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Abstract

Background: We propose a gene-level association test that accounts for individual relatedness and population
structures in pedigree data in the framework of linear mixed models (LMMs). Our method data-adaptively combines
the results across a class of score-based tests, only requiring fitting a single null model (under the null hypothesis)
for the whole genome, thereby being computationally efficient.

Results: We applied our approach to test for association with the high-density lipoprotein (HDL) ratio of post- and
pretreatments in GAW20 data. Using the LMM similar to that used by Aslibekyan et al. (PLos One, 7:48663, 2012),
our method identified 2 nearly significant genes (APOA5 and ZNF259) near rs964184, whereas neither the other
gene-level tests nor the standard test on each individual single-nucleotide polymorphism (SNP) detected any
significant gene in a genome-wide scan.

Conclusions: Gene-level association testing can be a complementary approach to the SNP-level association testing
and our method is adaptive and efficient compared to several other existing gene-level association tests.
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Background
Genome-wide association studies (GWASs) are consid-
ered to be the standard approach to use to detect com-
mon genetic variants associated with complex traits. It
has become popular to extend the most popular
single-nucleotide polymorphism (SNP)-level analysis to
gene-level analysis by aggregating multiple SNPs in a
gene or other functional unit. As a complement to the
standard single SNP-based approach, the gene-level ap-
proach can achieve higher reproducibility and power.
An additional benefit of the gene-level approach is that
a decreased number of hypotheses need to be tested,
thereby reducing the burden of multiple testing.
The goal of this work is to perform a gene-level asso-

ciation test to detect genes significantly associated with
a single trait using the GAW20 data while effectively
controlling for the false-positive rate. Note that the candi-
date gene approach conducted by Aslibekyan et al. was

based on the 95 loci drawn from previous studies based
on SNP-level association testing [1], and found SNP
rs964184 to be strongly associated with the high-density
lipoprotein (HDL) ratio of post- and pretreatments. We
are interested in determining whether a gene-level analysis
can lead to uncovering significantly associated genes, and,
in particular, whether the genes near rs964184 are signifi-
cantly associated in a genome-wide scan. Specifically, we
apply the adaptive sum of powered score (aSPU) test [2],
which is motivated to account for unknown and varying
association patterns (eg, varying numbers or proportions
of associated SNPs) across the genes, thus maintaining
higher power than other nonadaptive gene-level tests. The
aSPU test is computationally feasible as it does not require
to fit separate models for each SNP or gene, and it satis-
factorily controls false-positive rates. Note that the aSPU
test was originally proposed for generalized linear models,
and extended to generalized estimating equations and
generalized linear mixed models (GLMM) [3–5]. Its
application to and empirical performance in linear mixed* Correspondence: weip@biostat.umn.edu
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models (LMMs), especially with large pedigree data, have
not been discussed in previous studies.
The Genetics of Lipid Lowering Drugs and Diet Net-

work (GOLDN) study collected pedigree data, motivating
the use of LMMs to account for population structures and
relatedness as adopted by Aslibekyan et al. [1]. In our
LMM, we account for genetic relatedness among subjects
as a random effect with a covariance matrix calculated
based on individual-level SNP data. We also adjusted for
covariates such as age gender, and study center. In this
paper, we present the results of the aSPU test based on
LMM and compare with other existing gene-level tests
and individual SNP analysis.

Methods
Suppose that yi denotes a quantitative trait for individual
i = 1, ⋯, n, Xi = (Xi1,⋯, Xiq)

′ is a vector of q covariates,
and Gi = (Gi1,⋯,Gip)

′ is a vector of p SNPs in a gene for
individual i. A LMM is constructed as

yi ¼ X iαþ Giβþ bi þ εi ð1Þ
where α and β are the unknown regression coefficient
vectors for the corresponding covariates and SNPs, bi
and εi are a random intercept and an error term that are
independent with each other. We further assume that
the error terms εis are independently distributed, but bis
are not. Specifically,

b ¼ ðb1;…; bnÞ′∼Nð0;τ �ΨÞand ε

¼ ðε1…; εnÞ′∼Nð0;ϕ � IÞ ð2Þ
where Ψ is a known n × n genetic relationship matrix,

which reflects the genetic relatedness among the subjects in
the data. The null hypothesis to be tested for association
between the group of the SNPs and the trait is H0 : β = 0.
Fitting (generalized) LMMs can be computationally

demanding. However, using penalized quasi-likelihood
(PQL) to fit the model enables us to extract the test stat-
istic for score-based tests including the aSPU test [6]. It
is known that maximizing PQL is equivalent to maxi-
mizing the likelihood for quantitative traits. Specifically,
we first need to fit the LMM under the null hypothesis.

yi ¼ X iαþ bi þ εi; ð3Þ
from which, the score vector U = (U1,⋯,Up)

′, to be used
to construct various gene-level score-based tests, can be
expressed as

U j ¼
Xn

i¼1
Gi j

yi−ðX iα̂−b̂iÞ
ϕ̂

 !
ð4Þ

The aSPU test statistic can be obtained using the score
vector U and its covariance matrix V under the null hy-
pothesis, which can also be written in a closed form.

Because the score vector follows asymptotic normal dis-
tribution with mean zero under the null hypothesis, one
can use the Monte Carlo method to compute p-values.
Note that both U and V depend only on the null model
(3), which provides computational efficiency when the
number of tests is large as in a genome-wide scan. We
can use an R package GMMAT to derive U and V [7].
We briefly introduce the idea of the aSPU test here.

