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Abstract
Background: There has been intense effort over the past couple of decades to identify loci
underlying quantitative traits as a key step in the process of elucidating the etiology of complex
diseases. Recently there has been some effort to coalesce non-biased high-throughput data, e.g.
high density genotyping and genome wide RNA expression, to drive understanding of the molecular
basis of disease. However, a stumbling block has been the difficult question of how to leverage this
information to identify molecular mechanisms that explain quantitative trait loci (QTL). We have
developed a formal statistical hypothesis test, resulting in a p-value, to quantify uncertainty in a
causal inference pertaining to a measured factor, e.g. a molecular species, which potentially
mediates a known causal association between a locus and a quantitative trait.

Results: We treat the causal inference as a 'chain' of mathematical conditions that must be satisfied
to conclude that the potential mediator is causal for the trait, where the inference is only as good
as the weakest link in the chain. P-values are computed for the component conditions, which
include tests of linkage and conditional independence. The Intersection-Union Test, in which a
series of statistical tests are combined to form an omnibus test, is then employed to generate the
overall test result. Using computer simulated mouse crosses, we show that type I error is low
under a variety of conditions that include hidden variables and reactive pathways. We show that
power under a simple causal model is comparable to other model selection techniques as well as
Bayesian network reconstruction methods. We further show empirically that this method
compares favorably to Bayesian network reconstruction methods for reconstructing
transcriptional regulatory networks in yeast, recovering 7 out of 8 experimentally validated
regulators.

Conclusion: Here we propose a novel statistical framework in which existing notions of causal
mediation are formalized into a hypothesis test, thus providing a standard quantitative measure of
uncertainty in the form of a p-value. The method is theoretically and computationally accessible and
with the provided software may prove a useful tool in disentangling molecular relationships.
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Background
It has become increasingly appreciated in recent years that
empirical evidence of causal links between genotype and
multiple quantitative traits such as transcript abundances
and clinical phenotypes can provide information on
causal relationships between those quantitative traits [1-
10]. The conceptual foundation of the inferred causal rela-
tionships is built on the idea that random segregation of
chromosomes during gametogenesis insulates against
confounding in a manner analogous to treatment rand-
omization in a clinical trial [11,12]. Markov properties
and conditional correlation have also been utilized by
some investigators to disentangle the causal pathway,
already simplified by the establishment of genotype as the
origin of propagation [1,7,9,10,13-15]. Generally, causal-
ity is inferred after a series of mathematical conditions are
met, but quantifying uncertainty in the causal call has
been challenging.

Causal effect estimates often considered in 'Mendelian
randomization' approaches [11], can be confounded by
pleiotropic effects and reverse causation [12], thus, these
approaches are not generally considered for problems
such as reconstructing transcript regulatory pathways, in
which pleiotropy is common and there may be little a pri-
ori information on the structure of the causal relationship
between traits.

It's hard to overstate the importance of this problem as
emerging technology and increased understanding of
molecular biology allows cost-effective high-throughput
quantification of multiple classes of molecular traits such
as gene expression, CNV, miRNA, metabolite levels, splice
variants, methylation, and protein expression. Designing
and orchestrating classical studies to learn about causal
pathways by perturbing individual factors would
undoubtedly prove to be glacially slow given the
extremely high dimensional nature of the problem.

Here we propose a statistical test to infer causal status for
a potential mediator between a locus and a quantitative
trait based on a set of mathematical conditions, thus pro-
viding a causal call and a quantitative measure of uncer-
tainty in the causal inference in the form of a formal p-
value. By 'causal', we mean that variance in the mediator
determines some proportion of variance in the trait, even
if that proportion is small. While the proposed approach
does rely on some distributional and linear assumptions,
generalizations to nonparametric and nonlinear models
are straightforward.

Results
Conditions for causality
A genotype marker at a specific locus is denoted by L, tran-
script abundance for a specific transcript by G, and a

measured clinical trait by T. Schadt [7] described a model
selection approach based on conditional correlation, in
which causality can be inferred if four conditions are met;
1) L and G are associated, 2) L and T are associated, 3) L is
associated with G|T, and 4) L is independent of T|G. In
practice, the first two conditions are often implicit,
because statistical significance of a QTL is usually assessed
at the peak marker, whereas the actual marker chosen to
conduct a test of causality may be less statistically signifi-
cantly associated with either or both traits. Here L is
assumed to be sufficiently randomized by random segre-
gation (and fixed due to the properties of DNA), thus L is
analogous to a randomized treatment in a clinical trial in
that association with L implies causation.

