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Abstract 

Background Sunflower (Helianthus annuus) is one of the most important economic crops in oilseed production 
worldwide. The different cultivars exhibit variability in their resistance genes. The NAC transcription factor (TF) fam-
ily plays diverse roles in plant development and stress responses. With the completion of the H. annuus genome 
sequence, the entire complement of genes coding for NACs has been identified. However, the reference genome 
of a single individual cannot cover all the genetic information of the species.

Results Considering only a single reference genome to study gene families will miss many meaningful genes. 
A pangenome-wide survey and characterization of the NAC genes in sunflower species were conducted. In total, 139 
HaNAC genes are identified, of which 114 are core and 25 are variable. Phylogenetic analysis of sunflower NAC pro-
teins categorizes these proteins into 16 subgroups. 138 HaNACs are randomly distributed on 17 chromosomes. SNP-
based haplotype analysis shows haplotype diversity of the HaNAC genes in wild accessions is richer than in landraces 
and modern cultivars. Ten HaNAC genes in the basal stalk rot (BSR) resistance quantitative trait loci (QTL) are found. 
A total of 26 HaNAC genes are differentially expressed in response to Sclerotinia head rot (SHR). A total of 137 HaNAC 
genes are annotated in Gene Ontology (GO) and are classified into 24 functional groups. GO functional enrichment 
analysis reveals that HaNAC genes are involved in various functions of the biological process.

Conclusions We identified NAC genes in H. annuus (HaNAC) on a pangenome-wide scale and analyzed S. sclero-
tiorum resistance-related NACs. This study provided a theoretical basis for further genomic improvement targeting 
resistance-related NAC genes in sunflowers.

Keywords Sunflower, NAC gene family, Pangenome characterization, Sclerotinia head rot resistance, Basal 
stalk rot resistance

Background
Many important cellular processes in plants are con-
trolled by transcriptional regulation, such as signaling 
transduction, cellular morphogenesis, and various stress 
responses [1]. Regulation of gene expression requires a 
group of proteins known as transcription factors (TFs).

Transcription factors, which belong to a highly diverse 
family of proteins, generally function in protein  com-
plexes composed of multiple subunits. The NAC (NAM, 
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 ATAF1/2, and CUC 2) gene family encodes one of the 
largest and most important TFs in plants [2]. It has 
been reported that numerous NAC TFs take part in the 
regulation of a series of biological processes related to 
plant growth and development, including embryo and 
root development [3, 4], cell division [5], flowering [6], 
cell wall synthesis [7], leaf senescence [8], and response 
to abiotic and biotic stress [6, 9]. Because of their sig-
nificance in plant complex  life  activities, genome-wide 
screening of NAC was performed in many plants like 
tobacco [10], poplar [11], cotton [12], foxtail millet [13], 
Arabidopsis, and rice [14].

As a large number of reference genomes have been 
released, genomic approaches can be employed to iden-
tify specific genes and study the correlations between 
candidate genes and heritable traits [15]. However, a sin-
gle reference genome is unable to cover the full genetic 
information of a species due to structural variations 
which comprise deletions, insertions, translocations, 
inversions and duplications. These variations are often 
related to important agronomic traits [16, 17]. The refer-
ence genome of plant species is often derived from cul-
tivated species, which cannot represent the rich genetic 
diversity of wild species, limiting the study of crop evo-
lutionary and domestication history at higher breadth 
and depth. Therefore, conducting pangenomics analysis 
becomes crucial to ensure a comprehensive representa-
tion of genomic diversity within a species. Pangenomes 
have been created for many plant species, such as soy-
bean [18, 19], maize [20], Brassica rapa [21], rice [22], 
Brassica oleracea [23], bread wheat [24], sunflower [25], 
and Brassica napus [26, 27].

The concept of a "pangenome" encompasses the 
entirety of genes in a species, without redundancy. It 
comprises two categories: core genes and variable genes. 
Core genes are found in all or nearly all individuals, while, 
variable genes occur only in certain individuals [16]. 
Variable genes include two variable types: copy number 
variations (CNVs) and gene presence/absence variations 
(PAVs) [28, 29].

Sunflower (Helianthus annuus L.) is an important 
source of edible oil and the seeds are used for food as 
well. It is produced worldwide because of its ability to 
grow and adapt in the most rigid environments. With 
the completion of the H. annuus genome sequence [30], 
the entire complement of genes coding for NACs has 
been identified and described [31]. The traditional ref-
erence genome (v1.0) provides a foundation for dis-
covering these NAC genes. However, due to the effects 
of environmental factors, different individuals have 
formed extremely special genetic traits, and the refer-
ence genome of a single individual cannot represent the 

genetic diversity of the species in the process of evolu-
tion, leading to a loss of many meaningful genes. 