All score-based association tests require U and V, and
each nonadaptive test has its own advantages and disad-
vantages. For example, consider these 2 cases: (a) every
SNP encoded in a gene is associated with an equal effect
size and direction, and (b) only one or a small propor-
tion of the SNPs are associated. The burden test, which
takes

Pp
j¼1U j as a test statistic, is desired in the first

case, but it will lose power in the second case. On the
other hand, the UminP test, which takes max{|U1|,
⋯, |Up|} as a test statistic when the variances of the
score elements are the same, is advantageous in the sec-
ond case but not in the first case. Thus, applying a single
and nonadaptive score-based test might not be powerful
in gene-level analysis. The aSPU test offers a way to
combine various score-based tests; it is based on a class
of the sum of powered score (SPU) tests indexed by a
positive integer γ. Specifically, the SPU(γ) test statistic is.

TSPU γð Þ ¼
Xp

j¼1
Uγ

j andTSPU ∞ð Þ ¼ max U1j j;…; Up

�� ��� �

ð5Þ

It is easy to see that the burden test and the sum of
squared score (SSU) test are equivalent to the SPU(1) and
SPU(2) tests respectively. It was also shown that SPU(2) is
equivalent to sequence kernel association test (SKAT)
with the linear kernel and to Multivariate Distance Matrix
Regression (MDMR) with the Euclidean distance (under
the framework of LMM) [8]. Furthermore, assuming the
equal variance of the score elements, the UminP test is
equal to SPU test with γ =∞. One can treat γ as a factor
that decides the weight on each score element. The aSPU
test uses the minimum p value of the SPU tests as the test
statistic, which provides a general data-adaptive method
to test for associations. The set of γ ∈ {1, 2,⋯, 8,∞} was
proposed by Pan et al. based on experiences [2].

Results
The LMM we used for the GAW20 data was similar to
that used by Aslibekyan et al.; we used the ratio of post-
and pretreatment HDL as the trait, and we used age, gen-
der, and study center as covariates. The only difference
was the covariance matrix of the random effects. Our
covariance matrix Ψ of the random effects reflected the
genetic relatedness, where each Ψij was the Pearson cor-
relation coefficient between 2 subjects i and j of 20,000
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randomly selected SNPs. Our analysis was based on 821
subjects who did not have missing values in either the trait
or the covariates. We only included common variants with
minor allele frequencies (MAFs) greater than 0.05. Among
those, we randomly imputed missing variants using MAF
if the proportions of missing values were less than 1%. It
resulted in a total of 595,304 SNPs included in our ana-
lysis. For the gene-level analysis, we used hg18 as a refer-
ence genome and each gene included the SNPs that were
within 10,000 regions upstream or downstream of the
gene’s coding region. In total, we included 22,434 genes in
our analysis.
We conducted the SPU(γ) and aSPU tests under the

LMM. In addition to the SPU(1), SPU(2), and SPU(∞)
tests where their theoretical equivalences with other
existing gene-level tests are shown in the Methods

section, we also performed the gene-level score test and
the famSKAT (family-based sequence kernel association
test) [9] using the same covariates and relationship
matrix. Figure 1 shows the results of the tests. Using the
Bonferroni adjustment for the genome-wide significance
level (α = 0.05), the aSPU test and the score test did not
detect any significant genes, but 2 genes (APOA4 and
ZNF259 on chromosome 11) were close to being signifi-
cant. However, these 2 genes were detected by the
SPU(1) test, suggesting that their association effects were
not dominated by a small number of variants. We
emphasize the adaptiveness property of the aSPU test by
noting gene BUD13 on chromosome 11 and GUCD1
and SNRPD3 on chromosome 22, whose −log10(p values)
were not less than 3 by SPU(1), but much larger by the
SPU(∞) test (as well as by a few other SPU tests and the

Fig. 1 The Manhattan plots for the gene-level association tests
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aSPU test). We also note that APOA5 and ZNF259 were
located nearby as shown in Fig. 2. In particular, they
shared 7 variants out of 9 SNPs in both genes. The
gene-level score test yielded a gene (DDX42 on chromo-
some 17) almost significant at the genome-wide signifi-
cance level, but the score test did not detect any loci
near rs964184. Similarly, the famSKAT did not detect
any significant gene.
<insert Figure(s) 1 and 2 here>.
We also compared the gene-based tests to the score

test for single variants. We used the usual 5 × 10− 8 as
the genome-wide significance level for the SNP-level
analysis. Even though rs964184 turned out to be the one
most significantly associated with the trait among all the
SNPs, its p value was far away from the genome-wide

significance level, as shown in Fig. 3. This example par-
tially confirms the usefulness of gene-level testing.

Discussion
In GWAS, individuals in pedigree data are not inde-
pendent, thus motivating the use of (generalized) LMMs.
We considered a general LMM with a random intercept
that reflects the genetic relatedness among the subjects.
We then conducted the aSPU test on the genes across
the whole genome based on fitting a single null model,
and identified 2 genes near SNP rs964184 to be nearly
significant. In contrast, none of the SNPs, including SNP
rs964184, were nearly significant in a standard single
SNP-based analysis.

Fig. 2 The LocusZoom plot near APOA5 gene

Fig. 3 The Manhattan plot for the SNP-level association test
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Conclusions
We have demonstrated the applicability and usefulness
of our proposed aSPU test in LMMs for association ana-
lysis of large pedigree data. Furthermore, our study has
confirmed possible advantages and complementary roles
of gene-level analyses with the adaptive aSPU test when
compared to standard single SNP-based analyses.
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model; GWAS: Genome-wide association study; LMM: Linear mixed model;
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