predict
molecular breeding values [13]. Therefore, to enable GS in
the New Zealand Terminal Sire composite breeds, a high
density SNP array (606,006 SNPs) was commissioned by
FarmIQ™ (joint New Zealand government and industry
Primary Growth Partnership) and developed in conjunc-
tion with the International Sheep Genomics Consortium

(ISGC) and Illumina [14, 15]. The availability of a higher
density panel could be a great option to successfully
conduct multi-breed genomic evaluations and make faster
genetic progress in the traits of interest (e.g. growth,
carcass and meat quality traits).
Furthermore, it is important to investigate the best

methods/scenarios for genomic predictions in these
populations. When there is a close relationship between
the animals in the training and validation population,
molecular breeding values (mBVs) can be estimated with
a higher accuracy [16]. Ventura et al. [17], in a study
with beef cattle, has proposed a method to improve
genomic selection by clustering animals based on their
genotype information. The idea was to create groups of
animals that are more genetically similar so that SNP
effects would be consistent within these clusters and
therefore improve accuracy of genomic predictions.
However, this methodology has not been evaluated in
sheep populations yet and could be beneficial for the
population under investigation due to its high genetic
diversity.
Accounting for population structure can also be an

important step in genomic analysis. In a sheep study,
Auvray et al. [6] fitted six principal components (PCs)
from the decomposition of the centered genotype matrix
as fixed effects in the mBVs estimation model to account
for population structure and Dodds et al. [18] also
evaluated this strategy by fitting PCs from the genomic
relationship matrix in the genomic predictions in a
Dual-purpose sheep population. Considering that, it is
also important to evaluate the need to adjust for popula-
tion structure in the Terminal Sire composite breeds
under investigation, due to the fact that this is a unique
population, with some genetic connectedness among the
breed groups and common ancestral breeds.
The main objectives of this study were to determine

the accuracy of genomic predictions of breeding values
for various growth, carcass and meat quality traits using
a HD SNP chip and to evaluate alternative genomic
relationship matrices, validation designs and genomic
prediction scenarios.

Methods
Genotype data and quality control
There were 14,845 animals from both sexes (7961 males
and 6884 females) with HD (Ovine Infinium® HD SNP
Beadchip) genotype call rate greater than 95%. The ani-
mals were born in: 2007–2009 (n = 208); 2010 (n = 3623);
2011 (n = 3782), 2012 (n = 2383), 2013 (n = 2175) and
2014 (n = 2674). DNA was extracted mostly from ear
punch tissue, however, DNA was also extracted from
blood and semen samples [19–21]. Genotyping was
conducted at the AgResearch Animal Genomics Research
Laboratory, Mosgiel, New Zealand.
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Genotypes were called on the AB system and using
Illumina GenomeStudio® software. Genotypes were
coded as the number of A alleles (0, 1 or 2). SNPs were
excluded from the analysis if minor allele frequency
(MAF) was less than 0.01, call rate less than 0.95, non-
autosomal markers, unknown genomic position on
OARv3.1, had duplicated map positions (two SNP with
the same position but with different names), misplaced
SNP positions compared to the sheep reference genome
assembly version OARV3.1 or an extreme departure
from Hardy Weinberg equilibrium (HWE, p < 10−15). A
total of 517,902 SNP were retained for further analyses
after filtering. Following quality control, missing geno-
types were minimal (2.16%) and were imputed using the
FImpute software [22].

Phenotypic data
Performance records were obtained from the Sheep
Improvement Limited (SIL, www.sil.co.nz) database.
Only animals that were genotyped with the HD SNP
chip and measured for at least one trait were included in
this investigation, as the main goal was to estimate
prediction accuracies of molecular breeding values.
Performance records were obtained from 14,845 animals
born between 2007 and 2014 (progeny birth years: 2010
to 2014, sire birth years: 2007 to 2013) in the FarmIQ,
Ram Breeding and Progeny Test flocks. Farms (n = 6)
were located on the North and South Islands of New
Zealand. The animals were primarily progeny from
Terminal Sire composites and Texels mated to a variety
of maternal/dual-purpose breeds. Progeny data from 877
rams were included in this study. The average (± SD)
number of progeny per sire was 17 (±15) and it ranged
from 1 to 114 progeny per sire.

Traits description and data editing
The traits included in this study were: birth weight
(BWT, kg), weaning weight (WWT, kg), live weight at
6 months (LW6, kg), eye muscle depth (EMD, mm), eye
muscle width (EMW, mm) and fat depth (FDM, mm) mea-
sured by ultrasound, pre-slaughter weight (PRESLT, kg)
measured around 24 h prior to slaughter, hot carcass
weight (HCW, kg), cold carcass weight (CCWT, kg), dress-
ing out percentage (DO%, %) estimated as: HCW

PRESLT � 100 ,
X-ray carcass weight (XWT), X-ray leg weight (XLEG, kg),
X-ray middle or loin weight (XMID, kg) and X-ray fore-
quarter weight (XFORE, kg), X-ray number of rib pairs
(XNRIB, n), depth of tissue at the GR site over the 12th rib
at a distance of 110 mm from mid-line (CGRM, mm),
carcass measurement of buttocks circumference (CBUTT,
cm), loin meat pH (LPH), meat colour measures indicated
by Ln (lightness/darkness), An (redness/brownness) and
Bn (yellowness), with n being 24, 48, 96 and 168 h after

retail display, marbling score (MARB, visually scored
on a five point scale) and shear force as an indicator
of tenderness (SHF, kg). A detailed description of the
traits evaluated and its recording procedures can be
found in Brito [11].
Data handling and preparation were performed pre-

dominantly in R [23]. Only records that met the follow-
ing criteria were used: 1) animal genotyped with HD
SNP chip; 2) year of birth and birth flock known; 3) sex
identified as male or female, 4) trait management group
known and 5) contemporary group (CG) for the trait
contained more than three observations. To remove
possible outliers, observations more than three standard
deviations outside the mean for the contemporary
group, were also deleted. Contemporary group is trait
specific and was defined by flock, birth year, sex, wean-
ing mob (except for birth weight) and trait measurement
mob.

Expected accuracy of genomic predictions
The expected accuracies (AccE) were estimated as the
correlation between true and estimated genomic values,

i.e.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nph

2

Nph
2þ Me

r
[24], where Np is the number of individuals

in the training population (genotyped and measured for
each trait), h2 is the trait heritability and Me is the effective
number of loci, which can be calculated as 2NeL/
log(4NeL) [25], where assumed genome length (L)
was 26 Morgans [8].

Effective number of progeny
The EBV of a young lamb for a trait for which it has no
phenotype record is based on the information of its rela-
tives. Using genomic information, it is possible to gener-
ate a breeding value at an earlier age with an accuracy
higher than the parent average. One could be interested
in knowing the number of progeny that would need to
be recorded to achieve an EBV’s accuracy similar to the
one attained by using genomic information. Therefore,
we defined Effective Number of Progeny (ENP) as the
number of progeny needed to complement the parent
average information to yield the same accuracy as the
mBVs. ENP has been previously reported in sheep
studies [19] and it was calculated using the formula:
ENP = (r2α)/(1 ‐ r2), where r2 is mBVs reliability, ∝= (4 −
h2)/h2, and h2 is the trait heritability.

Genomic BLUP (prediction of molecular breeding values)
The phenotype fitted in the models for estimation of
SNP effects were the phenotypes adjusted for known
systematic and contemporary group effects that affects
individual records (same models used to estimate herit-
ability but excluding the animal effect). The effects were
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determined in a previous study using the same dataset
[11]. The software snp1101 [26] was used for the
analyses. The mBVs were calculated for each trait based
on the following mixed model:

y ¼ 1μþWaþ e

where y is the vector of observed phenotypic values of
the animals adjusted for fixed effects (Additional file 1),
1 is a vector of 1 s, μ is the overall mean, W is the
design matrix linking records to animal mBVs, a is the
vector of random animal mBVs and e is the vector of
random residual effects. The mBVs were assumed nor-
mally distributed with mean zero and variance equal to
G � σ2

g , where G is the genomic relationship matrix

based on the SNP markers and σ2g is the genetic variance.

The random residual effects were assumed normally
distributed with mean zero and variance equal to
I * σe

2, where I is an identity matrix and σe
2 is the re-

sidual variance. The mBVs are the predicted animal
effects from the above model and corresponds to the
sum of the effects of each SNP. The effect of three
different versions of G on accuracy of mBVs were
investigated:

1) G matrix as in VanRaden [27]: The G matrix was

calculated as: G ¼ M−2Pð Þ M−2Pð Þʹ

2
X

pi 1−pið Þ
, where M is a

matrix of counts of the alleles “A”, pi is the
frequency of allele “A” of the ith SNP, P is a matrix
with each row containing the pi values. Missing
values in M were imputed using the software
FImpute [22]. Hereafter, this G matrix will be
described as GB0.