In this study, NAC genes in H. annuus (HaNAC) on 
a pangenome-wide scale were identified, PAVs were 
detected, and the phylogenetic characteristics and dis-
tribution on chromosomes were analyzed. We studied 
single nucleotide polymorphisms (SNPs) and haplotype 
variation of NAC genes to understand the genetic diver-
sity among different populations. In order to better 
understand the features of disease resistance-related 
NACs, the NAC genes in QTL regionfor Sclerotinia basal 
stalk  rot  (BSR) resistance were surveyed. Furthermore, 
we analyzed the expression of the NAC gene in response 
to Sclerotinia  head rot (SHR). This study may provide 
clues in identifying disease resistance-related genes in 
this important crop.

Materials and methods
Pangenome
The H. annuus pangenome was described by Hübner 
et al. [25]. It was generated by sequencing 493 accessions, 
including 287 cultivated lines, 17 Native American lan-
draces, and 189 wild accessions representing 11 compat-
ible wild species. 

Retrieval of NAC genes
Sunflower protein sequence data were obtained from the 
sunflower genome database (https:// sunfl owerg enome. 
org/ pange nome- data/). The Hidden Markov Model 
(HMM) profile of the NAC domain (PF02365) was down-
loaded from the Pfam database (http:// pfam. xfam. org) 
and used to identify potential NAC genes from the sun-
flower genome via HMMER 3.3.2 software (http:// www. 
hmmer. org/), with an E-value threshold of  10–5. Only 
those proteins predicted to contain the NAM domain 
by the online tool SMART (http:// smart. embl- heide 
lberg. de/ smart/ batch. pl) were considered as candidate 
NAC members. Arabidopsis NAC protein sequences 
were downloaded from the Arabidopsis genome, TAIR 
10.0 release (http:// www. arabi dopsis. org/). Gene PAV 
was discovered across the cultivated gene pool using the 
SGSGeneLoss package [32]. 

Phylogenetic tree construction
The NAC protein sequences of sunflower and Arabidop-
sis were aligned using the program MAFFT 7.490 [33] 
with default  parameters, and the tree construction was 
carried out by the Maximum Likelihood method using 
the program FastTree 2.1.11 (http:// www. micro beson 
line. org/ fastt ree/). NAC family genes were classified into 
several subgroups based on similarities in NAC domain 
structures [34].

https://sunflowergenome.org/pangenome-data/
https://sunflowergenome.org/pangenome-data/
http://pfam.xfam.org
http://www.hmmer.org/
http://www.hmmer.org/
http://smart.embl-heidelberg.de/smart/batch.pl
http://smart.embl-heidelberg.de/smart/batch.pl
http://www.arabidopsis.org/
http://www.microbesonline.org/fasttree/
http://www.microbesonline.org/fasttree/
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Density/distribution of the NAC gene on sunflower 
chromosomes
The NAC density/distribution was plotted using the 
rtracklayer package, karyoploteR package, and RColor-
Brewer package in Rscript (v4.0.3).

Gene–CDS–haplotype (gcHap) analysis of the NAC gene 
family
Vcftools 0.1.15 was used to screen the VCF files of Sun-
flower to obtain SNPs by further removing rare alleles 
with a missing rate of > 0.4 [35]. gatk_vcf_to_haplotype.
pl (https:// github. com/ zhuoc henbi oinfo/ VCF2H AP) was 
used to identify gcHapin all samples, and then to calcu-
late the number of haplotypes in different populations.

To assess gene diversity across different populations, 
Shannon’s equitability (EH) [36] was calculated using the 
gcHap (gene–coding sequence–haplotype) data. The for-
mula was:

where pi is the proportion of the ith gcHap of a gene, N 
is the population size, and lnN is the maximum possible 
diversity of a gene. EH value ranges between 0 and 1.

Nei’s genetic identity (INei) [37] was used to measure 
the genetic differentiation among populations. For each 
gene, INei between two populations was estimated with 
the gcHap data. The formula was:

Xi and Yi represent the frequencies of the ith gcHap of 
a gene in populations X and Y, respectively.

EH and INei were visualized using the ggplot2 package 
and ggpubr package in R 4.0.3 [38].

Identification of NAC‑genes conferring Sclerotinia BSR 
resistance
A total of six QTLs responsible for quantitative resistance 
to BSR have been identified in a sunflower recombinant 
inbred line population, one of each on linkage groups 
(LGs) 4, 9, 10, 11, 16, and 17 [39]. BLAST was used to 
compare the gene sequences at both ends of these QTLs 
with reference genome sequences (HA412-HO.v1.1). 
According to HaNAC and QTL positions in the reference 
genome, possible candidate HaNAC genes related to BSR 
are explored.

SNP data for the H. annuus genome and pangenome 
extra contigs were downloaded from (https:// sunfl owerg 
enome. org/ pange nome- data/ Helia nthus Varia nts. vcf. gz).

