
RESEARCH Open Access

Incorporating methylation genome
information improves prediction accuracy
for drug treatment responses
Xiaoxuan Xia1,2†, Haoyi Weng1,2†, Ruoting Men1,2, Rui Sun1,2, Benny Chung Ying Zee1,2, Ka Chun Chong1,2*

and Maggie Haitian Wang1,2*

From Genetic Analysis Workshop 20
San Diego, CA, USA. 4-8 March 2017

Abstract

Background: An accumulation of evidence has revealed the important role of epigenetic factors in explaining the
etiopathogenesis of human diseases. Several empirical studies have successfully incorporated methylation data into
models for disease prediction. However, it is still a challenge to integrate different types of omics data into
prediction models, and the contribution of methylation information to prediction remains to be fully clarified.

Results: A stratified drug-response prediction model was built based on an artificial neural network to predict the
change in the circulating triglyceride level after fenofibrate intervention. Associated single-nucleotide polymorphisms
(SNPs), methylation of selected cytosine-phosphate-guanine (CpG) sites, age, sex, and smoking status, were included as
predictors. The model with selected SNPs achieved a mean 5-fold cross-validation prediction error rate of 43.65%. After
adding methylation information into the model, the error rate dropped to 41.92%. The combination of significant SNPs,
CpG sites, age, sex, and smoking status, achieved the lowest prediction error rate of 41.54%.

Conclusions: Compared to using SNP data only, adding methylation data in prediction models slightly improved the
error rate; further prediction error reduction is achieved by a combination of genome, methylation genome, and
environmental factors.
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Background
Increasing evidence reveals the important role of epigenetic
factors in explaining the etiopathogenesis of human dis-
eases, especially in cancer [1]. For example, Chaudhry et al.
verified that BRCA1 promoter methylation was useful in
predicting the response to chemotherapy in epithelial ovar-
ian cancer [2], and Shindo et al. found that a high methyla-
tion M-score was a significant risk factor for recurrent
bladder cancer [3]. Diseases other than cancer have shown
profound alterations in DNA methylation profiles [4, 5].

Consideration of the effect of epigenetic factors on disease
traits has the potential to improve disease prediction, which
has been adopted in several recent empirical studies [6–9].
However, it is still challenging to integrate different types of
omics data into prediction models. In addition, there has
been insufficient information to precisely clarify the contri-
bution of methylation information to prediction.
In this study, a stratified drug-response prediction model

is built based on an artificial neural network (ANN) to
identify the contribution of methylation information to pre-
dicting the change in the circulating triglyceride (TG) level
after fenofibrate intervention. Omics data, including gen-
etic, epigenetic, and clinical factors, are used as predictors.
The analysis of GAW20 real data demonstrates that the in-
clusion of the methylation data improves the prediction
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accuracy marginally, which provides an indication for fu-
ture prediction research.

Methods
GAW20 data
GAW20 real data were used in this study and were pro-
vided by the Genetics of Lipid Lowering Drugs and Diet
Network (GOLDN) study, which aimed to identify the gen-
etic determinants of the responses of circulating lipid levels
to fenofibrate treatment interventions. In total, 1053 indi-
viduals from families with at least 2 siblings were recruited.
They all self-reported as being of white ethnicity [10]. TG
levels were measured at visits 1, 2, 3, and 4, among which
data from visits 1 and 2 were collected before fenofibrate
intervention, whereas the other two TG measurements
were made after the intervention (visits 3 and 4). At visit 1,
participants were measured using a lipid profile after an
overnight fast. A repeated lipid file occurred the next day
during visit 2. The treatment period lasted 3 weeks,
after which participants returned to the clinic for 2
consecutive days for visits 3 and 4 [10]. Meanwhile,
DNA methylation levels were measured at visits 2
and 4. DNA was isolated from CD4+ T cells har-
vested from stored buffy coats and the proportion of
sample methylation was quantified at > 450,000
cytosine-phosphate-guanine (CpG) sites [10].

Data quality control
In the quality control process, 39 participant outliers were
removed, and only subjects without any missing data for
the key variables (TG levels at visits 1 to 4, methylation
value at visit 2, and genotypes) were used. A total of 523
participants were included in the analysis. For the genotype
data, single-nucleotide polymorphisms (SNPs) with a minor
allele frequency < 0.01 were excluded. Missing variants were
imputed according to the probability distribution of the

genotype in all subjects. For the methylation data,
cross-reactive probes and probes containing common vari-
ants were filtered. Beta-mixture quantile normalization was
used to correct for the Infinium Type I/II bias [11], and
participant outliers were identified by hierarchical cluster-
ing and Eigenstrat [12].