2) G + A matrices: an alternative G matrix was fitted
as G* = (1 - w)G + wA, where G is the genomic
relationship matrix GB0 and A is the pedigree
relationship matrix. Attributing a weight (w) for
A is equivalent to fitting residual polygenic effects
that are not captured by the markers [28, 29].
Three weights were evaluated: w = 0, 10 and 20.
Hereafter these will be described as GB0 (same as
the one previously described), GB10 and GB20,
respectively.

3) Genomic predictions using G calculated based on
base population allele frequencies (GBBP):
According to VanRaden [27], allele frequencies
from the unselected population should be used to
construct the G matrix. The effects of calculating
the G matrix based on the allele frequencies of
the base population was evaluated. This method
has been implemented in the software snp1101
[26] and is based on a modified version of
Colleau indirect algorithm [30].

Accounting for population structure
To determine whether accounting for population structure
would increase the accuracy of genomic predictions,
phenotypes where adjusted for fixed effects (as described
previously) and for two (GB2PC), four (GB4PC), or six
(GB6PC) covariate principal components from the
genomic relationship matrix.

Validation designs
For each individual trait the total number of records
were split into training and validation populations to a)
derive a prediction equation of performance based on
HD SNP genotypes using the training population and b)
to estimate the accuracy of the prediction equation in
the validation population. The validation scenarios
evaluated were:

1) Forward validation and mixed training population:
for each trait, all animals with genotypes and
phenotypes were split into two populations based on
birth year: training (birth years: 2007 to 2013) and
validation (birth year: 2014) populations. The
youngest cohort of animals were used in validation
to mimic what would happen in practice (young
animals without phenotypes recorded would be
selected based on marker effects predicted on older
animals). GB0, GB2PC, GB4PC, GB6PC, GB10,
GB20 and GBBP were compared using this
validation scenario.

2) Forward validation within each k-means cluster
(GBC): the animals were clustered in five groups as
explained later in the section “k-means clustering”.
The animals from each cluster were then divided
into two groups: training (birth years: 2007 to 2013)
and validation (birth year: 2014) populations to
perform genomic predictions. The mean accuracy
for all the groups was weighted by the number
of records in the validation population within
each group.

3) Forward validation within each genomic cluster:
following Ventura et al. [17], we evaluated different
clustering methodologies based solely on genotype
information. After clustering, the animals from each
cluster were treated as an independent population
and genomic predictions were conducted within
each group (i.e. cluster) using forward validation
(split in training and validation populations as
described before). The clustering methodologies
evaluated were based on a distance matrix built
based on: 1) Genomic relationship matrix (GB0)
[27], and 2) Euclidean genotype distance matrix
(EDM) [31]. Hierarchical clusters were determined
using the hclust package in R [23]. The animals from
each cluster were then divided into two groups:
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training (birth years: 2007 to 2013) and validation
(birth year: 2014) populations. The mean accuracy
was weighted by the number of records in the
validation population. KnG and KnEDM represents
these scenarios, where n is the number of assumed
subpopulations and G and EDM represents the
information used to build the distance matrices
used for clustering the animals.

4) Cross-validation: The data was divided into five
datasets and each subset is predicted once from the
other subsets. The prediction equations were derived
from four groups and validated in the 5th group.
It was alternated until all groups were used as
validation. The genomic prediction accuracies were
considered as the average of the five analysis. The
dataset was divided based on two procedures:

a) Randomly (GBRCV): each animal was randomly
assigned to one of five subsets.

b) k-means clustering (GBKCV): similar to Saatchi
et al. [32], the animals were also clustered based
on the k-means clustering approach, based on
Hartigan and Wong’ algorithm [33]. The
distance matrix was created based on the
genomic relationship matrix (GB0) among
genotyped animals [27]. The choice for five
groups was based on i) the plot of the first
two principal components and ii) that the
majority of animals with records were born
from 2010 to 2014 (5 years), which could
potentially balance the number of animals per
group and facilitate the comparisons with the
other scenarios.

Accuracies of genomic predictions
The observed accuracy of mBVs were derived, for each
validation population, as the Pearson correlation
between mBVs and phenotypes (adjusted for fixed effects
or also fitting principal components of GB0 matrix).
The Pearson correlation was then divided by the square
root of heritability (h2) to adjust for the upper limit of

accuracy of a phenotype/residual (y) r mBVs; yð Þ=
ffiffiffiffiffi
h2

p� �
.

The heritability was estimated from the same dataset
using Restricted Maximum Likelihood (REML) proce-
dures fitting an animal model and the same fixed effects
described before (Additional file 1), using ASReml [34].
The pedigree was recorded since 1990 and contained
243,486 individuals. Accuracies were reported only when
the number of individuals (in the validation population)
was greater than 150. When combining accuracies
across breed groups or clusters, the overall accuracy was
the mean of the accuracy within each group weighted by
the number of records.

As presented in VanRaden et al. [27, 35], from the in-
verse of the left hand side of the mixed model equations
(MME) it is possible to calculate theoretical accuracy
(AccT) of the estimated genomic values. This accuracy
has practical application to sheep producers, as it gives a
measure of the mBV accuracy for each individual animal
that is candidate to selection.

Spread of molecular breeding values
Following Dodds et al. [18], the spread of mBVs in the
validation populations were examined to make sure they
were consistent with what was expected for a set of
estimated breeding values with mean accuracy r.

Given that the accuracies of the mBVs are constant: v

ar mBVs�
r

� � ¼ var mBVs�ð Þ
r2 ¼ var TBVð Þ ¼ σ2u , where “*” de-

notes the mBVs adjusted to have the correct variance

as: r2 ¼ var mBVs�ð Þ
var TBVð Þ . From this, the factor K, by which

the mBVs must be multiplied to have the right
spread, can be calculated as: mBVs* = k *mBVs*.

Furthermore, var K�mBVs�
r

� � ¼ K2var mBVsð Þ
r2 ¼ var TBVð Þ

and K ¼ r�sd TBVð Þ
sd mBVsð Þ . Considering that, the ratio of the

expected spread to that observed was measured as:
K = r * σA/sd(mBV), where σA

2 is the genetic variance
of the trait and sd(mBV) is the standard deviation of
the mBVs for the trait.

Results
Table 1 summarizes all phenotypic traits based on the
following parameters: number of observations, mean,
standard deviation and phenotypic range for all growth,
carcass and meat quality traits. The difference in
number of records is because only genotyped animals
were included in this study and not all of them were
measured for all the traits, plus some traits were not
recorded in all flocks (e.g. BWT) and a quality control of
the raw data was done as previously described. The size
of training and validation populations for all genomic
prediction scenarios is presented in Additional file 2.
The average (± SD) number of animals in the training
population was 8519 ± 2009 (GB0, GB2PC, GB4PC,
GB6PC, GBBP, GB10 and GB20), 8538 ± 1868 (GBRCV
and GBKCV), 1706 ± 397 (GBC), 8400 ± 1960 (K5EDM),
8502 ± 2017 (K5G), 8271 ± 1925 (K10EDM) and 4223 ±
1091 (K10G). Heritability estimates for traits measured
in the live animal, carcass and meat quality traits ranged
from 0.10 to 0.43 (average: 0.28 ± 0.08), 0.14 to 0.28
(average: 0.22 ± 0.03) and 0.04 to 0.31 (average: 0.16 ±
0.07), respectively.

Accuracies of genomic predictions
The accuracies of genomic predictions for GB0, GB2PC,
GB4PC, GB6PC, GB10, GB20, GBRCV, GBKCV and
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GBC are presented in Tables 2, 3 and 4 for traits mea-
sured in the live animal, carcass traits and meat quality
traits, respectively. The expected average accuracies
(AccE) for traits measured in the live animal, carcass
traits and meat quality traits were 0.41 ± 0.11, 0.46 ± 0.03
and 0.34 ± 0.07, respectively. The average observed ac-
curacies (± SD) for traits measured in the live animal for
the scenarios GB0, GB2PC, GB4PC, GB6PC, GB10,

GB20, GBRVC, GBKCV and GBC were 0.33 ± 0.10,
0.28 ± 0.09, 0.28 ± 0.10, 0.27 ± 0.10, 0.33 ± 0.09, 0.33 ±
0.09, 0.48 ± 0.06, 0.26 ± 0.07 and 0.18 ± 0.07, respectively.
For carcass traits the average observed accuracies (± SD)
were 0.50 ± 0.08, 0.42 ± 0.10, 0.40 ± 0.09, 0.36 ± 0.08,
0.50 ± 0.09, 0.51 ± 0.09, 0.55 ± 0.05, 0.33 ± 0.05 and
0.28 ± 0.09, respectively. And lastly, for the meat quality
traits the average observed accuracies (± SD) were 0.29 ±