SNPs flanking the known Sclerotinia BSR resistance 
QTL regions were collected from the literature [39]. 

EH =

1

lnN
(− pi ln pi)

INei =

∑
XiYi√∑
X2

i Y
2

i

Waterfall plots were drawn using Variant Effect Predictor 
88.13 [40], GenVisR 1.11.3 [41], vcftools 0.1.15 [42] and 
R 4.0.3.

Analysis of RNA‑seq data of SHR
SHR is caused by the necrotrophic fungus Sclerotinia 
sclerotiorum.  Fass et  al. [43] studied gene expression at 
the early stages of infection (0, 4, and 8 dpi) in one sus-
ceptible (H89) and two tolerant inbred lines (HA853, 
RK416) inoculated with the pathogen in field conditions.

RNA-seq data were downloaded from NCBI and 
SRA accession number was SRP219154 [43]. The fastq-
dump tool in the SRA Toolkit 2.10.0 (http:// www. ncbi. 
nlm. nih. gov/ Traces/ sra/ sra. cgi? view= toolk it_ doc&f= 
fastq- dump) was used to Convert SRA files to fastq files. 
Fastp 0.20.1 was used to trim low-quality bases (aver-
age Q-score below 20) and adaptor sequences in raw 
data [44]. The RNA-seq clean data of each sample were 
mapped to the sunflower pan-genome using HiSAT2 
2.1.0 [45]. FPKM (Fragments Per Kilobase of exon model 
per Million mapped reads) value of NAC genes was calcu-
lated. DESeq2 1.32.0 [46] was used for differential expres-
sion analysis, |log2 fold change |≥ 1 and p < 0.05 were set 
as the threshold to determine differentially expressed 
genes. A heatmap of Log2 (FPKM + 1) values was gener-
ated using the ComplexHeatmap package (2.6.2, https:// 
bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ Compl 
exHea tmap. html) in R 4.0.3. 

We analyzed the differential expression of NAC genes 
in each inbred line (IL)-time point combination. A total 
of 27 combinations was shown in Table S1.

Gene ontology (GO) annotation and enrichment analysis
All HaNAC sequences were compared against the 
sequences in the UniProt database using  the BLASTP 
with an E-value cutoff of 1e-5. The Retrieve/ID Mapping 
tool was used (https:// www. unipr ot. org/ uploa dlists/) to 
convert UniProt IDs to GO IDs for HaNAC GO annota-
tion.  The agriGO was used for GO enrichment analysis  
(http:// bioin fo. cau. edu. cn/ agriGO/ analy sis. php). All genes  
in the sunflower pan-genome were used as back-
ground.  GO enrichment results were visualized using 
Cytoscape 3.8.0 [47].

Results
Pangenome‑wide identification of NAC family genes
A total of 139 NAC-encoding genes are identified in 
the H. annuus pangenome, including one NAC gene 
(HaNAC139) that is not present in the reference genome 
assembly. Of the 139 NAC genes, 114 (82.01%) are core 
genes (found across > 95% of the accessions) and 25 
(17.99%) are dispensable genes of which 20 were found 
in > 5% ~  < 95% of the accessions, and 5 were rare genes 

https://github.com/zhuochenbioinfo/VCF2HAP
https://sunflowergenome.org/pangenome-data/HelianthusVariants.vcf.gz
https://sunflowergenome.org/pangenome-data/HelianthusVariants.vcf.gz
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=fastq-dump
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=fastq-dump
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=fastq-dump
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://www.uniprot.org/uploadlists/
http://bioinfo.cau.edu.cn/agriGO/analysis.php
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that were found in < 5% of the accessions. The detailed 
information on the 139 NAC gene sequences is shown in 
Table S2.

Phylogenetic analysis of NAC gene family in sunflower 
and Arabidopsis
To investigate the phylogenetic relationship among the 
HaNAC family members, a phylogenetic tree is con-
structed based on the alignment of 240 full-length pro-
tein sequences from sunflower and Arabidopsis. As 
indicated in Fig. 1, the 139 HaNACs are divided into 16 

subgroups. Since AtNAC6, 23, 24, and 77 don’t belong to 
any group, HaNAC genes highly similar to these genes 
are assigned to the Ha_NAC subgroup. The largest clade 
is the NAM subgroup containing 18 HaNACs, while the 
OsNAC8 subgroup constitutes the smallest clade with 
only one HaNAC98.