Causal inference test (CIT)
Chen [1] presented theoretical evidence in the form of a
'Causality Equivalence Theorem' that causality is implied
if three of the former conditions are satisfied under the
assumption that L is randomized, specifically, 1) L and G
are associated, 2) L and T are associated, and 3) L is inde-
pendent of T|G. Although not included among their min-
imum conditions required to establish a causal
relationship, Chen [1] presented evidence that the associ-
ation of G with T|L is a necessary but not sufficient condi-
tion. It should be noted that a reactive model is consistent
with the condition that L is independent of G|T, whereas
the causal model is consistent with the condition that L is
associated with G|T. This condition is not an explicit part
of the Causality Equivalence Theorem, but the reasoning
behind the proof is equally valid if we substitute condi-
tion 1, that L is associated with G, with the more stringent
condition that L is associated with G|T. This condition is
explicitly tested by Schadt [7] in their condition 3 and can
provide additional information useful in distinguishing
the causal from the reactive model. We took a conserva-
tive approach and included all non-redundant mathemat-
ical conditions from the previous discussion that are
necessary and sufficient as a group to imply a causal rela-
tionship as our final suite of conditions that serve as a
working mathematical definition of causality. To summa-
rize, the conditions are 1) L and T are associated, 2) L is
associated with G|T, 3) G is associated with T|L, and 4) L
is independent of T|G.

Component statistical tests
Each mathematical condition is assessed with a corre-
sponding statistical test. Biallelic markers were considered
here and fully modeled using two indicator covariates, L1
and L2, for one and two variant alleles, respectively, in a
co-dominant coding. The four conditions are tested in the
parameters of the following three linear regression mod-
els,

T L Li i i i= + + +α β β ε1 1 1 2 2 1 (1)
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where the εji represent independent random noise with

variance . It should be noted that dependencies are

likely to exist between certain pairs of covariates in the
preceding three models. For instance, if the underlying
relationship between variables is causal, reactive, or inde-
pendent, dependencies will exist between T and L in
model 2 and G and L in model 3. It precisely these
dependencies we hope to learn about by conducting con-
ditional tests of parameters. In terms of the preceding
three models, the four component tests are:

For conditions 1 through 3, we use standard F tests for lin-
ear model coefficients, where the null hypotheses corre-
spond to each set of parameters equaling zero. The F tests
are conditional on the remaining terms in the model, that
is, partial F tests are conducted for tests of parameters in
equations (2) and (3). For the forth condition, the alter-
native hypothesis is {β7, β8} = 0 (conditional on the β6
term), which is an equivalence testing problem, that is, a
non-significant test of the null that {β7, β8} = 0 does not
correspond to statistically significant equivalence. Gener-
ally, in setting up an equivalence test, it is necessary to
specify critical bounds that define a region in which the
parameter is sufficiently close to the target value as to
make any difference practically irrelevant. Chen et al. [1]
in estimating the posterior probability of the condition
that L is independent of T|G, defined this region as the
parameter space that is closer to zero than we would
expect under the 'independence' model. Here the 'inde-
pendence' model is defined by three conditions, 1) L is
causal for G, 2) L is causal for T, and 3) T is independent
of G|L. Similarly, here we estimate the null distribution of
the test statistic conditional on the observed T and the
independence model, and test whether the observed sta-
tistic is significantly smaller than we would expect under
the null.

More specifically, the null distribution is estimated using
a bootstrap type approach that consists of the following

steps: 1) A random variable G* is simulated according to
the marginal effect of L on G, thereby breaking any resid-
ual dependence between T and G|L. First, the marginal
effect of L on G is estimated from the regression equation