Table 1 Descriptive statistics for growth, carcass and meat quality traits

Trait (measurement unit) Abbreviation N Mean ± SD Range

Traits measured in the live animal

Birth weighta, kg BWT 1206 4.97 ± 1.01 2.1–8.0

Weaning weight, kg WWT 14,781 31.64 ± 6.00 14.0–51.8

Live weight at 6 months, kg LW6 14,146 38.47 ± 6.38 19.6–60.5

Pre-slaughter weight, kg PRESLT 13,744 41.95 ± 6.55 23.6–61.0

Ultrasonic eye muscle depth, mm EMD 7838 25.44 ± 2.87 18.0–35.0

Ultrasonic eye muscle width, mm EMW 7853 65.94 ± 6.03 49.0–86.0

Ultrasonic fat depth, mm FDM 7767 2.72 ± 1.12 0.0–5.0

Carcass traits

Hot carcass weight, kg CWT 13,750 18.04 ± 3.35 7.1–27.9

Cold carcass weight, kg CWTC 13,702 17.59 ± 3.27 8.2–27.4

Dressing out percentage, % DO% 13,727 42.96 ± 3.09 33.7–52.8

Butt circumference, cm CBUTT 13,698 65.22 ± 3.30 54.8–75.0

GRb, mm CGRM 13,698 5.48 ± 3.62 0.0–18.0

X-ray weight, kg SFWT 13,398 17.49 ± 3.29 7.7–27.66

X-ray leg weight, kg SFLEG 13,212 6.07 ± 1.04 2.98–9.34

X-ray middle weight, kg SFMID 13,210 5.37 ± 1.14 2.03–8.94

X-ray number of rib pairs SFRIB 13,289 13.01 ± 0.33 12–14

X-ray fore weight, kg SFFORE 13,228 6.00 ± 1.17 2.65–9.62

Meat quality traits

Loin meat pH LPH 10,241 5.80 ± 0.17 5.45–6.40

Marbling score MARB 10,617 3.12 ± 0.59 1–5

Tenderness score SHF 10,255 6.40 ± 2.14 1.45–12.99

CIE a* after 24 h A24 10,472 17.41 ± 2.79 9.62–26.8

CIE a* after 48 h A48 10,472 15.56 ± 2.27 9.06–23.82

CIE a* after 96 h A96 10,470 13.11 ± 2.06 6.77–19.79

CIE a* after 168 h A168 10,105 10.87 ± 2.23 2.25–20.8

CIE b* after 24 h B24 10,445 13.64 ± 2.89 4.87–20.08

CIE b* after 48 h B48 10,415 12.78 ± 2.59 4.86–18.57

CIE b* after 96 h B96 10,444 12.06 ± 2.47 4.74–17.56

CIE b* after 168 h B168 9992 10.78 ± 2.75 3.5–17.03

CIE L* after 24 h L24 10,134 39.32 ± 3.94 28.79–51.93

CIE L* after 48 h L48 10,135 39.33 ± 3.90 29.07–51.46

CIE L* after 96 h L96 10,145 39.44 ± 3.91 29.29–51.75

CIE L* after 168 h L168 9830 39.09 ± 4.04 28.79–52.06
a: trait measured in a reduced number of flocks; b: Depth of tissue 110 mm off the mid-line in the region of the 12th rib; N number of observations;
SD standard deviation
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0.10, 0.27 ± 0.11, 0.28 ± 0.10, 0.26 ± 0.11, 0.29 ± 0.11, 0.28
± 0.11, 0.36 ± 0.08, 0.21 ± 0.07 and 0.23 ± 0.06, respect-
ively. The number of animals clustered in each of the five
groups using k-means approach was 1485, 1590, 2570,
6706 and 2494 animals in cluster 1, 2, 3, 4 and 5,
respectively (Fig. 1). The average ENP (± SD) was 2.00 ±
0.74, 6.58 ± 2.46 and 2.83 ± 1.11 for traits measured in the
live animal, carcass traits and meat quality traits,
respectively. The traits that required the greater number

of progeny to attain similar accuracies of those using gen-
omic data were carcass traits, followed by meat quality
traits and then traits measured in the live animal.
VanRaden [27] proposed that G should be calculated

using the allele frequencies from the base population. How-
ever, in this study there were no differences in accuracies of
genomic predictions when using the observed or base
population allele frequencies (GBBP versus GB0). There-
fore, accuracies for GBBP were not presented separately.

Table 2 Heritability estimates, expected accuracy, theoretical accuracy, effective number of progeny and observed accuracies of
molecular breeding values in different scenarios for traits measured in the live animal (growth and carcass traits)

Trait1 h2 ± SE AccE AccT ENP GB0 GB2PC GB4PC GB6PC GB10 GB20 GBRCV GBKCV GBC

BWT 0.10 ± 0.03 0.08 0.25 1 0.15 0.14 0.14 0.12 0.16 0.18 0.33 ± 0.24 0.14 ± 0.06 0.11 ± 0.02

WWT 0.19 ± 0.02 0.45 0.45 1 0.19 0.17 0.15 0.14 0.19 0.19 0.46 ± 0.01 0.24 ± 0.08 0.08 ± 0.06

LW6 0.30 ± 0.01 0.51 0.48 1 0.25 0.23 0.22 0.21 0.25 0.25 0.41 ± 0.03 0.22 ± 0.06 0.14 ± 0.09

EMD 0.35 ± 0.01 0.44 0.49 2 0.40 0.37 0.38 0.37 0.40 0.40 0.53 ± 0.03 0.28 ± 0.05 0.20 ± 0.08

EMDad 0.43 ± 0.01 0.48 0.46 3 0.48 0.43 0.44 0.44 0.48 0.48 0.56 ± 0.01 0.37 ± 0.06 0.24 ± 0.11

EMW 0.24 ± 0.01 0.38 0.45 2 0.31 0.31 0.32 0.30 0.31 0.31 0.52 ± 0.03 0.28 ± 0.05 0.23 ± 0.13

EMWad 0.31 ± 0.01 0.42 0.47 3 0.44 0.43 0.43 0.42 0.44 0.43 0.54 ± 0.02 0.33 ± 0.06 0.31 ± 0.12

FDM 0.28 ± 0.01 0.41 0.45 2 0.33 0.23 0.22 0.22 0.33 0.33 0.48 ± 0.04 0.24 ± 0.08 0.16 ± 0.02

FDMad 0.33 ± 0.01 0.43 0.47 2 0.37 0.23 0.22 0.20 0.37 0.38 0.49 ± 0.04 0.27 ± 0.10 0.15 ± 0.10

PRESLT 0.25 ± 0.02 0.49 0.44 3 0.35 0.28 0.25 0.25 0.35 0.35 0.47 ± 0.02 0.28 ± 0.09 0.16 ± 0.11

Average 0.28 ± 0.08 0.41 ±
0.11

0.44 2.00 ±
0.74

0.33 ±
0.10

0.28 ±
0.09

0.28 ±
0.10

0.27 ±
0.10

0.33 ±
0.09

0.33 ±
0.09

0.48 ± 0.06 0.26 ± 0.07 0.18 ± 0.07

1Abbreviations are presented in Table 1; “ad”: traits that were adjusted for correlated variables; h2: heritability estimate; AccE: Expected accuracy; AccT: Theoretical
accuracy from the MME; ENP: effective number of progeny calculated using the accuracies from GB0; GB0: GBLUP accuracies fitting only G matrix; GB10 and
GB20: accuracies of GBLUP fitting G matrix and 10 or 20% of A matrix, respectively; GB2PC, GB4PC and GB6PC: GBLUP accuracies fitting for 2, 4 or 6 principal
components, respectively; GBRCV: GBLUP accuracies for random cross-validation; GBKCV: GBLUP accuracies for k-means clustering; GBC: GBLUP accuracies for
predictions performed within each cluster

Table 3 Heritability estimates, expected accuracy, theoretical accuracy, effective number of progeny and observed accuracies of
molecular breeding values in different scenarios for carcass traits

Trait1 h2 ± SE AccE AccT ENP GB0 GB2PC GB4PC GB6PC GB10 GB20 GBRCV GBKCV GBC

CCWT 0.23 ± 0.02 0.48 0.42 4 0.44 0.38 0.35 0.31 0.44 0.44 0.51 ± 0.01 0.30 ± 0.08 0.22 ± 0.16

HCWT 0.21 ± 0.02 0.46 0.42 5 0.46 0.40 0.37 0.33 0.46 0.46 0.52 ± 0.01 0.31 ± 0.08 0.23 ± 0.17

SFXWT 0.19 ± 0.02 0.44 0.41 6 0.47 0.40 0.36 0.32 0.47 0.47 0.54 ± 0.02 0.30 ± 0.12 0.22 ± 0.16

DRESS 0.24 ± 0.02 0.48 0.46 13 0.67 0.66 0.66 0.61 0.67 0.67 0.67 ± 0.02 0.47 ± 0.07 0.51 ± 0.10

CBUTT 0.28 ± 0.02 0.51 0.45 5 0.52 0.51 0.46 0.40 0.53 0.53 0.55 ± 0.02 0.37 ± 0.07 0.31 ± 0.18

CBUTTad 0.24 ± 0.02 0.48 0.46 9 0.59 0.56 0.52 0.46 0.60 0.61 0.60 ± 0.02 0.37 ± 0.04 0.45 ± 0.14

