Skip to main content

Advertisement

Table 1 Used values for α g , β g (g = 0,1,2), c , and z

From: Artificial neural networks modeling gene-environment interaction

Risk model   Risk scenario Constant values αg, βg ( g = 0,1,2) Constant values c, z
  Genetic model High risk α 0 = 2 3 · α 1 , α 1 =2.5, α 2 = 4 3 · α 1 z = 0.886
    β0 = β1 = β2 = 0  
   Low risk α 0 = 2 3 · α 1 , α 1 =1.25, α 2 = 4 3 · α 1 z = 0.390
    β0 = β1 = β2 = 0  
  Environmental model High risk α0 = α1 = α2 = 7.5, z = 0.200
    β0 = β1 = β2 = −0.15,  
   Low risk α0 = α1 = α2 = 3.75, z = 0.200
Risk models by Amato et al. [14]    β0 = β1 = β2 = −0.075,  
Additive model High risk α 0 = 2 3 · α 1 , α 1 =7.5, α 2 = 4 3 · α 1 , z = 0.177
    β0 = β1 = β2 = −0.15,  
   Low risk α 0 = 2 3 · α 1 , α 1 =3.75, α 2 = 4 3 · α 1 , z = 0.178
    β0 = β1 = β2 = −0.075,  
  Interaction model High risk α0 = α1 = α2 = 7.5, z = 0.171
    β0 = 2 · β1, β1 = −0.15, β2 = 0.5·β1,  
   Low risk α0 = α1 = α2 = 3.75, z = 0.169
    β0 = 2 · β1, β1 = −0.075, β2 = 0.5 · β1,  
  Model 1 High risk (r = 0.150)   c = 0.05, z = 0.254
   Low risk (r = 0.075)   
Risk model representing a masking effect of the genetic factor Model 2 High risk (r = 0.150)   c = 0.05, z = 0.286
  Low risk (r = 0.075)   
Model 3 High risk (r = 0.150)   c = 0.075, z = 0.631
   Low risk (r = 0.075)   
  Model 4 High risk (r = 0.150)   c = 0.075, z = 0.964
   Low risk (r = 0.075)   
  1. Constant values α g , β g (g = 0,1,2) c, and z used to determine the penetrance functions (minor allele frequency 30%).