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Abstract

Background: Rapidly evolving high-throughput technology has made it cost-effective to collect multilevel omic
data in clinical and biological studies. Different types of omic data collected from these studies provide both shared
and complementary information, and can be integrated into association analysis to enhance the power of identifying
novel disease-associated biomarkers. To model the joint effect of genetic markers and DNA methylation on the
phenotype of interest, we propose a joint conditional autoregressive (JCAR) model. A linear score test is used for
hypothesis testing and the corresponding p value can be obtained using the Davies method.

Results: The JCAR model was applied to the GAW20 data from the Genetics of Lipid Lowering Drugs and Diet
Network (GOLDN) study. In our application of the JCAR model, we consider a baseline model and a full model. In
the baseline model, we consider 3 different scenarios: a model with only genetic information, a model with only
DNA methylation information at visit 2, and a model using both genetic and DNA methylation information at
visit 2. For the full model, we consider both genetic and DNA methylation information at visit 2 and visit 4. The
top 10 significant genes are reported for each model. Based on the results, we found that the gene MYO3B was
significant as long as the methylation information was considered in the analysis.

Conclusions: JCAR is a useful tool for joint association analysis of genetic and epigenetic data. It is easy to implement
and is computationally efficient. It can also be extended to analyze other types of omic data.
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Background
Advances in high-throughput technologies provide com-
prehensive assessment of biomarkers, which enable us to
systematically study the role of different types of omic data
(eg, DNA, DNA methylation, proteins, and metabolites)
in human diseases. The collection of multilevel omic data
from these studies provides us a great opportunity to inte-
grate information from different levels of omic data into
association analysis. Although omic-based association
analysis holds great promise for discovering novel disease-
associated biomarkers, there is lack of appropriate

statistical tools to analyze multilevel omic data [1, 2]. The
development of advanced methods to address analytical
challenges faced by ongoing omic data analysis can
enhance our ability to identify new disease-associated
biomarkers.
Many statistical methods have been proposed to study

the associations between single-nucleotide polymorphism
(SNPs) and disease phenotypes. Although the conventional
regression methods (eg, simple linear regression) are easy
to use, they are not designed for high-dimensional genetic
data analysis, especially with additional omic data (eg, DNA
methylation data). Similarity based methods, such as
sequence kernel association test (SKAT) [3] or genetic ran-
dom field model (GenRF) [4], on the other hand, use ker-
nels to construct genetic similarities between individuals,
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making them applicable for high-dimensional data analysis.
Based on the similar idea, we developed a conditional auto-
regressive (CAR) model for association analysis of sequen-
cing data considering genetic heterogeneity. In this paper,
we extend the CAR model for joint association analysis of
SNPs and DNA methylation markers. The proposed joint
conditional autoregressive (JCAR) model is developed
based on a linear mixed model framework by considering
the effects of SNPs and DNA methylations, as random ef-
fects. A linear score test is then used to perform the associ-
ation testing.

Methods
If we are interested in evaluating the association of K
SNPs and L DNA methylation markers in a genetic re-
gion (eg, a gene) with a continuous phenotype. A CAR
model [5] can be written as the following linear mixed
model:

yi ¼ xTi βþ gi þmi þ εi; i ¼ 1;⋯; n
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where yi is the phenotype of the ith subject; xi is a p × 1
vector of covariates (eg, age, gender, etc.); β is the fixed
effect of the covariates; gi is the genetic random effect;
mi is the methylation random effect of the ith subject;
and εi is the random error. We can use kinship coeffi-
cient matrix K to model the familial correlations among
family members, and the identity matrix I when samples
are independent. sð1Þij and sð2Þij measure the similarity of
the genetic profiles and the similarity of DNA methyla-
tion profiles between the ith subject and the jth subject
respectively. γ1 and γ2 measure the overall genetic cor-
relation and the overall DNA methylation correlation,
respectively.
To test the genetic-only or the methylation-only effect,

it suffices to test H0 : σ2g ¼ 0 for genetic effect or to test

H0 : σ2m ¼ 0 . To evaluate the joint effect of SNPs and
DNA methylation markers on the response, we can test
the null hypothesis H0 : σ2

g ¼ σ2
m ¼ 0.

A linear score test [6] based on profiled restricted like-
lihood can then be formed for the association testing.
The corresponding score test statistic is

S ¼ S1 þ S2
2
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A is a matrix satisfying AK −1
2X ¼ 0 and AAT = In −

rank(X) and y� ¼ AK −1
2y. Sl ¼ ½sðlÞij � is the similarity matrix

with diagonal elements being 0 and Dl is a diagonal
matrix with the diagonal elements being the row sums
of Sl.
The p value of the association test can be calculated

by
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The p value can be calculated using the Davies method
[7].