CGRM 0.23 ± 0.02 0.47 0.43 7 0.54 0.32 0.32 0.33 0.55 0.55 0.55 ± 0.02 0.28 ± 0.07 0.26 ± 0.09

CGRMad 0.23 ± 0.02 0.47 0.48 8 0.57 0.34 0.34 0.31 0.58 0.58 0.59 ± 0.01 0.35 ± 0.07 0.35 ± 0.17

SFFORE 0.17 ± 0.02 0.41 0.39 6 0.45 0.42 0.37 0.32 0.45 0.45 0.53 ± 0.03 0.32 ± 0.14 0.23 ± 0.12

SFLEG 0.18 ± 0.02 0.42 0.39 8 0.52 0.44 0.42 0.36 0.52 0.52 0.54 ± 0.03 0.32 ± 0.10 0.25 ± 0.17

SFMID 0.24 ± 0.02 0.47 0.44 5 0.49 0.34 0.34 0.31 0.49 0.49 0.51 ± 0.02 0.28 ± 0.11 0.14 ± 0.12

SFRIB 0.14 ± 0.02 0.38 0.35 3 0.30 0.30 0.30 0.30 0.30 0.30 0.44 ± 0.03 0.31 ± 0.06 0.22 ± 0.21

Average 0.22 ± 0.03 0.46 ±
0.03

0.43 6.58 ±
2.46

0.50 ±
0.08

0.42 ±
0.10

0.40 ±
0.09

0.36 ±
0.08

0.50 ±
0.09

0.51 ±
0.09

0.55 ± 0.05 0.33 ± 0.05 0.28 ± 0.09

1Abbreviations are presented in Table 1; “ad”: traits that were adjusted for correlated variables; h2: heritability estimate; AccE: Expected accuracy; AccT: Theoretical
accuracy from the MME; ENP: effective number of progeny calculated using the accuracies from GB0; GB0: GBLUP accuracies fitting only G matrix; GB10 and
GB20: accuracies of GBLUP fitting G matrix and 10 or 20% of A matrix, respectively; GB2PC, GB4PC and GB6PC: GBLUP accuracies fitting for 2, 4 or 6 principal
components, respectively; GBRCV: GBLUP accuracies for random cross-validation; GBKCV: GBLUP accuracies for k-means clustering; GBC: GBLUP accuracies for
predictions performed within each cluster
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When accounting for population stratification by
adjusting for two, four or six PCs the accuracies of
mBVs decreased or kept constant for all traits, with
exception of some meat color traits that presented an
increase of 0.01 in observed accuracy compared to GB0
(not fitting PCs). Additional file 3 presents Pearson
correlations between mBVs estimated using adjusted
phenotypes (not including PCs, GB0) and phenotypes
also adjusted for two, four or six PCs (GB2PC, GB4PC,
GB6PC, respectively). For all the traits the correlations
were greater than 0.90, except for CGRM and
CGRMad (0.80 and 0.75, respectively). Figure 2 shows
the relationship between GB2PC and GB0 for the
traits CGRM and A24 (lowest and highest Pearson
correlation, respectively). In general, meat quality
traits were least affected when adjusted for PCs. The
average correlation between mBVs not fitting PCs or
fitting two, four or six was: 0.96 ± 0.04, 0.94 ± 0.04
and 0.93 ± 0.04, respectively.

The mBVs accuracies when fitting both G and A
matrix (GB10 and GB20) were similar to fitting only G
matrix (GB0). The highest increase in accuracy was
observed for BWT (0.03). The highest accuracies among
all validation scenarios were observed for random cross-
validation (GBRCV). The lowest accuracies were
observed for k-means cross-validation (GBKCV) and
forward validation performed within each k-means
cluster (GBC). Even though the average accuracies for
GBC were lower, there were some groups with accur-
acies similar to GB0. This variation in accuracies
between groups/clusters is also indicated by the high
standard deviation.
Table 5 presents the number of animals grouped in

each cluster based on distance matrices built using EDM
or G matrices and assuming number of subpopulations
equal to 2, 3, 4, 5, 10 and 20. From k = 2 to 5 the major-
ity of the animals were grouped in the same cluster.
When considering k = 10 and 20, the majority of the

Table 4 Heritability estimates, expected accuracy, theoretical accuracy, effective number of progeny and observed accuracies of
molecular breeding values in different scenarios for meat quality traits

Trait1 h2 ± SE AccE AccT ENP GB0 GB2PC GB4PC GB6PC GB10 GB20 GBRCV GBKCV GBC

A24 0.17 ± 0.02 0.36 0.39 3 0.31 0.31 0.30 0.30 0.31 0.30 0.37 ± 0.07 0.24 ± 0.04 0.20 ± 0.07

A24ad 0.16 ± 0.02 0.35 0.38 4 0.35 0.34 0.35 0.35 0.34 0.33 0.37 ± 0.06 0.22 ± 0.08 0.26 ± 0.08

A48 0.17 ± 0.02 0.36 0.35 2 0.23 0.22 0.22 0.21 0.22 0.21 0.38 ± 0.02 0.27 ± 0.05 0.14 ± 0.10

A48ad 0.17 ± 0.02 0.36 0.37 2 0.26 0.25 0.25 0.25 0.26 0.25 0.40 ± 0.02 0.30 ± 0.06 0.16 ± 0.10

A96 0.19 ± 0.02 0.38 0.36 2 0.23 0.22 0.21 0.19 0.24 0.24 0.35 ± 0.03 0.19 ± 0.06 0.11 ± 0.10

A96ad 0.18 ± 0.02 0.37 0.38 2 0.26 0.25 0.25 0.24 0.26 0.26 0.37 ± 0.03 0.23 ± 0.05 0.16 ± 0.11

A168 0.06 ± 0.02 0.22 0.20 1 0.02 −0.04 0.06 −0.06 0.02 0.03 0.19 ± 0.05 0.07 ± 0.07 0.21 ± 0.14

A168ad 0.06 ± 0.02 0.22 0.15 1 0.08 −0.02 0.03 −0.03 0.08 0.09 0.25 ± 0.04 0.12 ± 0.10 0.19 ± 0.11

B24 0.14 ± 0.02 0.33 0.28 3 0.29 0.28 0.28 0.28 0.29 0.29 0.33 ± 0.04 0.18 ± 0.05 0.22 ± 0.13

B48 0.13 ± 0.02 0.33 0.34 2 0.24 0.23 0.23 0.23 0.24 0.24 0.29 ± 0.03 0.16 ± 0.05 0.19 ± 0.11

B96 0.13 ± 0.02 0.32 0.35 3 0.29 0.29 0.29 0.28 0.28 0.28 0.34 ± 0.04 0.24 ± 0.08 0.23 ± 0.07

B168 0.14 ± 0.02 0.32 0.28 4 0.32 0.30 0.31 0.30 0.32 0.31 0.35 ± 0.05 0.24 ± 0.06 0.23 ± 0.06

L24 0.18 ± 0.02 0.37 0.38 3 0.32 0.31 0.31 0.31 0.32 0.32 0.42 ± 0.03 0.22 ± 0.04 0.28 ± 0.07

L48 0.20 ± 0.02 0.39 0.39 2 0.31 0.31 0.32 0.32 0.31 0.31 0.39 ± 0.03 0.24 ± 0.06 0.26 ± 0.10

L96 0.21 ± 0.02 0.40 0.39 3 0.33 0.31 0.32 0.32 0.33 0.33 0.41 ± 0.04 0.23 ± 0.06 0.25 ± 0.11

L168 0.20 ± 0.02 0.38 0.38 3 0.33 0.32 0.32 0.32 0.34 0.34 0.43 ± 0.05 0.22 ± 0.05 0.26 ± 0.14

SHF 0.26 ± 0.03 0.43 0.41 2 0.28 0.28 0.27 0.27 0.28 0.28 0.41 ± 0.03 0.27 ± 0.05 0.19 ± 0.09

SHFad 0.27 ± 0.03 0.44 0.44 2 0.30 0.29 0.29 0.28 0.30 0.30 0.41 ± 0.03 0.27 ± 0.05 0.18 ± 0.11

MARB 0.31 ± 0.03 0.47 0.44 5 0.52 0.43 0.43 0.43 0.52 0.52 0.50 ± 0.03 0.35 ± 0.03 0.33 ± 0.14

MARBad 0.31 ± 0.03 0.47 0.45 5 0.52 0.46 0.46 0.45 0.52 0.53 0.52 ± 0.03 0.36 ± 0.03 0.36 ± 0.13

LPH 0.14 ± 0.02 0.33 0.32 4 0.33 0.32 0.31 0.29 0.33 0.33 0.27 ± 0.03 0.15 ± 0.07 0.20 ± 0.07

LPHad 0.13 ± 0.02 0.32 0.31 4 0.34 0.32 0.32 0.29 0.34 0.34 0.27 ± 0.03 0.15 ± 0.08 0.20 ± 0.06