All subgroups of the HaNAC family contain vari-
able genes (present only in some individuals) (Fig. 2). In 
total, the absence of 68 genes occurs in 5074 accessions 
(Table S3). In a total of 290 accessions, HaNAC18 and 
HaNAC55 are absent in 289 accessions, HaNAC31 is 
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Fig. 1 A phylogenetic tree of sunflower and Arabidopsis NAC proteins. The amino acid sequences of NAC proteins were aligned using MAFFT 7.490, 
and a phylogenetic tree was generated using the Maximum Likelihood method of FastTree 2.1.11. NAC family genes were classified into different 
subgroups based on similarities in NAC domain structures [34]. Blue and red fonts denoted sunflower and Arabidopsis NACs, respectively. All NACs 
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absent in 281 accessions, and HaNAC61 is absent in 278 
accessions.

The absence of variable genes in subgroups ANAC011, 
AtNAC3, NAC1, OsNAC8, and TP occur in few acces-
sions, with 5, 3, 1, 11, and 1 respectively, indicating 
that these five subgroups are relatively stable among all 
groups. On the contrary, the gene absence in subgroups 
ANAC001 and ONAC003 occurs in a higher propor-
tion of accessions, with 269 (~ 92.8%) and 484 (~ 83.4%), 
respectively, suggesting that these two groups are the 
most unstable among all groups and might endure strong 
selection pressure during sunflower domestication and 
breeding.

HaNAC gene distribution on sunflower chromosomes
We mapped the 138 HaNAC genes on all 17 chromo-
somes (Chr 1 to Chr17) and named them from HaNAC1-
HaNAC138 according to their chromosomal locations. 
As shown in Fig.  3, HaNAC sequences distribute une-
venly over  all  chromosomes. Chr13 and Chr15 have a 
maximum of 14 HaNACs (~ 10.1%), respectively, whereas 
only 2 HaNACs (~ 1.4%) are located on Chr6. Chr5 has 

the longest size of 271  Mb, but NAC genes are distrib-
uted only in the region between 220 and 271 Mb. Of the 
138 HaNACs, 25 variable genes (dispensable genes and 
rare genes) are located on 11 chromosomes. No vari-
able genes are located on Chr1, Ch6, Chr10, Chr12, Chr 
14, and Chr 17, indicating that the NAC genes on these 
chromosomes are relatively stable during evolution and 
domestication. Half or more than half of the NAC genes 
on Chr4 and Chr16 are variable genes, suggesting that 
the NAC genes on these two chromosomes probably have 
undergone selection during sunflower domestication and 
diversification.

Analysis of gene–CDS–haplotypes in sunflower NAC gene 
family
We investigated the SNPs  and haplotype constructed 
with adjacent SNPs in HaNAC genes. According to SNP 
information provided by Hübner et  al. [25], 3247 SNPs 
are discovered within the CDS region of 108 HaNACs. 
No SNPs are found within the remaining 31 HaNAC 
genes (Table S4), which may be involved in some basic 
biological processes and serve as housekeeping genes.
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maximum of each measurement so that they peak at 1. The ruler at the bottom was used to show the size of each chromosome
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We made statistical analysis on the haplotypes in genes 
of different phylogenetic groups (Fig. 4A), and our results 
show that haplotypes are the most abundant in group 
ANAC011, while the least in group OsNAC8. The NAC 
gene in ANAC011 has the largest haplotype diversity, 
suggesting that these genes play different regulatory roles 
in different sunflower accessions. However, the NAC gene 
in OsNAC8 showed the least haplotype variation among 
different accessions, which may be due to its conserved 
function.

We calculated EH to evaluate genetic diversity within 
populations (Fig. 4B, C). In general, genes with lower INei 
values tend to make a greater contribution to population 
differentiation, while genes with higher INei values have 
less impact. Furthermore, when the EH value of a gene 
is lower, it suggests lower genetic diversity among indi-
viduals. Conversely, a higher EH value indicates greater 
genetic diversity [35]. The EH density distribution of 
HaNAC in wild accessions is closer to the right (larger 
EH value) than that of other populations (Fig.  4B), indi-
cating that haplotype diversity of the HaNAC gene in the 
wild accessions is richer. The peak value of EH density in 
modern cultivars is closer to the left (lower EH value), 
indicating that,  the genetic diversity of the HaNAC 

gene decreases after a long-term domestication.  Fig-
ure  4C shows the EH value of each population, and the 
mean value of the wild accessions is the largest, followed 
by landraces, whole and modern cultivars decreasing in 
their genetic diversity.

To compare the genetic diversity between different 
populations, we calculated INei (Fig. 4D). Wild accessions 
vs landraces and wild accessions vs modern cultivars 
both have lower INei values, indicating that the SNP-hap-
lotypes of the HaNAC gene in the wild population are 
significantly different from those in the other two popu-
lations. However, the INei values of landraces vs modern 
cultivars are mostly above 0.5, indicating that there is 
little haplotype difference between the HaNAC genes in 
these two populations.