Results
We conducted a genome-wide gene-based association
analysis by applying the new method to genome-wide
genetic and methylation data from the Genetics of Lipid
Lowering Drugs and Diet Network (GOLDN) study [8].
For the gene-based association analysis, we first ex-
tracted SNPs and DNA methylation markers for each
gene. There are 13,722 genes with both genetic and
DNA methylation information. We started with a base-
line model to assess the joint association of genetic and
DNA methylation with triglycerides. For this model, we
include 717 individuals from visit 2, who have both gen-
etic and DNA methylation information. To evaluate the
contribution of SNPs and methylation change to the tri-
glycerides change between visit 2 and visit 4, we fit a full
model with 429 subjects who have both genetic and
DNA methylation information from visit 2 and visit 4.
For individuals with missing genotypes or DNA methyla-
tion values, we impute the missing values with the variable
mean. We then apply JCAR to the genetic and DNA
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methylation data, evaluating the potential association of
13,722 genes with triglycerides. In the association analysis,
we use the theoretical kinship coefficient matrix to ac-
count for familiar correlation among subjects, and adjust
for age, gender, and field center.
We considered 3 different analytical strategies for the

baseline model (ie, based on visit 2):

1. Genetic information only. In this case, the CAR
model can be simplified as

yi ¼ xTi βþ gi þ εi; i ¼ 1;⋯; n:

The phenotype is the measurements of triglycerides at
visit 2 with a normal quantile transformation.

2. DNA methylation information only. In this case, the
CAR model can be simplified as

yi ¼ xTi βþmi þ εi; i ¼ 1;⋯; n:

The phenotype is the measurements of triglycerides at
visit 2 with a normal quantile transformation.

3. Both genetic and DNA methylation information. In
this case, the phenotype is the measurements of
triglycerides at visit 2 with a normal quantile
transformation.

For the full model, mi is the methylation difference of
cytosine-phosphate-guanine (CpG) sites between the 2
visits and the response is the difference of triglycerides at
visit 2 and at visit 4 with a normal quantile transformation.
For SNP data, we use the normalized identity-by-state

(IBS) kernel as the measurement of similarity; that is,

s 1ð Þ
ij ¼

XK
k¼1

2− gi;k−g j;k

��� ���
2K

where gi, k and gj, k are, respectively, the genotypes at the

Table 1 Top 10 significant genes obtained from the baseline
model, considering only the genetic information

Gene Chromosome p Value

LRIG3 12 0.000192

SH3GL1 19 0.000445

FBXO17 19 0.000565

ETF1 5 0.000597

PIF1 15 0.000676

GREM1 15 0.000719

LEF1 4 0.000755

SSTR4 20 0.000788

LYZL1 10 0.000847

RAB23 6 0.000903

Table 2 Top 10 significant genes obtained from the baseline
model, considering only the DNA methylation information

Gene Chromosome p Value

MYO3B\ 2 0.000755

MUCL1 12 0.001979

FGFR1OP 6 0.003126

IL22RA1 1 0.003383

COMMD10 5 0.003626

SNX5 20 0.003696

DCTN6 8 0.004189

KCTD2 17 0.005595

CDH4 20 0.008107

RWDD3 1 0.008165

Table 3 Top 10 significant genes obtained from the baseline
model, considering both the genetic and DNA methylation
information

Gene Chromosome p Value

TP53BP1 15 0.000654

MYO3B 2 0.000759

PLEKHM1 17 0.000899

C7orf42 7 0.000927

MUCL1 12 0.00127

HYAL4 7 0.001643

EXOSC10 1 0.002679

FGFR1OP 6 0.002693

IL22RA1 1 0.003399

TP53BP1 15 0.000654

Table 4 Top 10 significant genes obtained from the full model,
considering both the genetic and DNA methylation information

Gene Chromosome p Value

CYP4A22 1 0.002192

MYO3B 2 0.002254

C1orf141 1 0.002534

C22orf24 22 0.003132

SPRR1B 1 0.005632

LOC100128076 9 0.005733

IKZF2 2 0.006704

RANBP6 9 0.007358

OR2M2 1 0.007383

KLHL29 2 0.007572
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kth locus for the ith and the jth subjects and K is the
total number of SNPs. For DNA methylation data, a
Gaussian kernel is used to measure the similarity; that
is,

s 2ð Þ
ij ¼ exp −

1
2σ2

XL
l¼1

mi;l−mj;l
� �2( )

where mi, l and mj, l are, respectively, the DNA methyla-
tion measurements of the lth CpG site for the ith and
the jth subjects. For simplicity, the tuning parameter σ is
chosen to be the standard deviation of the methylation
data. When applying our method to the data, γ1 is fixed
at the average of the entries in the correlation matrix of
SNP data, and γ2 is fixed at the average of the entries in
the correlation matrix of DNA methylation data. Ta-
bles 1, 2, 3 and 4 summarize the top 10 significant genes.
As observed from the 4 tables, no association reached
statistical significance after adjusting for multiple com-
parisons. Although most top 10 significant genes are dif-
ferent for different models, 1 gene, MYO3B, is captured
by both the baseline model and the full model as long as
the methylation information is considered. Further in-
vestigation is needed to verify the association and inves-
tigate the potential role of MYO3B in triglycerides.

Discussion
In the application of the JCAR model to the real data, γ1
and γ2 are fixed at some value obtained from the SNP
and methylation data, respectively. In practice, we do
not know the value of γ1 and γ2. Therefore, the effect of
different values of γ1 and γ2 on the results needs further
investigation. Similarly, different choices of σ2 in the
Gaussian kernel might also affect the association test,
which worths further investigation.

Conclusions
A JCAR model is proposed for association analysis of
genetic data and DNA methylation data. Under the
linear mixed model framework, the CAR model is easy
to implement and computationally efficient. Although
we illustrate the method using the genetic and DNA
methylation data, it can be used to analyze other types
of omic data (eg, gene expression data) and is capable of
analyzing more than 2 levels of omic data. The JCAR
model introduced in this paper does not consider the in-
teractions among different levels of omic data. Further
study is required to extend the current framework to
consider the interactions.
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