Average 0.16 ± 0.07 0.34 ±
0.07

0.35 2.83 ±
1.11

0.29 ±
0.10

0.27 ±
0.11

0.28 ±
0.10

0.26 ±
0.11

0.29 ±
0.11

0.28 ±
0.11

0.36 ± 0.08 0.21 ± 0.07 0.23 ± 0.06

1Abbreviations are presented in Table 1; “ad”: traits that were adjusted for correlated variables; h2: heritability estimate; AccE: Expected accuracy; AccT: Theoretical
accuracy from the MME; ENP: effective number of progeny calculated using the accuracies from GB0; GB0: GBLUP accuracies fitting only G matrix; GB10 and
GB20: accuracies of GBLUP fitting G matrix and 10 or 20% of A matrix, respectively; GB2PC, GB4PC and GB6PC: GBLUP accuracies fitting for 2, 4 or 6 principal
components, respectively; GBRCV: GBLUP accuracies for random cross-validation; GBKCV: GBLUP accuracies for k-means clustering; GBC: GBLUP accuracies for
predictions performed within each cluster
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animals were still clustered together using EDM
approach and using G there was a higher variation, but
still the majority of the animals were grouped in two
clusters. As recommended by Ventura et al. [17] the
groups with few animals could be added to the genetic-
ally closest group. In our case, doing this would mean to
include almost all the animals in the same analysis (simi-
lar to GB0). Therefore, the few animals from different
clusters were excluded from the analysis to evaluate the
impact of excluding those less related animals. Genomic
predictions were performed for all assumed number of
subpopulations (2, 3, 4, 5, 10 and 20). However, they
were similar and only the results for k = 5 and k = 10
were presented in this paper. The average accuracies of
mBVs for these scenarios were presented in Table 6
(average for trait groups) and Additional file 4 (individ-
ual traits). Average accuracies of mBVs for K5EDM and
K5G were equal to those from GB0 for all trait groups.
The size of training and validation populations were also
similar as few animals were clustered separately from
the main cluster. For K10EDM and K10G, the average
accuracies were smaller than those from GB0.

Figure 3 presents the relationship between the mBV
accuracies (GB0) and the number of records (T) for
particular traits times heritability (h2, T*h2), showing a
linear trend (R2 = 0.65). The average ENP for traits
measured in the live animal, carcass traits and meat
quality traits was 2.00 ± 0.74, 6.58 ± 2.46 and 2.83 ± 1.11,
respectively (Tables 2, 3 and 4).

Spread of molecular breeding values
As a measure of genomic inflation, Tables 6, 7, 8 and 9
present the values of K, which is the ratio of the ex-
pected spread in mBVs to that observed [18]. For most
genomic prediction scenarios K was lower than 1, indi-
cating that mBVs are more spread than expected. There
was a high variation between traits and genomic predic-
tion scenarios. The average for all the traits was: 0.93 ±
0.21, 0.87 ± 0.29, 0.89 ± 0.23, 0.83 ± 0.30, 0.97 ± 0.22,
1.02 ± 0.23, 0.92 ± 0.21, 0.50 ± 0.20, 0.40 ± 0.18, 1.02 ±
0.42, 0.93 ± 0.21, 0.92 ± 0.21, 0.99 ± 0.32, 0.82 ± 0.33,
1.05 ± 0.45 for the scenarios GB0, GB2PC, GB4PC,
GB6PC, GB10, GB20, GBBP, GBRCV, GBKCV, GBC,
K5EDM, K5G, K10EDM and K10G (average for cluster

Fig. 1 Principal component decomposition of the genomic relationship matrix colored by k-means clusters
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1 and 2), respectively. On average, K values were similar
among methods, except cross-validation methods that
presented lower values.

Discussion
The Ovine HD SNP chip is characterized by short
distance linkage disequilibrium (LD) [11] that could be
enough for multi-breed genomic predictions based on
LD threshold (>0.2) reported in the literature [4].
Furthermore, the consistency of gametic phase among
the breed groups involved in the Terminal Sire compos-
ite breeds were high, suggesting that a mixed training
population for genomic predictions could be envisioned
[11]. Considering that, we conducted this study to assess

the feasibility of genomic selection for a variety of
growth, carcass and meat quality traits in a Terminal
Sire composite population. In addition, we investigate
different G matrices and genomic prediction validation
scenarios. These scenarios were chosen to cover the best
and worst case situations for genomic predictions that
could happen in practice, for instance, selection on
younger animals (forward validation), selection within
groups (split based on genomic clusters), and selection
candidates born in a range of years and in more gen-
etically related or distant group of animals (random
or k-means cross-validation, respectively).

Genomic prediction scenarios
Different genomic relationship matrices
The accuracies observed for most scenarios and traits
indicate that genomic selection is a very important tool
to increase the rate of genetic gains in the New Zealand
Terminal Sire composite sheep population. Among the
forward validation scenarios, GB0 presented the highest
average accuracies and is the recommended scenario for
genomic predictions in this population. Accuracies for
GBBP and GB0 were the same, probably because there
are not many founding animals genotyped in this popu-
lation (i.e. all animals genotyped were born after 2007
and the majority from 2010 to 2014) and, therefore, the
allele frequency from base population may not have
been accurately estimated. Another hypothesis for the
similarity between GBBP and GB0 could be because the
base population that make up the composite breeds is
very wide from a range of breeds and therefore, the
allele frequencies from the base population estimated
here may not reflect well the true allele frequency of the
base population. Despite these assumptions, a previous
study by Forni et al. [36] also suggested that similar
results could be obtained using the allele frequencies
from the current population. Based on that, we conclude
that the observed allele frequencies (as in GB0) can be
used for genomic predictions in this population.
The other scenario investigated was fitting A and G

matrices in the mBVs estimation models (GB10 and

Fig. 2 Molecular breeding values (mBVs) adjusted for 2 Principal
Components of G matrix versus mBVs not adjusted for PC for the
traits GR and meat redness (A24), respectively

Table 5 Number of animals in each group divided based on clustering approaches using Euclidean Distance Matrix (EDM) or distance
matrix built from G matrix

K = 2 K = 3 K = 4 K = 5 K = 10 K = 20

EDM G EDM G EDM G EDM G EDM G EDM G

Cluster 1 14,797 14,844 14,609 14,842 14,609 14,740 14,609 14,740 14,345 9452 13,258 9452

Cluster 2 48 1 188 2 120 102 120 102 261 4966 666 3825

Cluster 3 48 1 68 2 68 1 120 316 261 1125

Cluster 4 48 1 33 1 37 102 306 230

Cluster 5 15 1 33 2 114 102

Other 49 7 240 111

K number of assumed subpopulations
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GB20). The reason for that was to capture polygenic
effects that were not captured by the markers. In beef
cattle, also genotyped with HD SNP chip, Neves et al.
[28] observed greater accuracies for some traits when
fitting 20% of A (i.e. GB20). For the gestation length the
authors observed an increase of 12% in accuracy. This
trend was not observed in our study. The small differ-
ences seen between GB0, GB10 and GB20 are probably
due to the density of the current SNP chip, which seems
to be adequate in capturing most of the additive genetic
variance for the traits in this population. Another reason
for the small differences in our study could be due to
pedigree incompleteness (dams were not recorded in
two of the progeny test flocks). Similar to our results,
Daetwyler et al. [5] and Aguilar et al. [37] have reported
small increases in mBV accuracies when adding a
polygenic effect into the model. Therefore, we do not
recommend fitting A matrix as an option to increase
accuracies under similar circumstances to our study.

Adjusting for population structure
The next strategy evaluated was to account for popula-
tion structure by fitting PCs of G matrix as co-variables.
The reason for the reduced accuracies when also fitting
PCs could be because the population under study is
composed mostly of crossbred animals or animals from

composite breeds that share haplotypes among them-
selves and correcting for population structure may re-
move genetic effects that are important for the accuracy
of genomic predictions. As discussed in Brito [11],
several breeds were used in the development of these
composites and some of them overlapped, which could
explain in part their genetic connectedness.
The practice of adjusting for principal components to

account for population structure has been reported in
other sheep genomics studies [9, 18]. Similar results to
those presented here, were reported by Daetwyler et al.
[38] whom evaluated the effects of fitting a range of PC
covariates (from one to 200) for greasy fleece weight and
eye muscle depth measured in Australian sheep. The au-
thors reported that the accuracy of genomic predictions
clearly declined as an increased number of PCs were
fitted.
Dodds et al. [18] investigated the effects of fitting PCs

in genomic predictions of a New Zealand dual-purpose
sheep population. The authors reported that the accur-
acies dropped by 0.02 between GB0 and GB6PC, which
is much smaller than the reduction observed in our
study. Therefore, the authors recommended to fit six
PCs to take account of any spurious associations. Dodds
et al. [18] also evaluated the changes in accuracies when
adding the effects of PCs back into the estimates of
mBVs. They observed that adding back PC effects does
not have any advantage over fitting zero or a few PCs.
The same trend was observed in this study (data not
shown). The lowest correlations between GB0 and
GB2PC, GB4PC and GB6PC observed for traits related
to carcass fatness such as CGRM is probably due to more
expressive differences among some of the composites (i.e.
Primera composite presents larger range of carcass fatness
compared to other breeds). As fitting PCs reduced consid-
erably the accuracies of genomic predictions for the
majority of the traits, we do not recommend fitting PCs
when performing genomic predictions in a composite
population, where the training and selection popula-
tions have a similar genetic structure or share ances-
tral breeds.