G = α + β1L1 + β2L2 + . Then the residuals are randomly

permuted and used with the estimated parameters to
obtain G*. 2) The following two nested models

are fitted and a single realization of the test statistic, F*, is
computed under the null distribution. 3) Steps 1 and 2 are
repeated B times to create an empirical distribution of F*
under the independence model. With B sufficiently large,
the observed test statistic F can be tested directly against
the empirical distribution of F* using a non-parametric
permutation-based testing approach. Alternatively, if
computation time is limiting, parametric properties of F
in combination with a small B sample of F* can be used
in a semi-parametric approach to approximate the null
distribution. First, a method-of-moments approach yields
an estimator for the non-centrality parameter of the F dis-
tribution under the null as,

where ν1 and ν2 denote the degrees of freedom. However,
conditional on the observed T, the distribution has less
spread than the unconditional distribution, so a standard
F test here would result in an overly conservative estimate.
To mitigate this problem we can transform to a normal
distribution,

where , and we can estimate the variance, σ2,

from the empirical distribution of Z*. Thus,

That is, the transformed observed statistic Z is tested

against a  distribution. Figure 1 demonstrates

that under the independence model, the normal distribu-
tion is a decent approximation for Z*. Figure 2 demon-
strates that the semi-parametric approach is consistently
more conservative than the non-parametric approach
under the independence model.

G T L Li i i i i= + + + +α β β β ε2 3 4 1 5 2 2 (2)
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Omnibus test
The CIT can be thought of as testing the strength of a chain
of mathematical conditions that as a set are consistent
with causal mediation. Thus, the strength of the chain is
only as strong as the weakest link, and correspondingly,
the rejection region of the omnibus test is the intersection
of rejection regions of the component tests. Cassela and
Berger [16] showed that for a series of tests, each of size αγ
and with rejection region Rγ, then the 'intersection-union'
test with rejection region ∩Rγ is a level sup(αγ) test. Thus,
the p-value for the CIT corresponds to the p-value for an

intersection-union test, which is the supremum of the
four p-values for the component tests.

A typical experiment where one might attempt to quantify
causal associations between genes and clinical traits is an
F2 cross setting where clinical traits, high density genotyp-
ing and genome wide RNA expression are collected. Our
fundamental goal is to link all of this information in a
meaningful way such that we can predict the genes that
drive the traits of interest. More specifically, our goal here
was to construct a robust statistical test to assess the

Estimated distributions of the test statistic, Z*, under the null for the equivalence test of conditional independence between the locus and the traitFigure 1
Estimated distributions of the test statistic, Z*, under the null for the equivalence test of conditional independ-
ence between the locus and the trait. An additive effect for a single biallelic locus under a simple independence model was 
simulated for both the gene and the trait under normally distributed errors. Minor allele frequency = .2. Sample size = 1000. B 
= 500.
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hypothesis that a potential mediator between an initial
randomized variable and an outcome variable is causal
for that outcome. To achieve this objective we first identi-
fied a suite of mathematical conditions that could serve as
a working mathematical definition of causality, could be
formally statistically tested, and could support currently
held views on minimum requirements necessary for
causal inference. Second, we choose a method to compute
a p-value for each condition. And third, we used the Inter-
section-Union Test framework [16] to compute an omni-
bus p-value for the suite of conditions that would
function as a causal inference test (CIT) (Figure 3).

CIT algorithm testing
Performance of the CIT was evaluated against three model
selection approaches using simulated data from an F2
mouse cross measured on a genome wide high density
panel of 2310 SNPs. The genotype data were simulated
using RQTL software [17]. For each simulated replicate
dataset, a segregating F2 population of 300 individuals
was generated such that each of the 19 autosomes
included a clinical trait QTL (cQTL) that was also a gene
expression QTL (eQTL). Errors for both the clinical and

expression traits were sampled from a standard normal
distribution, and trait-trait associations were generated
according to linear models. Single point linkage analysis
was conducted for both the clinical trait and the gene
expression trait. For each trait, the peak marker was iden-
tified by the maximum lod score across the chromosome.
Causality tests were conducted at the clinical trait peak
marker for all analyses reported here (tests for the 'reac-
tive' model were conducted at the gene peak marker)
unless stated otherwise. We would have preferred to com-
pare the CIT to other hypothesis testing procedures for
causal mediators. However, we were unaware of the exist-
ence of any other such methods; hence we have created a
model selection approach from the CIT in order to com-
pare it to other existing model selection based causal
inference methods. The p-value was computed for both
the causal and reactive models. If the causal p-value was <
.05 and the reactive was > .05 then the call was causal. If
both p-values were > .05 then the call was independent,
and if both were < .05, then the call was 'no call.' Here
'independent' denotes the independent model as well as
other non-causal and non-reactive models such as no gen-
otype-phenotype association.