Introgression in sunflower NAC gene family
According to the sunflower pangenome data [25], we ver-
ified whether the NAC gene family has introgression. The 
results show that HaNAC26 in cultivated sunflower 
association mapping (SAM) population has gene intro-
gression from H. argophyllus and H. neglectus, and gene 
introgression from these two neighboring species into H. 
annuus arises in two samples.

Fig. 4 gcHap numbers, Shannon’s equitability (EH) and Nei’s genetic identity (INei) of sunflower NAC family among different populations. A 
Distribution of gcHap number (gcHapN) of all 139 NAC genes in different phylogenetic groups. B Frequency distribution of EH in landraces, wild 
accessions, modern cultivars and whole populations. C EH distribution in four different populations. D INei distribution of landraces vs modern 
cultivars, wild accessions vs modern cultivars, and wild accessions vs landraces
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NAC genes in Sclerotinia BSR resistance QTL regions
Ten HaNAC candidates are identified at loci Qbsr-4.1, 
Qbsr-9.1, and Qbsr-16.1 (Table  1). HaNAC26 locates at 
loci Qbsr-4.1, HaNAC56 at loci Qbsr-9.1 and HaNAC122, 
HaNAC123, HaNAC124, HaNAC125, HaNAC126, 
HaNAC127, HaNAC128, HaNAC129 at loci Qbsr-16.1. 
Of them, HaNAC56, HaNAC126, and HaNAC127 are 

core genes, and the rest are dispensable ones. Combining 
with SNP and PAV information in the sunflower pange-
nome, the variation of 10 HaNAC genes in 492 accessions 
is analyzed (Fig.  5). The sunflower pan-genome contains 
the genetic information of 493 accessions. Because the 
HaNAC genes in the QTL regions have no SNP markers in 
accession PPN021, PPN021 is excluded from the analysis.

Table 1 The number of HaNACs at the Qbsr-4.1, Qbsr-9.1and Qbsr-16.1

Locus Pseudomolecule Start (bp) End (bp) Length (bp) HaNAC number

Qbsr-4.1 Chr4 107675011 124808091 17133080 1 (HaNAC26)

Qbsr-9.1 Chr9 135225176 153762638 18537462 1 (HaNAC56)

Qbsr-10.1 Chr10 132441999 136480784 4038785 0

Qbsr-11.1 Chr11 170688742 185809916 15121174 0

Qbsr-16.1 Chr16 45544215 199280159 153735944 8 (HaNAC122、HaNAC123、HaNAC124
、HaNAC125、HaNAC126、HaNAC127
、HaNAC128、HaNAC129)

Qbsr-17.1 Chr17 150544245 230082427 79538182 0
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Fig. 5 Waterfall plot of HaNAC variation in the QTL region in 492 sunflower accessions
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The genes HaNAC26, HaNAC122, and HaNAC125 in 
the QTL region are not displayed in the waterfall map 
because they do not contain SNP markers, i.e., they do 
not have gene variation in 492 accessions, suggesting 
that these three genes are very conservative. Among the 
remaining seven HaNAC genes, HaNAC128 shows the 
largest variant mainly due to the gene loss that is present 
in 171 samples, indicating that HaNAC128 is subject to 
the greatest pressure of PAV selection. Mis-sense vari-
ant, synonymous variant, and intron variant are the main 
variation patterns of the HaNAC gene in the QTL region. 
HaNAC123 has the highest proportion of synonymous 
variants, while HaNAC126 has the highest proportion 
of intron variants. The HaNAC129 shows low variation 
(< 20%), but the majority of variants are missense, indi-
cating that this gene has been strongly and positively 
selected in some accessions.

Expression analysis of HaNAC gene in response to SHR
Based on the transcriptome data of inoculated (I) and 
control (N) capitula of three sunflower inbred lines (ILs) 
[43], we analyzed the differential expression of each IL-
time point combination.

A total of 26 HaNAC genes were expressed differ-
entially (Fig.  6A, Table S5). HaNAC genes in groups 

ANAC063 and NAC1 showed low expression levels. 
In addition, among all differentially expressed HaNAC 
genes, the number of HaNACS in groups NAP and NAC2 
was the largest, indicating that compared with others, 
the HaNAC genes in these two groups might be more 
involved in response to S. sclerotiorum.

All the combinations of I vs N had no differentially 
expressed gene (DEG) (data not shown).  At three time 
points, HA853 and HA89 had larger numbers of DEGs in 
8 dpi vs 0 dpi, 14 and 18 respectively, while 8 DEGs were 
found respectively in 4 dpi vs 0 dpi (Fig. 6B, C). However, 
RK416 had 10 DEGs in 8 dpi vs 4dpi, and no DEG in 4 
dpi vs 0 dpi (Fig. 6D). The result indicated that HaNACs 
respond quickly to SHR in HA89 and HA853, while 
HaNACs respond slowly to SHR in RK416.