Table 6 Average observed accuracies of molecular breeding values group of animals clustered based on Euclidean Distance Matrix
(EDM) or distance matrix built from G matrix and average ratio, K, of expected (assuming accuracies of molecular breeding values for
each scenario) spread to observed spread of molecular breeding values

Trait group1 K5EDM K5G K10EDM K10Ga GB0

Acc K Acc K Acc K Acc K Acc K

Traits measured in the live
animal

0.33 ± 0.11 0.82 ± 0.17 0.33 ± 0.10 0.82 ± 0.16 0.33 ± 0.10 0.84 ± 0.22 0.26 ± 0.14 0.87 ± 0.53 0.33 ± 0.10 0.81 ± 0.16

Meat quality traits 0.29 ± 0.10 0.92 ± 0.22 0.29 ± 0.11 0.90 ± 0.23 0.29 ± 0.11 0.97 ± 0.36 0.26 ± 0.08 1.06 ± 0.29 0.29 ± 0.11 0.91 ± 0.23

Carcass traits 0.50 ± 0.09 1.07 ± 0.13 0.50 ± 0.09 1.07 ± 0.13 0.49 ± 0.09 1.17 ± 0.16 0.37 ± 0.10 1.15 ± 0.27 0.50 ± 0.09 1.07 ± 0.13
1: Additional file 4 presents the results for individual traits; K5EDM: animals clustered based on EDM and assuming 5 subpopulations; K5G: animals clustered based
on a distance matrix built from G matrix and assuming 5 subpopulations; K10EDM: animals clustered based on EDM and assuming 10 subpopulations; K10Ga:
animals clustered based on a distance matrix built from G matrix and assuming 10 subpopulations; a: average for clusters 1 and 2; GB0: GBLUP accuracies fitting
only G matrix; Acc: accuracy of molecular breeding values; K: spread of molecular breeding values

Fig. 3 Relationship between the mBV accuracies and the number of
records (T) for particular traits times heritability (h2, T*h2)
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Table 7 The ratio, K, of expected (assuming accuracies of molecular breeding values for each scenario) spread to observed spread
of molecular breeding values for traits measured in the live animal

Trait1 GB0 GB2PC GB4PC GB6PC GB10 GB20 GBRCV GBKCV GBC k5EDM k5G k10EDM K10G1 K10G2

BWT 0.66 0.66 0.61 0.56 0.72 0.80 0.36 ± 0.26 0.17 ± 0.20 0.65 ± 0.09 0.58 0.68 0.57 – 0.59

WWT 0.51 0.47 0.44 0.41 0.54 0.57 0.54 ± 0.02 0.33 ± 0.08 0.33 ± 0.29 0.53 0.55 0.52 0.27 0.28

LW6 0.64 0.60 0.59 0.56 0.67 0.71 0.55 ± 0.04 0.33 ± 0.08 0.43 ± 0.29 0.65 0.62 0.63 0.40 0.42

EMD 0.94 0.94 0.97 0.96 0.98 1.03 0.85 ± 0.07 0.51 ± 0.11 0.69 ± 0.20 0.97 0.94 0.91 0.83 1.53

EMDad 1.01 1.02 1.05 1.06 1.05 1.08 0.81 ± 0.07 0.75 ± 0.15 0.84 ± 0.33 1.02 1.02 1.16 1.09 2.54

EMW 0.86 0.88 0.91 0.85 0.90 0.93 0.77 ± 0.07 0.50 ± 0.07 0.82 ± 0.40 0.90 0.87 1.01 0.95 2.12

EMWad 1.04 1.04 1.06 1.05 1.08 1.13 0.83 ± 0.06 0.70 ± 0.10 1.23 ± 0.17 1.06 1.06 1.18 1.26 1.53

FDM 0.80 0.66 0.63 0.62 0.83 0.86 0.69 ± 0.05 0.30 ± 0.14 0.87 ± 0.15 0.82 0.80 0.78 0.75 0.05

FDMad 0.81 0.61 0.57 0.54 0.85 0.89 0.74 ± 0.07 0.38 ± 0.18 0.50 ± 0.34 0.82 0.81 0.81 0.73 0.14

PRESLT 0.82 0.71 0.66 0.64 0.87 0.92 0.62 ± 0.04 0.47 ± 0.11 0.75 ± 0.54 0.82 0.82 0.79 0.59 0.75

Average 0.81 ±
0.15

0.76 ±
0.18

0.75 ±
0.20

0.73 ±
0.21

0.85 ±
0.15

0.89 ±
0.15

0.68 ± 0.14 0.44 ± 0.16 0.71 ± 0.23 0.82 ±
0.16

0.82
±

0.84 ±
0.21

0.76 ±
0.28

0.99 ±
0.79

1Abbreviations are presented in Table 1; “ad”: traits that were adjusted for correlated variables; h2: heritability estimate; GB0: spread of molecular breeding values
for GBLUP fitting only G matrix; GB10 and GB20: spread of molecular breeding values for GBLUP fitting G matrix and 10 or 20% of A matrix, respectively; GB2PC,
GB4PC and GB6PC: spread of molecular breeding values for GBLUP fitting 2, 4 or 6 principal components, respectively; GBRCV: spread of molecular breeding
values for GBLUP and random cross-validation; GBKCV: spread of molecular breeding values for GBLUP for K-means clustering; GBC: spread of molecular breeding
values for GBLUP for predictions performed within each cluster; K5EDM: spread of molecular breeding values for GBLUP when animals were clustered based on
EDM and assuming 5 subpopulations; K5G: spread of molecular breeding values for GBLUP when animals were clustered based on a distance matrix built from G
matrix and assuming 5 subpopulations; K10EDM: spread of molecular breeding values for GBLUP when animals were clustered based on EDM and assuming 10
subpopulations; K10Ga: spread of molecular breeding values for GBLUP when animals were clustered based on a distance matrix built from G matrix and assuming
10 subpopulations

Table 8 The ratio, K, of expected (assuming accuracies of molecular breeding values for each scenario) spread to observed spread
of molecular breeding values for carcass traits

Trait1 GB0 GB2PC GB4PC GB6PC GB10 GB20 GBRCV GBKCV GBC k5EDM k5G k10EDM K10G1 K10G2

CCWT 0.94 0.86 0.84 0.78 0.98 1.03 0.59 ± 0.02 0.48 ± 0.09 1.05 ± 0.82 0.93 0.92 1.03 0.63 1.21

HCWT 0.99 0.92 0.91 0.84 1.04 1.09 0.61 ± 0.02 0.49 ± 0.08 1.09 ± 0.85 1.00 0.99 1.07 0.66 1.26

SFXWT 1.02 0.93 0.89 0.82 1.06 1.11 0.61 ± 0.03 0.48 ± 0.13 1.25 ± 1.04 1.02 1.02 1.15 0.73 1.33

DRESS 1.36 1.36 1.48 1.44 1.42 1.49 0.85 ± 0.04 0.79 ± 0.07 1.85 ± 0.33 1.37 1.36 1.54 1.45 1.77

CBUTT 1.04 1.02 1.00 0.92 1.09 1.16 0.69 ± 0.02 0.62 ± 0.05 1.06 ± 0.56 1.05 1.03 1.09 0.82 1.33

CBUTTad 1.23 1.21 1.16 1.07 1.29 1.37 0.73 ± 0.08 0.59 ± 0.03 1.39 ± 0.44 1.22 1.21 1.17 1.36 1.32

CGRM 1.03 0.78 0.82 0.84 1.07 1.13 0.62 ± 0.02 0.42 ± 0.09 0.90 ± 0.33 1.04 1.03 1.07 0.87 1.15

CGRMad 1.11 0.85 0.84 0.79 1.16 1.22 0.65 ± 0.04 0.55 ± 0.07 1.43 ± 0.84 1.11 1.11 1.24 1.03 2.34