Model selection approaches for comparison
CC
The first model selection method, denoted by CC, is based
on the conditional correlation approach [7] described in
Methods. If the p-value for the partial F test for {β4, β5},
equation 2, is less than .05 and the p-value for the partial
F for {β7, β8}, equation 3, is greater than .05, then the
causal model is selected; if the converse is true, the reactive
model is selected; if both p-values are below .05, the inde-
pendence model is selected; and if both p-values are
above .05 then no call is made.

AIC
The second approach, which depends on AIC values com-
puted for regression models corresponding to the inde-
pendence, reactive, and causal models, implemented by
Chen et al. [1] is essentially a simplified version of the
likelihood model selection approach described by Schadt
et al. [7]. The AIC is computed for four regression models,
m1) the trait regressed on the locus, equation 1 above,
m2) the gene regressed on the locus, m3) the trait
regressed on the gene, and m4) the gene regressed on the
trait. The independence model corresponds to m1 and
m2, the reactive model to m2 and m4, and the causal
model to m1 and m3. The sum of the corresponding AIC
values for each pair is computed, and the causation rela-
tionship with the lowest sum is selected.

BNC
The third method, denoted by BNC, employs the Bayesian
Score, which is estimated for three networks, each includ-

Negative log 10 p-values for the semi-parametric and non-parametric versions of the CIT applied to 10,000 replicate data sets simulated under the independence modelFigure 2
Negative log 10 p-values for the semi-parametric and 
non-parametric versions of the CIT applied to 10,000 
replicate data sets simulated under the independ-
ence model. For each replicate of 100 observations the 
genetic variance for the gene and the trait were each ran-
domly sampled from a uniform distribution ranging from 8 to 
32 percent. The gene and trait were normally distributed and 
a biallelic locus was simulated with allele frequency of .5.
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ing exactly two arcs, corresponding to the independent,
the reactive, and the causal models (Figures 3A, B, and
3C). The independence network includes two arcs
directed from the locus to the gene and the trait; the reac-
tive model includes an arc directed from the locus to the
trait and one from the trait to the gene; and the causal
model includes an arc from the locus to the gene and one
from the gene to the trait. The Bayesian score was com-
puted using the DEAL software package [18].

One thousand replicate crosses were simulated under
each of six causality scenarios using equations 1–3 (Figure
4). While the form of each linear model within each
causal scenario was identical for all chromosomes and all
replicate crosses, parameter values were unique to each
chromosome/cross combination. Parameter values were
randomly selected from a uniform distribution and ran-
domly assigned a positive or negative sign (see Figure 5 for
coefficients of determination for all six causality scenar-
ios). Percent variance in the gene trait explained by the
locus was generally less then 25%, whereas percent vari-

ance in the clinical trait explained by the locus was less
than 15%. Genotype effects were simulated according to
an additive model.

Causal scenarios
A) Null. Trait data were sampled from a normal distribu-
tion and were completely independent of genotype data.

B) Independent. Data were simulated according to equa-
tions 2 and 3, with {β3, β6} fixed at zero.

C) Independent/hidden variable. This scenario is like B
but with the inclusion of an additional normal covariate
term to simulate a hidden factor.

D) Causal. Data were simulated according to equations 2
and 3, with {β3, β7, β8} fixed at zero. Thus, the association
between L and T is entirely mediated by G.

Schematic diagram of the CITFigure 3
Schematic diagram of the CIT. A) Study subjects are sampled for i) a trait of interest, T (for example, cholesterol or fat 
mass), ii) a potential mediating factor, G (for example, an mRNA or protein concentration), and iii) genotype at a polymorphic 
locus, L, that is thought to affect both G and T. B) The four component tests of the CIT are conducted yielding four corre-
sponding p-values. (Plots are shown as a conceptual device, see text for details of the actual tests.) Associations in 1 through 3 
but not 4 are consistent with causal mediation. C) The largest of the four p-values becomes the omnibus p-value, the final 
result of the CIT.
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E) Causal/independent. This scenario is like D but only β3
is fixed at zero. Parameters {β7, β 8} were randomly
assigned small positive or negative non-zero values.

F) Causal/hidden. This scenario is like D but with the
inclusion of an additional normal covariate term to simu-
late a hidden variable.