There were five DEGs in RK416_0_I vs HA89_0_I 
(Fig.  6E), seven in RK416_4_I vs HA89_4_I and nine in 
HA853_4_I vs RK416_4_I (Fig. 6F), five in RK416_8_I vs 
HA89_8_I and three in HA853_8_I vs RK416-8-I respec-
tively (Fig. 6G), indicating that HaNAC genes in different 
lines responding to S. sclerotiorum are different at the 
same time point.

Most IL-time point combinations had larger numbers 
of up-regulated than down-regulated DEGs (Fig.  7A). 
Figure  7B shows the number of DEGs between three 
lines.

Fig. 6 Heatmaps and Venn diagrams. A Heatmaps of differentially expressed HaNAC genes. B‑G Differentially expressed HaNAC genes in the three 
datasets through Venn diagrams software (available online: http:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/). Different colors meant different 
combinations

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Functional annotation and enrichment analysis of HaNAC 
genes
To further understand the function of NAC genes in sun-
flowers, we performed GO annotation and functional 
enrichment analysis for HaNAC genes.

A total of 137 HaNACs are annotated in Gene Ontol-
ogy (GO) and are classified into 24 functional groups, 
including 15 groups in the biological process, six in cellu-
lar component, and three in molecular function (Fig. 8A). 
Within the biological process, the “metabolic process” 
(GO: 0008152) and “cellular process” (GO: 0009987) 
with 137 HaNACs respectively are predominant. In the 
category of cellular component, the three main groups 
are “organelle” (GO: 0043226, 137 HaNACs), “cell” (GO: 
0005623, 137 HaNACs), and “cell part” (GO: 0044464, 

137 HaNACs). The categories “binding” (GO: 0005488) 
and “transcription regulator activity” (GO: 0140110) are 
the most common in molecular function, represented by 
137 and 114 HaNACs, respectively.

GO functional enrichment analysis reveals that 
HaNAC genes are mainly involved in the biological pro-
cess (Fig. 8B). Figure 8C shows the network of enriched 
GO terms in the cellular component category. Figure 8D 
shows GO terms are enriched in the molecular function 
category, including DNA binding, transcription factor 
activity, sequence-specific DNA binding, nucleic acid 
binding transcription factor activity, nucleic acid binding, 
organic cyclic and heterocyclic compound binding. These 
represent the characteristics of the HaNAC proteins as 
transcription factors, which regulate gene expression via 

Fig. 7 Analysis of DEGs. A Number of up- and down-regulated DEGs between IL-time- inoculated samples. B Number of up- and down-regulated 
DEGs between three inoculated lines

Fig. 8 Gene ontology annotation of HaNAC and network diagram of Go terms. A Gene ontology annotation of HaNAC. 137 sequences were 
grouped into three major functional categories and 24 sub-categories. B Network diagram of GO terms enriched in biological process. Only the top 
10% of GO terms with the lowest FDR (false discovery rate) value were showed. C Network diagram of GO terms enriched in cellular component. D 
Network diagram of GO terms enriched in molecular function
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transcription by binding to gene-specific sequences and 
affect the biological activities of cells.

Discussion
The NAC family is one of the largest plant-specific TFs 
that are involved in regulating growth, development, and 
stress responses. To date, NAC genes have been discov-
ered in many plant species represented by 117 genes in 
Arabidopsis [14], 151 in rice [14], 101 in soybean [48], 145 
in cotton [12], 104 in tomato [49], 148 in maize [50], 87 in 
sesame [51], 80 in watermelon [52], 145 in sorghum [53], 
85 in sugarcane [54], 91 in cucumber [55], 104 in pepper 
[56], and 164 in cultivated peanut [57]. Li et al. [31] iden-
tified 150 HaNACs in sunflower through genome-wide 
survey (Ha412HO v1.0). The assembly of the cultivated 
sunflower pan-genome was guided by the HA412-HO.
v1.1 reference sequence. Based on pan-genome data, we 
identified a total of 139 NACs with intact NAC domains 
in sunflower. Relatively numerous NACs in the sunflower 
were speculated to be highly involved in the complex 
transcriptional regulatory networks of sunflower. Multi-
ple gene duplication events are believed to be responsible 
for this phenomenon as well.