SFFORE 1.07 1.01 0.97 0.88 1.12 1.17 0.58 ± 0.05 0.51 ± 0.15 1.43 ± 0.93 1.06 1.07 1.20 0.99 1.15

SFLEG 1.19 1.01 1.05 0.96 1.25 1.32 0.58 ± 0.03 0.51 ± 0.09 1.42 ± 0.95 1.20 1.18 1.43 0.83 1.83

SFMID 0.98 0.81 0.81 0.77 1.03 1.08 0.63 ± 0.03 0.43 ± 0.14 0.65 ± 0.63 0.98 0.98 1.01 0.54 1.02

SFRIB 0.89 0.89 0.89 0.89 0.94 0.99 0.41 ± 0.05 0.40 ± 0.07 1.34 ± 1.09 0.88 0.89 1.03 1.53 0.49

Average 1.07 ±
0.12

0.97 ±
0.16

0.97 ±
0.18

0.91 ±
0.17

1.12 ±
0.13

1.18 ±
0.13

0.63 ± 0.09 0.52 ± 0.10 1.24 ± 0.29 1.07 ±
0.12

1.07 ±
0.12

1.17 ±
0.15

0.95 ±
0.30

1.35 ±
0.42

1Abbreviations are presented in Table 1; “ad”: traits that were adjusted for correlated variables; h2: heritability estimate; GB0: spread of molecular breeding values
for GBLUP fitting only G matrix; GB10 and GB20: spread of molecular breeding values for GBLUP fitting G matrix and 10 or 20% of A matrix, respectively; GB2PC,
GB4PC and GB6PC: spread of molecular breeding values for GBLUP fitting 2, 4 or 6 principal components, respectively; GBRCV: spread of molecular breeding
values for GBLUP and random cross-validation; GBKCV: spread of molecular breeding values for GBLUP for K-means clustering; GBC: spread of molecular breeding
values for GBLUP for predictions performed within each cluster; K5EDM: spread of molecular breeding values for GBLUP when animals were clustered based on
EDM and assuming 5 subpopulations; K5G: spread of molecular breeding values for GBLUP when animals were clustered based on a distance matrix built from G
matrix and assuming 5 subpopulations; K10EDM: spread of molecular breeding values for GBLUP when animals were clustered based on EDM and assuming 10
subpopulations; K10Ga: spread of molecular breeding values for GBLUP when animals were clustered based on a distance matrix built from G matrix and assuming
10 subpopulations
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Cross-validation scenarios
Cross-validation can be useful in the case where the
genetic composition of the animals in each year may vary.
For example, if a producer of breed A decided not to
genotype their animals in a specific year, it could influence
the accuracy of genomic predictions for the other breed
groups. It can also be useful when the selection candidates
were born in a range of birth years and there are not many
young animals (selection candidates) genotyped. When
the subset of animals for cross-validation were randomly
defined, the accuracies were higher than all other scenar-
ios. It is due to a higher relationship among training and
validation populations. Similar results were reported in
the literature. For instance, Daetwyler et al. [5] when
investigating genomic predictions for carcass and meat
quality traits in a multi-breed population.

The next cross-validation approach (GBKCV) was
defined based on k-means clustering. The objective of
GBKCV validation design was to evaluate the prediction
accuracies of genomic breeding values using a training
population more distant to the selection candidates as
pointed out by Saatchi et al. [32]. In practice it could
happen if some producers from specific breeds decide
not to genotype animals in some years, it could change
the genetic structure of the training population and
consequently decrease the accuracies of genomic predic-
tions. Another possibility could be if there is a producer
who started to genotype a breed (or different popula-
tion), which has not been genotyped before and is less
genetically related to the composite population under
investigation. Our findings showed that in this case the
accuracies (GBKCV) would be lower than those for the

Table 9 The ratio, K, of expected (assuming accuracies of molecular breeding values for each scenario) spread to observed spread
of molecular breeding values for meat quality traits

Trait1 GB0 GB2PC GB4PC GB6PC GB10 GB20 GBRCV GBKCV GBC k5EDM k5G k10EDM K10G1 K10G2

A24 0.86 0.86 0.84 0.84 0.88 0.90 0.45 ± 0.09 0.33 ± 0.06 0.65 ± 0.28 0.88 0.87 0.78 0.62 1.01

A24ad 1.01 1.00 1.02 1.02 1.03 1.05 0.44 ± 0.09 0.32 ± 0.10 0.81 ± 0.23 1.00 1.01 0.87 0.75 1.11

A48 0.66 0.65 0.66 0.63 0.67 0.67 0.44 ± 0.03 0.41 ± 0.07 0.64 ± 0.36 0.65 0.65 0.65 0.38 1.17

A48ad 0.78 0.75 0.79 0.77 0.79 0.80 0.44 ± 0.03 0.49 ± 0.09 0.68 ± 0.36 0.77 0.77 0.82 0.57 1.29

A96 0.67 0.63 0.62 0.57 0.70 0.73 0.40 ± 0.03 0.28 ± 0.07 0.51 ± 0.40 0.65 0.66 0.65 0.31 0.79

A96ad 0.81 0.77 0.78 0.74 0.85 0.89 0.43 ± 0.04 0.35 ± 0.06 0.67 ± 0.41 0.79 0.80 0.81 0.37 0.95

A168 0.12 −0.28 0.35 −0.38 0.14 0.17 0.08 ± 0.02 0.06 ± 0.04 1.96 ± 1.42 0.16 0.10 0.22 0.24 2.49

A168ad 0.69 −0.16 0.24 −0.22 0.77 0.86 0.09 ± 0.02 0.11 ± 0.06 2.26 ± 1.41 0.73 0.66 1.27 0.63 2.97

B24 0.99 0.96 0.98 0.97 1.04 1.09 0.35 ± 0.05 0.27 ± 0.06 0.69 ± 0.67 1.00 0.99 0.92 0.57 1.31

B48 0.81 0.81 0.81 0.80 0.85 0.88 0.29 ± 0.03 0.21 ± 0.06 0.53 ± 0.46 0.84 0.81 0.80 0.58 1.30

B96 1.05 1.06 1.08 1.06 1.08 1.11 0.26 ± 0.02 0.32 ± 0.09 1.79 ± 0.59 1.07 1.04 1.41 1.15 1.78

B168 1.30 1.24 1.31 1.27 1.36 1.43 0.25 ± 0.04 0.33 ± 0.05 1.65 ± 0.59 1.31 1.30 1.79 1.59 1.21

L24 0.96 0.95 0.94 0.93 1.02 1.09 0.50 ± 0.03 0.37 ± 0.04 1.43 ± 0.16 1.01 0.96 1.06 0.75 1.54

L48 0.90 0.92 0.93 0.93 0.95 1.02 0.46 ± 0.04 0.39 ± 0.08 1.25 ± 0.68 0.90 0.90 0.91 0.60 1.61

L96 0.94 0.90 0.94 0.93 1.00 1.07 0.51 ± 0.04 0.39 ± 0.09 1.06 ± 0.48 0.94 0.94 0.90 0.55 1.50

L168 0.96 0.96 0.98 0.97 1.01 1.08 0.50 ± 0.06 0.38 ± 0.05 1.02 ± 0.43 0.97 0.96 1.08 0.77 1.42

LKGF 0.76 0.76 0.78 0.77 0.80 0.85 0.55 ± 0.04 0.43 ± 0.08 0.52 ± 0.35 0.76 0.77 0.71 0.76 0.50

LKGFad 0.80 0.80 0.80 0.78 0.85 0.90 0.58 ± 0.05 0.42 ± 0.08 0.42 ± 0.35 0.79 0.81 0.68 0.69 0.51

MARB 1.16 1.06 1.07 1.07 1.18 1.25 0.72 ± 0.05 0.62 ± 0.05 1.30 ± 0.65 1.12 1.12 1.13 1.05 1.23

MARBad 1.12 1.09 1.10 1.08 1.17 1.24 0.74 ± 0.06 0.67 ± 0.04 1.38 ± 0.58 1.12 1.12 1.17 1.09 1.33

LPH 1.08 1.05 1.00 0.94 1.15 1.23 0.22 ± 0.02 0.17 ± 0.08 1.00 ± 0.63 1.10 1.08 1.06 0.89 1.54

LPHad 1.17 1.14 1.09 1.02 1.24 1.32 0.22 ± 0.03 0.17 ± 0.09 1.02 ± 0.48 1.18 1.17 1.13 0.96 1.68

Average 0.91 ±
0.23

0.86 ±
0.33

0.90 ±
0.24

0.84 ±
0.35

0.94 ±
0.23

0.99 ±
0.25

0.40 ± 0.18 0.32 ± 0.15 1.07 ± 0.50 0.92 ±
0.22

0.90 ±
0.23

0.97 ±
0.36

0.78 ±
0.34

1.35 ±
0.53

1Abbreviations are presented in Table 1; “ad”: traits that were adjusted for correlated variables; h2: heritability estimate; GB0: spread of molecular breeding values
for GBLUP fitting only G matrix; GB10 and GB20: spread of molecular breeding values for GBLUP fitting G matrix and 10 or 20% of A matrix, respectively; GB2PC,
GB4PC and GB6PC: spread of molecular breeding values for GBLUP fitting 2, 4 or 6 principal components, respectively; GBRCV: spread of molecular breeding
values for GBLUP and random cross-validation; GBKCV: spread of molecular breeding values for GBLUP for K-means clustering; GBC: spread of molecular breeding
values for GBLUP for predictions performed within each cluster; K5EDM: spread of molecular breeding values for GBLUP when animals were clustered based on
EDM and assuming 5 subpopulations; K5G: spread of molecular breeding values for GBLUP when animals were clustered based on a distance matrix built from G
matrix and assuming 5 subpopulations; K10EDM: spread of molecular breeding values for GBLUP when animals were clustered based on EDM and assuming 10
subpopulations; K10Ga: spread of molecular breeding values for GBLUP when animals were clustered based on a distance matrix built from G matrix and assuming
10 subpopulations
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other scenarios, but it would still be possible to perform
genomic selection with a reasonable level of accuracy for
most traits. The reason for the lower accuracies for
GBKCV is because the animals belonging to each indi-
vidual cluster were more closely related among them-
selves and more distantly related to the other clusters,
which resulted in a lower relationship between training
and validation populations, reflected in lower accuracies.
Reductions in accuracy depended on the genetic com-
position of the animals from each cluster/validation
group used as validation and those in the training, as
also observed by Toosi et al. [39]. Saatchi et al. [32]
working with data from American Angus beef cattle
reported a similar trend where random clustering accur-
acies were markedly higher than those from k-means
clustering, on average by 0.21. The higher values of
accuracy obtained by random clustering and forward
validation is due to the higher genetic relationship
between the animals from training and validation
populations.