Drug-response definition
Drug response was used as the dependent variable which
could be defined as the percentage change in the TG level.

TG change percentage ¼ TG post−TG preð Þ= TG preð Þ

Where TG pre is the average of TG levels at visits 1 and
2, and TG post is the average of TG levels at visits 3 and 4.
It was reported that fenofibrate, which was the intervention
drug for the GAW20 real data, usually reduced the plasma
TG level by approximately 30 to 60% in hyperlipoproteine-
mia patients at a dosage of 200–400 mg daily [13]. In this
regard, we defined the drug-response variable as 1 when
the TG level was reduced by more than 30% after treat-
ment, which meant the drug worked for patients. Other-
wise, the drug-response variable was coded as 0, which
meant that the drug did not work as expected. Conse-
quently, as shown in Fig. 1, 301 and 222 participants were
coded as 1 and 0, respectively.

Stratified variable selection and prediction modeling
The features related to drug response were selected in a
stratified manner [14], first within each data type, and then
aggregated in an ANN to predict the drug response [15].
ANNs are designed to perform learning tasks using a col-
lection of computational units and a system of interlinking
connections [16]. The central idea of ANN is to extract fea-
tures by linearly combining the inputs and then use nonlin-
ear functions to model the targets. Therefore, a neural

Fig. 1 Distribution of percentage change in circulating triglyceride (TG)
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network can be thought of as a nonlinear generalization of
linear models, which generalizations can be used for classi-
fication and regression [17]. We used the AMORE package
in the R 3.3.2 GUI 1.68 Mavericks build (7288) to conduct
the ANN analysis [15]. The stratification enables precise
variable selection within each data type, and the ANN en-
ables the consideration of interaction effects within and
across data types [18]. Five-group cross-validation error
rates and their standard deviation were calculated to evalu-
ate prediction performance.
The generalized estimation equation (GEE) model was

used to select significant SNPs and adjust for family related-
ness [19]. CpG sites were selected by linear mixed model
(LMM) with an empirical kinship matrix to adjust for fam-
ily structure [20]. Both the mixed-effect model and GEE are
theoretically suitable for the selection of the SNPs and CpG
sites while controlling for family structures. The two
methods differ in the way they estimate the coefficients and
treat the population correlation structure. The major con-
sideration for us was the ability of software packages to
handle a binary phenotype, control family structure, and
treat continuous random-effect variables. An arbitrary p
value threshold of 10− 4 was applied to filter the biomarkers
for GEE and LMM so that a moderate number of predic-
tors can be used in the prediction model. SNPs were
pruned to avoid the strong influence of SNP clusters, by
snpgdsLDpruning, and the linkage disequilibrium threshold
was set at 0.2 [21, 22]. The empirical kinship matrix was
calculated using the pruned SNPs to control for family re-
latedness. Other clinical variables, including sex, age, and
smoking status, were also used as predictors.
Predictors were added into the prediction model

step-by-step by data types. Afterward, chosen SNPs were in-
putted into the ANN first, followed by significant CpG sites.
Finally, age, sex, and smoking status were included. This
stratified method made it easy to identify the respective con-
tribution of each category of information to prediction.
A three-layer ANN was applied with one hidden layer.

The hyperbolic tangent sigmoid transfer function was
used as the activation function (a) for the hidden layer,
which has the following form:

a ¼ transig nð Þ ¼ −1þ 2= 1þ e−2n
� �

A linear function was used as the activation function
for the output layer (purelin):

a ¼ purelin nð Þ ¼ n

The learning rate and global momentum were set at
0.01 and 0.4, respectively. The preferred training method
was an adaptive gradient descent with momentum. The
least mean squares criterion was used to measure the
proximity of the neural network prediction to its target
when training the ANN.

Results
Contribution of each variable to prediction
Three types of data (SNPs, methylation, and clinical in-
formation) were included in the ANN model in a step-
wise manner to compare their contributions to the
prediction ability of the model. The baseline model sim-
ulates the null scenario; that is, 100 SNPs were selected
from the autosomes at random and used to predict the
phenotype with the ANN in 5-group cross-validation.
This gave a baseline error rate of 47.15% (SD: 3.79%),
representing a random-guess prediction error under the
ANN. Next, including the SNP information yielded a
mean test prediction error rate of 43.65% (SD: 4.79%).
When methylation information was added, the predic-
tion model achieved an error rate of 41.92% (SD: 4.64%;
Wilcoxon rank sum test p value: 0.3759), which implies
that the inclusion of methylation information improves
the prediction model. When clinical factors (age, sex,
smoking status) were also included, the error rate dropped
slightly to 41.54% (SD: 5.66%, Wilcoxon rank sum test p
value: 0.5) (Table 1). Figure 2 shows the changes of predic-
tion error rate using different variable sets. Sequentially
adding SNPs, CpG sites, and environmental factors grad-
ually pushed down the prediction error rate.