According to the findings of Hübner et al. [25], the cul-
tivated sunflower pan-genome consists of 61205 genes, 
with approximately 27% of these genes exhibiting varia-
tion across different genotypes. Our analysis found that 
82% of 139 NACs in the H. annuus pangenome are core 
genes and 18% are dispensable genes (including rare 
genes). In plants, core genes often play a role in essen-
tial metabolic processes, while dispensable genes usu-
ally function in stress responses [19, 58–60] which tend 
to evolve faster under stronger selection [60, 61]. Previ-
ous studies have shown polymorphism level is higher 
in dispensable genes than in core genes [18, 26, 62, 63]. 
In the B. oleracea pangenome, nearly 20% of genes 
show PAV [23]. In the Glycine soja pangenome, dispen-
sable genes account for 20% of the total genesets which 
exhibit greater variation than the core genome [18]. 
Sorghum pan-genome also displays large variation in 
genecontent, with 64% of gene families affected by PAV 
among genomes [64]. Through pangenomic analysis, we 
can study the retention and loss of genes during domes-
tication and breeding [65]. In our study, PAV analyses 
revealed the loss of 5074 NAC genes during sunflower 
domestication and improvement, consistent with the 
trend found in sunflower domestication [25]. PAV is an 
important contributor to the studies of genetic diversity, 
gene identification, and molecular marker development 
in plants [66]. Understanding the PAV gene could sup-
port crop improvement applications and potentially rein-
troduce the gene into modern varieties [67].

Ooka et  al. [34] classified NAC family proteins of 
Oryza sativa and Arabidopsis thaliana into two groups 
and 18 subgroups by sequence similarity. NAC proteins 
classified in the same groups may have similar functions 
in events common to monocotyledonous and dicoty-
ledonous plants. Many findings suggest that the NAC 
proteins in subgroups NAM and NAC1 function in mor-
phogenesis [2, 5], and proteins in the ATAF subgroup 
share a conserved role in stress responses [68]. NAC 
proteins in subgroup OsNAC3 (a monocot-specific sub-
group) may be involved in monocot-specific responses to 
stress [34]. Analysis of the alignment of sunflower NAC 
proteins reveals that the proteins constitute a large fam-
ily and belong to 16 subgroups (Fig. 1). Because proteins 
with domains similar in alignment are possible to have 
similar functions, our results will facilitate further func-
tional analysis of sunflower NAC family genes. Our anal-
ysis shows the ATAF group consists of nine NAC genes 
in sunflower which may play a pivotal role in response to 
stress stimuli.

Sunflower holds global significance as it serves as a 
crucial oilseed crop, as well as a significant supplier of 
confectionery seeds and ornamental flowers. The cul-
tivated sunflower are derived from wild H. annuus and 
were domesticated in what is now Central America ear-
lier than 4000  years ago [69]. The wild sunflower is a 
potential source of cytoplasmic male sterility, and fertility 
restoration genes have been successfully introduced into 
cultivated sunflower [70–72]. Hübner et al. [25] reported 
approximately 10% of the cultivated sunflower pan-
genome contains introgression  of the  wild sunflower-
derived gene, and 1.5% of the genes are introduced solely 
through introgression. Introgressed regions show an 
overrepresentation of genes associated with biotic resist-
ance. Our analysis finds that introgression also exists in 
the sunflower NAC gene family.  HaNAC26 in the SAM 
population has gene introgression from two wild annual 
Helianthus species H. argophyllus and H. neglectus.  H. 
argophyllus has been used as a valuable source of disease-
resistance genes, which provide resistance against Puc-
cinia helianthi, Plasmopara halstedii, and S. sclerotiorum 
in sunflower [73–75]. Hübner et al. [25] found that intro-
gression is related to the formation of sunflower resist-
ance ability. The introgression phenomenon of HaNAC26 
pointed out in this study reveals the HaNAC26 is possibly 
associated with resistance.

The SNPs marker system is extensively used in 
modern genomics research [76]. Out of 139 HaNAC 
genes, 108 contained SNP markers. SNP-based hap-
lotype analysis indicates that haplotype diversity of 
the HaNAC gene among wild accessions is richer than 
that in the landraces and modern cultivars implying 



Page 12 of 15Lu et al. BMC Genomic Data           (2024) 25:39 

that selection pressure may lead to the loss of genetic 
diversity in certain populations during sunflower 
domestication. Low diversity may have weakened 
their  ability  to  adapt  to  the  environment. The sun-
flower gcHap diversity dataset generated in this study 
would contribute to sunflower basic research and 
future breeding. Polymorphisms within gene coding 
regions represent the most important part of the over-
all genetic diversity. Zhang et al. [35] characterized the 
gcHap diversity of 45963 rice genes in 3010 rice acces-
sions. They found an average of 226 ± 390 gcHaps per 
gene in rice populations. Low frequencies of ‘‘favora-
ble’’ gcHaps at most known genes related to rice yield in 
modern varieties suggest massive potential for improv-
ing rice by mining and pyramiding favorable gcHaps. 
The gcHap data were demonstrated to have greater 
power for detecting causal genes that affect complex 
traits. The rice gcHap diversity dataset would facilitate 
rice improvement in the future.