Genomic predictions within k-means clusters (GBC) versus
mixed training population (GB0)
To characterize a scenario where genomic predictions
are performed within a genetically homogenous sub-
group of all the animals as opposed to using a mixed
training population, genomic predictions were firstly
conducted within each k-means cluster (GBC). Instead
of using k-means clustering, animals could alternatively
be separated based on flocks or recorded breed compos-
ition. In this study, we decided to evaluate clustering
based on genomic information as it would be a more
accurate clustering approach due to the high admixture
of breeds in this population. As presented in Fig. 1, the
animals were not clustered in distinctly separated
groups, indicating that the majority of the animals are
genetically related to some extent, hence the GB0
(mixed training population) resulted in higher accuracies
of genomic predictions compared to GBC. As the ani-
mals are related, doing predictions within cluster is only
reducing the size of training population. As reported in
the literature, the calculation of mBVs depends, among
other factors, on the size of the training population and
the extent of the LD between SNP and QTL [25, 40–44].
As shown in Brito [11], this population presented a high
enough level of LD to successfully perform genomic se-
lection. However, the relatively small training population
for some groups (genomic clusters) and the low herit-
ability of some traits (Fig. 3) may be the reasons for the
reduced accuracies of mBVs under GBC method. There-
fore, a mixed training population is more beneficial. In a
practical situation where the breeders had only one
(or few) of the groups (clusters) to perform genomic
selection, they would need to genotype more animals

to increase the accuracies of genomic predictions of
mBVs. Both the size of the training population and
the number of animals in the validation are limiting
factors for achieving reasonable high accuracies. In
this study, validation groups with few animals (<150)
were excluded from the mBV accuracy estimation.
Benefits of multi-breed genomic predictions have also

been reported in other studies [42, 45–47]. Hozé et al.
[48] working with three dairy cattle breeds and HD SNP
chip (777 K) also observed that multi-breed GS can
contribute to increased genomic evaluation accuracy in
small breeds (or populations). Pryce et al. [49] in a study
with three cattle breeds (Fleckvieh, Holstein, and Jersey)
observed minimal advantage of multi-breed genomic
evaluations over single-breed evaluations. However,
when the goal was to predict genomic breeding values
for a breed with no individuals in the training popula-
tion, using two other breeds in the training was generally
better than only one breed. It suggests that for small
breeds or populations, mixed training populations can
be very advantageous.

Genomic clustering based on G and EDM matrices (K5EDM,
K5G, K10G and K10EDM) versus mixed training population
(GB0)
Adding information from unrelated breeds to the train-
ing population could have no impact on the resulting
mBV accuracies. However, the effect could also be nega-
tive, as marker effects may be averaged across breeds
and marker allele frequencies may differ between breeds
[10]. In beef cattle, Ventura et al. [41] reported increased
accuracy when the training population was defined
based on genomic clustering methodologies and no
animals from different clusters were included. In this
study we also investigated the same approach. However,
no gains in accuracy were observed. One of the reasons
is because the majority of the animals were clustered
together and the exclusion of a few less related animals
was not enough to impact the accuracies of genomic
predictions. This confirms that within this dataset, gen-
omic predictions are best derived using a mixed training
population and excluding some less related animals did
not result in improvements in mBV accuracies.
Moghaddar et al. [10] compared the accuracies of gen-

omic predictions in purebred and crossbred Australian
sheep using a 50 K SNP chip. The authors concluded
that using data from distant breeds in the training popu-
lation caused zero to small negative effects on genomic
prediction accuracies, suggesting that when using the
50 K SNP chip a breed-specific training population is
preferred. However, in the present study we used a HD
SNP chip, which seemed to be more appropriate to con-
duct genomic predictions in a Terminal Sire composite
population with high levels of genetic diversity [11],
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genetic connectedness (Fig. 1) and similar gametic phase
of LD between SNP and causal mutations or QTLs [11].

Genomic predictions using crossbred data
In our study, animals from Terminal Sire composite
breeds or Texel were selected based on crossbred
(crossed with maternal/dual-purpose breed dams) pro-
geny data. There was no available information on pure-
bred (Terminal x Terminal) animals for comparisons.
However, there are other studies in the literature in this
regard. Moghaddar et al. [10] have reported that infor-
mation from crossbreds of the target breed can be used
in genomic prediction of purebred animals. Grevenhof
and van der Werf [50] using a simulated pig dataset
evaluated the benefits of including various proportions
of crossbred animals in a training population for gen-
omic selection of purebred animals in a crossbreeding
program. The authors concluded that using crossbred
rather than purebred data in a training population for gen-
omic selection can also provide substantial advantages. In
a simulated study, Esfandyari et al. [51] observed that
training on crossbred animals yielded a larger response to
selection in crossbred offspring compared to training on
both pure lines separately or on both pure lines combined
into a single training population. They also concluded that
response to selection in crossbreds was greater when both
phenotypes and genotypes were collected on crossbreds,
compared to having only phenotypes on the crossbreds
and genotypes on their parents.

Spread of molecular breeding values
Most studies of genomic predictions in dairy cattle report
the slope of EBV (based on extensive progeny testing)
regressed on the mBV as a measure of genomic inflation.
In sheep populations accuracies are generally not as high
as those observed in dairy cattle. Therefore, K values are
estimated as a measure of genomic inflation [18]. The ex-
pected value was 1, which would indicate that genomic
predictions are on a similar scale as the phenotypes, i.e.
not inflated or deflated. Values smaller than 1 indicate that
the mBVs are more spread than expected and values
greater than 1 are less spread than expected. Dodds et al.
[18] proposed multiplying the raw mBVs by these K values
to get them back to the expected spread before reporting
them to producers to be used for selection.
The variation in scale observed in this study may be

due to differences inherited to the data analyzed (e.g. the
extent to which training animals were pre-selected) as
pointed out by Neves et al. [28]. However, the K values
observed in this study are similar to what we expected
when using adjusted phenotypes and are in agreement
with results reported in the literature. Dodds et al. [18]
reported K values ranging from 0.16 to 0.90. Slopes

well different from 1 have been reported in other
studies [28, 45, 52, 53].
Even though the inclusion of polygenic effect did not

increase the accuracy of mBVs, a slight improvement in
the spread of mBVs was observed. A similar trend was
also reported by Hozé et al. [48]. We believe that report-
ing K values are important for the scaling of mBVs
before reporting it to breeders.

Commercial implications
In this study we report results from a comprehensive
analysis of genomic selection across several economic
traits for Terminal Sire composites and using a HD SNP
chip. The prediction equations developed will allow gen-
omic selection to be applied in New Zealand Terminal
Sire composites and crossbreds for various growth,
carcass and meat quality traits. This will make it possible
to select rams and ewes at an earlier age for breeding,
thus reducing both generation interval and the cost of
keeping lambs until their progeny are evaluated. It also
allows for a higher selection intensity at birth and allows
differentiation between full sibs, as multiple bearing
ewes are frequent in sheep. Although the generation
interval in sheep is not as long as in cattle it can still
play a role for carcass and meat quality traits that are
measured post-mortem. The statistics ENP (Tables 2, 3
and 4) indicates the number of progeny with phenotypic
information needed in order to achieve similar accuracy
that would be achieved at an early age by using genomic
information. It is also important to highlight for the
industry, the need to maintain performance recording to
continuously update the training population. As predic-
tion ability is influenced by the number of training
animals, prediction accuracy would also be expected to
increase over time.

Conclusions
The accuracies reported in this study support the feasi-
bility of genomic selection for growth, carcass and meat
quality traits in New Zealand Terminal Sire breeds using
the HD SNP chip. Our findings indicate that relatively
accurate mBVs can be estimated for various traits at an
earlier age of the lamb’s life and be used for selection,
saving costs with progeny testing and reducing gener-
ation interval. It will be more beneficial for traits such as
carcass and meat quality traits that are difficult and
expensive to measure and in general can only be per-
formed post-mortem.
There was a clear advantage to using a mixed training

population instead of performing analyzes per genomic
clusters. In order to perform genomic predictions per
group, genotyping more animals is recommended in
order to increase the size of the training population.
Other alternative to increase the size of the training
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population is to share genotypes and phenotypes (EBVs)
with other institutions/countries which may have data
for genetically similar breeds. The different scenarios
evaluated in this study will help geneticists and breeders
to make wiser decisions in their breeding programs.
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