Simulation results (Figure 6) show type I error under the
null scenario to be problematic for the BNC method, with
about 35 percent false causal and reactive calls. This poor
performance is probably due to the fact that equal priors
are used for all three causal models. Setting a higher prior
for the independence model may solve this problem, but
a consequence would undoubtedly be a reduction in
power. Another difficultly with this alternative approach
would be deciding exactly what priors to use. Another
alternative approach would be to bootstrap the analysis
and choose a consistency threshold to accept the causal
call. Similarly, this alternative approach would decrease
the false positives but also decrease the power, and there
would be the difficulty of choosing an appropriate thresh-
old value. A threshold chosen for one set of conditions
may not be optimal for another set of conditions. In prac-
tice, the analyst can avoid this scenario by requiring evi-
dence of statistically significant eQTL and cQTL before

proceeding with the model selection step, thereby insur-
ing the independent scenario in cases were gene expres-
sion (or other potential mediator) is not linked to the
clinical trait.

The CC and AIC methods performed similarly under the
null scenario, both yielding approximately 7 percent of
false causal and reactive calls. While slightly elevated, this
is closer to the target 0.05 type I error rate. The CIT clearly
demonstrated the lowest type I error under the null sce-
nario, yielding zero false positives. This result highlights
one of the positive attributes of the CIT, the formal inte-
gration of diverse criteria into the final causal inference.
Thus, the CIT is robust to the choice of prior filters applied
to the data. Unlike more standard statistical tests that are
designed to function under a single null distribution, the
CIT must be robust to an array of null conditions that
include the null, independent, and independent-hidden,
scenarios. It is understandable then, that depending on
conditions the CIT may over or undershoot the target type
I error.

Under the simple independence model, type I error for
the CIT and the other methods is low, and all four meth-
ods are conservative under these conditions. The CIT and
AIC are significantly more conservative under this sce-

Four causal inference strategies, CC, CIT, BNC, and AIC were applied to simulated data under five distinct causal models, A-E, shown aboveFigure 4
Four causal inference strategies, CC, CIT, BNC, and AIC were applied to simulated data under five distinct 
causal models, A-E, shown above. Here a genotype marker at a specific locus is denoted by L, a gene corresponding to 
measured transcript abundance is denoted by G, and a measured clinical trait is denoted by T. H denotes an unmeasured 
molecular trait.
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nario than the CC and BNC methods, with about 3 per-
cent fewer false positives. All methods have more false
causal calls than false reactive calls, an indication that a
potential mediator is more likely to be called 'causal' if the
eQTL is more significant than the cQTL.

The independent-hidden scenario revealed clearly chal-
lenging conditions, with all four methods surpassing the
.05 type I error target by a significant amount. The CIT had
the lowest type I error, 15 percent, which was less than
half that of the AIC, 41 percent, and the BNC, 48 percent.

The CC fell between these two groups, 21 percent. As dis-
cussed above, type I error for all methods could be
improved by applying various filtering criteria, however, it
is not trivial to determine the global optimal thresholds.

Qualitatively similar differences in power between meth-
ods were observed for the causal, causal-independent, and
causal-hidden scenarios. The CC had more power than
the CIT, and the AIC and BNC had more power than the
CC. The performances of the AIC and BNC were almost
identical under these conditions. The largest spread in

Marginal effect sizes (sample R2 values) for all six causality scenariosFigure 5
Marginal effect sizes (sample R2 values) for all six causality scenarios. Causal models are, causal (C), reactive (R), 
independent (I), hidden variable affecting both traits (H), and no associations between genotypes and traits (Null). R2 values are 
shown for all replicate datasets within each causal scenario.
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power was observed for the causal-independent scenario,
which resulted in approximately 69 percent power
achieved for AIC and BNC methods compared with 29
percent for the CIT and 38 percent for the CC. This spread
reflects the challenge for the CC and CIT methods of sat-
isfying the conditional independence criterion.

