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Abstract
Background:  To date, in eukaryotes, ribosomal protein expression is known to be regulated at
the transcriptional and/or translational levels. But other forms of regulation may be possible.

Results:  Here, we report the successful tagging of functional ribosomal particles with a S7-GFP
chimaeric protein, making it possible to observe in vivo ribosome dynamics in the filamentous fungus
Podospora anserina. Microscopic observations revealed a novel kind of ribosomal protein regulation
during the passage between cell growth and stationary phases, with a transient accumulation of
ribosomal proteins and/or ribosome subunits in the nucleus, possibly the nucleolus, being observed
at the beginning of stationary phase.

Conclusion:  Nuclear sequestration can be another level of ribosomal protein regulation in
eukaryotic cells.This may contribute to the regulation of cell growth and division.

Background
Because translation utilizes a large proportion of the cell

energy, its components are tightly regulated, especially

ribosomes. Indeed, as cells are depleted of nutrients, a
reduction in ribosome function occurs. In E. coli, ribos-

omes are converted by dimerization through the action

of the RMF protein into 100S particles that are unable to

perform translation [1]. In eukaryotes, ribosomal pro-

teins are down regulated. This occurs through transcrip-

tional regulation in yeast [2] and mostly through

translational regulation in mammals and Dictyostelium

[3]. To date, in vivo observation of a tagged and func-

tional ribosomal particle during various cellular growth

phases has not been reported (despite the fact that the

large ribosomal subunit has recently been successfully

tagged with GFP [4]), so there has been no evidence of

whether spatial regulation can also be involved in the

regulation of ribosomal proteins. Here, we report a spa-

tial regulation of a small subunit ribosomal protein upon

entrance into stationary phase.

Results and discussion
In order to observe the ribosomes in vivo, the S7 small

subunit ribosomal protein of P. anserina was tagged

with GFP. S7 belongs to the E. coli S4 family and is en-
coded by the su12 gene [5]. To this end, the GFP coding

sequence was inserted in frame in the place of the su12

stop codon to yield the su12-GFP gene. Expression of this

gene is thus driven from the su12 promoter and should

yield a chimaeric S7GFP protein composed of S7 at the N

terminus of the protein and GFP at the C terminus. The

su12-GFP gene was introduced by transformation in the

su12-1C1 mutant strain, which carries two mutations in

the su12 gene, and thus displays a strong decrease of

paromomycin resistance [6]; this antibiotic binds to ri-

bosomes and increases the decoding error rate [7, 8]. The

transformants obtained were fluorescent and had the

same level of paromomycin resistance as wild type (Fig.

1) indicating that the S7GFP protein is incorporated into

the ribosome and is fully able to replace the su12-1C1 mu-

tant protein during protein synthesis. Genetic analysis

for two transformants showed a complete co-segregation
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of the restoration of paromomycin resistance and of the

fluorescence.

As seen in Fig. 2A and 2B, examination of hyphae taken

from the growing edge of a culture revealed an intense

fluorescence throughout the cytoplasm of most hyphae.
The staining heterogeneity was due to the fact that or-

ganelles and vacuoles remained unstained. By contrast,

examination of hyphae taken about 1 centimetre away

from the growing edge, where cells have stopped their di-

vision for about 24 hours, revealed in many (but not all)

of them a less intense fluorescence that was homogenous

throughout the cytoplasm but for a few intense foci (Fig.

2C). These foci co-localised with nuclei (Fig. 2D). They

were not observed in the control experiment where GFP

was expressed alone from a GPD promoter (Fig. 2G and

2H). When cells had stopped their division for a longer

time (i.e. for about a week), the fluorescence decreased

further and no foci were observed (Fig. 2E and 2F).

These in vivo data show that the ribosomes are dimin-

ished in the cytoplasm upon entrance into stationary

phase but also provide evidence that the S7 protein is

present during a transient period at a higher level within

a define region of the nucleus. The staining is possibly lo-

calised in the nucleolus, since in 42 out of 50 nuclei ob-

served, the foci were located at the periphery of the

nucleus in a region that appeared less stained with DAPI

(Fig. 2I, 2 and 2). In the remaining 8 cases, the nuclei ex-

hibited the shape of a pear and the foci were localised at

the tip of the pear. In these cases, it was impossible to as-
certain that the foci were located within the nucleolus.

Conclusions
We report here for the first time a nuclear sequestration

of a ribosomal protein during a transient period at the

onset of stationary phase. A plausible explanation is that

this kind of regulation permits a rapid production of ri-

bosomes if nutrients are encountered before a more pro-

nounced stationary phase is entered. However, recent

data [9, 10] show that release of cdc14, sequestered in the

nucleolus, is involved in the proper exit from mitosis. Be-

cause ribosomes might regulate cell cycle progression

[11], it is possible that sequestering ribosome in the nu-

cleus is an additional level of regulation involved in en-

suring a correct cell cycle arrest.

Materials and Methods
The strains used for this study derive from the S strain

[12]. Culture and methods used for Podospora anserina

are described in [13].

DNA manipulation were made according to [14]. To con-

struct the su12-GFP gene, the su12 coding sequence was

amplified from plasmid psu12-S3 [5] by PCR with oligos

3382 (5'-ACTATAGGGCGAATTGG-3') and su12-3' (5'-

CGGGATCCCGAAAACATACCTGATCACGCAGAG-3').

This yielded a PCR product, in which the su12 stop codon

is replaced by a BamHI site allowing for the fusion with
the GFP coding sequence. To this end, the PCR product

was digested by EcoRI and BamHI and cloned into

pEGFP-1 (Clontech) at the corresponding sites. The se-

quence of the complete su12 coding sequence along with

the junction with the GFP coding sequence revealed that

no mutation had occur in the su12 coding sequence dur-

ing plasmid construction. Podospora S strain was co-

transformed using the method of [15] by this plasmid

and pBC-hygro vector [16]. Transformants resistant to

hygromycin were selected and examined for GFP fluo-

rescence and resistance to paromomycin. Several such

transformants were obtained. Two were subjected to ge-

netic analysis through a cross with wild type.

Figure 1
Functional complementation the su12-1C1 mutation
by su12-GFP. Growth after four days on medium contain-
ing 750 mg/l paromomycin of two independent su12-1C1
transformants expressing the S7GFP protein, wild type and
untransformed su12-1C1 strain.
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Figure 2
Microscopic observation of hyphae expressing the
S7GFP protein. A-F, are experimental observations with
strains carrying the su12-GFP chimaeric gene. A, C and E vis-
ualise GFP fluorescence and B, D and F visualise DAPI
straining. The hyphae in A and B is from the growing edge;
The hyphae in C and D is taken 1 centimetre away from the
growing edge corresponding to about 1 day of stationary
phase. The hyphae in E and F is taken 5 centimetres away
from the growing edge corresponding to about 1 week of
stationary phase. The picture in E was taken with a pose time
twice as long as the other pictures. G (GFP fluorescence)
and H (DAPI staining) are control observations of GFP alone
expressed from the GPD promoter; the hyphae is taken 1
centimetre away from the growing edge as in C and D. I
(GFP fluorescence), J (DAPI staining) and K (superposition of
I and J) show the sub-nuclear localisation of the foci in two
adjacent nuclei. Clearly, the GFP foci are located in a depres-
sion of the DAPI staining, where the nucleolus is supposed to
be located.
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