NAC transcription factors are known to be involved 
in coordinating responses to attacks by phytopath-
ogens. Overexpression of the eggplant (Solanum 
melongena) transcription factor SmNAC suppresses 
resistance to bacterial wilt pathogen Ralstonia sola-
nacearum [77]. Analysis suggests a putative NAC 
transcription factor Rph7 in barley (Hordeum vul-
gare) mediates the activation and strength of the basal 
defense response to leaf rust pathogen Puccinia hordei 
[78]. The rice OsNAC30 mutant lines showed mark-
edly reduced susceptibility to Xanthomonas oryzae 
pv. oryzae compared to wild-type plants. Mutation of 
OsNAC59 conferred resistance to Fusarium fujikuroi, 
while mutation of OsNAC101 increased susceptibility 
to this pathogen [79].

White mold caused by S. sclerotiorum  is a devastating 
disease causing servere yield losses in sunflower produc-
tion.  Sunflower white mold has three different types of 
disease symptoms: BSR, mid-stalk rot (MSR), and head 
rot. So far, no major gene conferring complete resistance 
against this pathogen has been identified in cultivated 
sunflowers.

Crop breeding programs have faced challenges in iden-
tifying QTL that provide broad-spectrum resistance, 
which refers to resistance against various plant patho-
gens. These QTLs have proven to be elusive targets in 
breeding efforts. Six QTLs for resistance to BSR have 
been identified in the sunflower recombinant inbred 
line (RIL) population [39]. Our analysis data reveals that 
ten HaNACS are located at loci Qbsr-4.1, Qbsr-9.1, and 
Qbsr-16.1 probably play a regulatory role in BSR resist-
ance. Three NAC genes (HaNAC26, HaNAC122, and 
HaNAC125) in the QTL region contain no SNP markers, 
therefore they have no variation in 492 accessions, which 

suggests a stable inheritance trait and valuable targets for 
breeders.

Identifying NAC candidates within QTL may help 
future breeding efforts in H. annuus. SNP markers tightly 
linked to resistance are also useful for breeding applica-
tions. Identifying both core and variable genes within 
these regions emphasizes the importance of employing 
pangenomics in these endeavors.

S. sclerotiorum has been reported to infect over 400 
plant species [80]. Transcriptomic studies in B. napus, 
A. thaliana, and Glycine max have shown that defense 
against S. sclerotiorum involves transcription factor fami-
lies, pathogenesis-related (PR) proteins, cell wall related 
proteins, as well as genes associated with cellular redox 
state, and hormone signaling pathways [81–85]. Joshi 
et al. [83] identified 30 TFs from B. napus post-infection 
with S. sclerotiorum, mainly including WRKY, NAC, eth-
ylene response element binding factor (EREBF), MYBs, 
heat shock factors (HSFs), and C3H zinc finger. The 
results demonstrated the regulatory roles of plant TFs in 
response to pathogen challenges.

Fass et al. [43] investigated the transcriptional response 
of sunflowers to SHR. The analysis of differential gene 
expression revealed limited overlap among the ILs, 
indicating genotype-specific regulation of cell defense 
responses, potentially associated with variations in dis-
ease resistance strategies. All three ILs demonstrated 
an impact on the expression of genes related to cellular 
redox state and cell wall remodeling, aligning with exist-
ing understanding of the initiation of plant immune 
responses. Based on their data, we find a total of 26 dif-
ferentially expressed HaNAC genes (~ 18.8% of the total 
HaNAC genes) involved in the defense against SHR. 
Our data analysis demonstrates the existence of diversi-
fied transcriptional responses to SHR within sunflower 
breeding lines and provides new evidence of the signifi-
cant roles HaNAC genes played in response to pathogen 
challenges.

The GO functional annotation analysis further indi-
cates that ‘binding’ and ‘transcription regulator activity’ 
are the most common molecular functions of HaNAC 
transcription factors, while ‘cellular process’ and ‘meta-
bolic process’ are the most common biological processes, 
which is consistent with the characteristics of transcrip-
tion factors.

Conclusion
In this study, we analyzed NACs in an H. annuus pange-
nome using a single reference and whole-genome 
sequencing data from 492 lines. Our various analy-
ses reveal genomic landscape diversity and discover 
genes that have been lost during domestication in culti-
vated sunflowers. Our results highlight the potential of 
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variable genes to be used in genetic structural variation 
studies for future breeding programs. We identify some 
novel NACs that may contribute to resistance to Scle-
rotia white mold. Further genetic manipulation of these 
resistance-linked QTLs and genes will advance the pre-
cision breeding of sunflowers. Overall, the constructed 
sunflower pan-genome provides an important resource 
for sunflower improvement and gene discovery. And the 
findings will aid in furthering our understanding of not 
only the functions of core, and dispensable genes but also 
on various topics ranging from a better understanding of 
the evolutionary dynamics of gene families to genotype–
phenotype associations.
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