In terms of sensitivity and specificity, we observed that the
methods with higher sensitivity had lower specificity and

vice versa. There is a trade-off between sensitivity and spe-
cificity, and it is often possible to adjust the mix using tun-
ing parameters or filtering devices. If type I error is
approximately adjusted by filtering out QTL with p-values
greater than 0.001 and requiring a bootstrap consistency
of greater than .7 for the AIC and BNC methods, then
power is similar for the CIT, AIC, and BNC methods for
the causal and causal-hidden scenarios. Under the causal-
independent scenario, the AIC and BNC method are more

Type I error and power comparison between causality methods derived from computer simulated F2 mouse crossesFigure 6
Type I error and power comparison between causality methods derived from computer simulated F2 mouse 
crosses. For each autosome of each replicate cross of N = 1000 total crosses, a clinical trait and potential mediating trait were 
simulated under a variety of true causal scenarios. For each scenario, a wide range of positive and negative effect sizes were 
randomly selected for each chromosome of each cross. 'Neighbors' denote chromosome-specific QTL peak pairs. Causal mod-
els are, causal (C), reactive (R), independent (I), hidden variable affecting both traits (H), and no associations between geno-
types and traits (Null).
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powerful than the CC and CIT methods (Figure 7).
Finally, if the causal model is tested at the gene peak and
the reactive model tested at the clinical trait peak, the type
I error problem observed in Figure 1 is exacerbated for all
methods except the CIT, which actually has a smaller type
I error for the independent-hidden scenario (Figure 8).

Thus, by creating a model selection method from the CIT,
we were able to compare it to existing methods and dem-

onstrate the conservative character of the test under most
conditions without the need for heuristic filtering proce-
dures. The intent here was not to supplant existing causal
inference model selection methods with the CIT but
rather to provide a complimentary statistic to quantify
uncertainty in the causal call.

Type I error and power comparison between causality methods derived from computer simulated F2 mouse crossesFigure 7
Type I error and power comparison between causality methods derived from computer simulated F2 mouse 
crosses. For each autosome of each replicate cross of N = 1000 total crosses, a clinical trait and potential mediating trait were 
simulated under a variety of true causal scenarios. For each scenario, a wide range of positive and negative effect sizes were 
randomly selected for each chromosome of each cross. 'Neighbors' denote chromosome-specific QTL peak pairs. Causal mod-
els are, causal (C), reactive (R), independent (I), hidden variable affecting both traits (H), and no associations between geno-
types and traits (Null). Filtering criteria were applied such that only neighbors where both QTL peaks achieved a p-value of 
.001 or smaller were tested. For the AIC and BNC methods, a bootstrap consistency of .7 was required to accept the causal 
call. Note that 'power' is estimated ignoring those gene-trait pairs that did not both meet the p-value significance threshold.
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Application – predictive power of the causal network
We used the CIT to construct a causal transcriptional reg-
ulatory network for previously published genotypic and
expression data from yeast by defining a directed edge
between two genes if one of the genes tested significantly
as a causal mediator for the other but not vice versa. One
objective way to assess the relative predictive power of sev-
eral networks is to use the networks to infer the causal reg-
ulators for previously identified eQTL hot spots [10]. Like
transgenics, gene knockouts and other artificial perturba-
tions, eQTLs represent perturbations that affect gene

expression traits. In some cases, a given QTL may have
pleiotropic effects on a number of expression traits, lead-
ing to eQTL clusters that colocalize to a common genetic
locus (known as an eQTL hot spot). To identify causal reg-
ulators for a given hot spot, we selected genes with cis
eQTL in the corresponding eQTL hot spot region (Figure
9). For this set of candidate regulators, we defined the sig-
nature for each as the set of genes in the subnetwork that
could be reached by the candidate regulator following
directed links downstream through the network. The sig-
nature for each candidate regulator was then intersected

Type I error and power comparison between causality methods derived from computer simulated F2 mouse crossesFigure 8
Type I error and power comparison between causality methods derived from computer simulated F2 mouse 
crosses. For each autosome of each replicate cross of N = 1000 total crosses, a clinical trait and potential mediating trait were 
simulated under a variety of true causal scenarios. For each scenario, a wide range of positive and negative effect sizes were 
randomly selected for each chromosome of each cross. 'Neighbors' denote chromosome-specific QTL peak pairs. Causal mod-
els are, causal (C), reactive (R), independent (I), hidden variable affecting both traits (H), and no associations between geno-
types and traits (Null). Unlike all other results reported here, the causal model was tested using the gene QTL peak marker 
and the reactive model was tested using the clinical trait QTL peak marker.
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with the set of genes linked to the corresponding hot spot
region. If the overlap was significant, we declared the can-
didate regulator to be a regulator of the hot spot and the
associated subnetwork.

