Skip to main content

Table 3 Phenotype classification when each linkage phase occur with probability hi

From: Maximum likelihood estimates of two-locus recombination fractions under some natural inequality restrictions

k (i, j)a p k
1 (1,1), (8,8), (1,8) h 1 g 00 2 + h 2 g 01 2 + h 3 g 11 2 + h 4 g 10 2 MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaGaemiAaG2aaSbaaSqaaiabigdaXaqabaGccqWGNbWzdaqhaaWcbaGaeGimaaJaeGimaadabaGaeGOmaidaaOGaey4kaSIaemiAaG2aaSbaaSqaaiabikdaYaqabaGccqWGNbWzdaqhaaWcbaGaeGimaaJaeGymaedabaGaeGOmaidaaOGaey4kaSIaemiAaG2aaSbaaSqaaiabiodaZaqabaGccqWGNbWzdaqhaaWcbaGaeGymaeJaeGymaedabaGaeGOmaidaaOGaey4kaSIaemiAaG2aaSbaaSqaaiabisda0aqabaGccqWGNbWzdaqhaaWcbaGaeGymaeJaeGimaadabaGaeGOmaidaaaaa@49EF@
2 (2,2), (7,7), (2,7) h 1 g 01 2 + h 2 g 00 2 + h 3 g 10 2 + h 4 g 11 2 MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaGaemiAaG2aaSbaaSqaaiabigdaXaqabaGccqWGNbWzdaqhaaWcbaGaeGimaaJaeGymaedabaGaeGOmaidaaOGaey4kaSIaemiAaG2aaSbaaSqaaiabikdaYaqabaGccqWGNbWzdaqhaaWcbaGaeGimaaJaeGimaadabaGaeGOmaidaaOGaey4kaSIaemiAaG2aaSbaaSqaaiabiodaZaqabaGccqWGNbWzdaqhaaWcbaGaeGymaeJaeGimaadabaGaeGOmaidaaOGaey4kaSIaemiAaG2aaSbaaSqaaiabisda0aqabaGccqWGNbWzdaqhaaWcbaGaeGymaeJaeGymaedabaGaeGOmaidaaaaa@49EF@
3 (3,3), (6,6), (3,6) h 1 g 11 2 + h 2 g 10 2 + h 3 g 00 2 + h 4 g 01 2 MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaGaemiAaG2aaSbaaSqaaiabigdaXaqabaGccqWGNbWzdaqhaaWcbaGaeGymaeJaeGymaedabaGaeGOmaidaaOGaey4kaSIaemiAaG2aaSbaaSqaaiabikdaYaqabaGccqWGNbWzdaqhaaWcbaGaeGymaeJaeGimaadabaGaeGOmaidaaOGaey4kaSIaemiAaG2aaSbaaSqaaiabiodaZaqabaGccqWGNbWzdaqhaaWcbaGaeGimaaJaeGimaadabaGaeGOmaidaaOGaey4kaSIaemiAaG2aaSbaaSqaaiabisda0aqabaGccqWGNbWzdaqhaaWcbaGaeGimaaJaeGymaedabaGaeGOmaidaaaaa@49EF@
4 (4,4), (5,5), (4,5) h 1 g 10 2 + h 2 g 11 2 + h 3 g 01 2 + h 4 g 00 2 MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaGaemiAaG2aaSbaaSqaaiabigdaXaqabaGccqWGNbWzdaqhaaWcbaGaeGymaeJaeGimaadabaGaeGOmaidaaOGaey4kaSIaemiAaG2aaSbaaSqaaiabikdaYaqabaGccqWGNbWzdaqhaaWcbaGaeGymaeJaeGymaedabaGaeGOmaidaaOGaey4kaSIaemiAaG2aaSbaaSqaaiabiodaZaqabaGccqWGNbWzdaqhaaWcbaGaeGimaaJaeGymaedabaGaeGOmaidaaOGaey4kaSIaemiAaG2aaSbaaSqaaiabisda0aqabaGccqWGNbWzdaqhaaWcbaGaeGimaaJaeGimaadabaGaeGOmaidaaaaa@49EF@
5 (1,2), (1,7), (2,8), (7,8) 2((h1 + h2)g00g01 + (h3 + h4)g10g11)
6 (3,4), (3,5), (4,6), (5,6) 2((h1 + h2)g10g11 + (h3 + h4)g00g01)
7 (2,3), (2,6), (3,7), (6,7) 2((h1 + h4)g01g11 + (h2 + h3)g00g10)
8 (1,4), (1,5), (4,8), (5,8) 2((h1 + h4)g00g10 + (h2 + h3)g01g11)
9 (1,3), (1,6), (3,8), (6,8) 2((h1 + h3)g00g11 + (h2 + h4)g01g10)
10 (2,4), (2,5), (4,7), (5,7) 2((h1 + h3)g01g10 + (h2 + h4)g00g11)
Total   1
  1. a(i, j): see Table 2 for the explanation.