Biological function of identified variables
Finally, we report the biological meaning of variables
identified using all data. Many of the identified SNP and
CpG markers had functions that are related to the regu-
lation of the circulating level of TG, which is a major
storage molecule for metabolic energy [23]. To list a few
genes (Tables 2 and 3), FTO (rs10521308, p value =
9.47E-05) and CTNNBL1 (rs2206135, p value = 7.75E-05)
have both been strongly associated with obesity risk and re-
lated traits [24, 25]. The gene DGAT1 (cg13438334, p value
= 8.49E-05) plays a role in catalyzing the committed step in
the biosynthesis of TGs [23], and ALDH4A1 (cg22390041,
p value = 4.97E-05) is known to catalyze ester hydrolysis,
suggesting that it may lead to a change in the TG level [26].

Table 1 Stratified drug-response prediction model
incorporating omics data

Training error
rate ± SD

Test error
rate ± SD

SNP 8.59% ± 0.88% 43.65% ± 4.79%

CpG 8.88% ± 2.87% 45.00% ± 3.29%

Add useful CpG information
to SNPs

0.00% ± 0.00% 41.92% ± 4.64%

Add useful CpG information
to SNPs + age, sex, smoking

0.00% ± 0.00% 41.54% ± 5.66%

The error rates are average 5-fold cross-validation error rates by ANN
using inputs
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Discussion
Epigenetic factors are thought to be significantly associated
with human diseases, making it plausible to incorporate
methylation information for better disease prediction. In this
study, we used an ANN to build a stratified drug-response
prediction model in which SNPs, methylation, age, sex, and
smoking status were considered as predictors. The GAW20
real-data analysis shows that the incorporation of methyla-
tion information could reduce the prediction error rate by
approximately 4% (p value = 0.3759). The combination of
significant SNPs, CpG sites, age, sex, and smoking status
achieved the best prediction error rate of 41.54%.
In previous studies, Deng et al. used fusing networks to

predict schizophrenia from SNPs, methylation, and func-
tional magnetic resonance imaging data [27]. They achieved
a 2.8% increase in prediction accuracy, increasing from
52.9% (using SNPs only) to 55.7% (using SNPs and methyla-
tion information). We achieved similar improvement when
adding methylation information to SNP. Several reasons
may account for the difference between our work and theirs.
First, the cell type from which they collected methylation in-
formation for prediction is different from the GAW20 data.

Methylation varies across cell types, and changes in some
cell types are more environment and phenotype specific
than in other cell types [4]. The GAW20 real data set
methylation information was collected from CD4+ T cells
harvested from stored buffy coats, and the phenotype was
the TG level in blood, which has a strong correlation with
T-cell functions [10]. Second, family relatedness in the
GAW20 real data set played a role in the lower prediction
error rate. Third, 208 participants (96 cases and 112 health
controls) were recruited in the study by Deng et al., whereas
our study has a larger sample size of 523 participants. Fi-
nally, the method we applied uses a stratified feature selec-
tion and prediction approach. The stratification enables
better power to selected variables within each stratum, com-
pared to an all-mixture type of prediction modelling, result-
ing in an enhanced final prediction accuracy.

Conclusions
Adding methylation data slightly improved the predic-
tion accuracy for drug response using a neural network
based prediction algorithm with GWAS data. The result
could be constraint by the source of tissue, the outcome

Fig. 2 Stratified drug-response prediction model: the error rate improved when adding additional variables

Table 2 Selected SNPs that pass the threshold of 10− 4 in the
GEE model

SNP Chromosome Gene Position p Value MAF

rs10521308 16 FTO 80,459,640 9.47E-05 0.05

rs2206135 20 CTNNBL1 35,914,069 7.75E-05 0.42

rs710711 12 BEST3 124,093,552 9.98E-05 0.38

rs7096710 10 C10orf59 63,063,177 2.92E-05 0.02

rs4851313 2 CHST10 100,395,434 5.47E-05 0.44

MAF minor allele frequency

Table 3 Selected CpG sites that pass the threshold of 10−4 in
the LMM model

CpG sites Chromosome Gene Position p Value

cg13438334 8 DGAT1 145,550,989 8.49E-05

cg11666857 5 SLC6A19 1,207,464 2.44E-05

cg22390041 1 ALDH4A1 3,036,916 4.97E-05

cg15883716 1 ANKRD45 19,226,319 2.06E-06

cg01056590 1 CABC1 173,638,701 4.07E-06
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variable and the disorder under study. Further studies in
other cohorts are necessary to validate the results.
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