The yeast cross dataset (see Brem et al. for full methods
[19]) includes genotypic and expression data from 112
segregants obtained from a yeast cross between the BY and
RM strains of S. cerevisiae (referred to here as the BXR
cross), and previous work has identified 9 putative regula-
tors for 8 of the 13 hot spots based on known gene biolog-
ical functions and cis eQTLs under these hot spots [19].
We identified all of the gene expression traits linked to
each of the 13 hot spot regions and then searched each of
these gene sets for enrichment in subnetwork structures in
the CIT derived causal network that includes 1346 genes
and 3965 directed links (Figure 10).

We compared the CIT to the CC, and Bayesian networks
[10]. To insure a fair comparison of methods, we included

a comparison to the Bayesian network, BN, based solely
on gene expression and genotypic data without integrat-
ing transcription factor binding site (TFBS) and protein-
protein interaction data. The idea here was to control
input information so resulting differences in performance
due to methodology were not confused with differences
due to input information.

We assessed the predictive power of causal networks to
identify the known causal regulators for the 13 eQTL hot
spots. Table 1 presents p-values for regulator signature
and hotspot gene set overlaps in a quantitative compari-
son of the causal networks. We considered the key regula-
tors identified by BN.full, the Bayesian network with
integrated transcription factor binding site and protein-
protein interaction data, and determined whether their
downstream genes were enriched in genes linked to QTL
hot spots. In the table, each entry represents the p-value
for an enrichment test of genes linked to a hotspot (col-
umn 1) in the downstream genes of a putative regulator
(columns 2–4) in a causal network. All p-values have been
adjusted against randomization [10]. For the 19 putative
regulators (excluding YRF-4 and YRF-5, which are regula-
tors of an artifact hotspot [10]), the CIT and the CC per-
formed equally well (p = 0) for 10 regulators, the CIT
resulted in more significant p-values for 3 regulators, but
less significant for 5; the CIT and the BN.full performed
equally well for 7 and the CIT led to more significant p-
values for 6 but less significant for 4. The CIT missed one
causal regulator, URA3, which was identified by both the
CC and both of the Bayeisan networks. On the other
hand, the CIT clearly out-performed BN which identified
9 regulators among the 19.

Discussion
The CIT is the first method that we know of for computing
a p-value for a potential causal mediator. By quantifying
the evidence of causal mediation status it provides a tool
for 1) ranking a large number of potential mediators, 2)
communicating the strength of evidence to other research-
ers as well as the greater scientific community, and 3)
making go-no-go decisions regarding future research. A
user-friendly R script, implementing the CIT as a function
(see Additional file 1, is provided to facilitate the broad
use of this approach. We have shown that, in comparison
to the other methods considered, the CIT is much more
robust to underlying relationships between variables,
including the significance of the gene and trait QTL as well
as the choice of the test marker

We have shown that by using the CIT as a model selection
method, the results are conservative yet comparable to
other diverse model selection approaches when the type I
error rate is controlled. We have also shown that type I
error for the CIT is well controlled under the independ-

Schematic of an eQTL hotspot, a locus identified to affect transcript abundances for many genesFigure 9
Schematic of an eQTL hotspot, a locus identified to 
affect transcript abundances for many genes. Directly 
affected are genes in cis, some of which, the 'cis regulators', 
propagate the 'perturbation' to other genes. Among cis regu-
lated genes are the putative cis regulators identified by 
BN.full (yellow) as well as targeted in vivo experimentation 
(red).
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ence model and lower than other methods when a hidden
variable affects both the gene and the trait. The introduc-
tion of hidden variables is challenging for most statistical
techniques, however, in the case of transcriptional regula-
tory networks, this issue is particularly important in view
of known and possibly unmeasured molecular species
that can affect transcript abundance. We have shown that
the CIT is robust to a variety of conditions without the
need for additional heuristic filters.

When eQTL and cQTL peaks are close, but not occurring
at precisely the same marker, the investigator is faced with
the problem of choosing a test marker between those
peaks, inclusive. We have decided that evidence and logic
favors the trait peak marker. Schadt et al. [7] also tested
candidate mediators at the trait peak marker, where the
trait was omental fat pad mass in mouse. Chen et al. [1] in
reconstructing transcriptional regulatory networks, used
the marker at the mediator QTL peak. Type I error for the
CC, AIC, and BNC was inflated when the potential medi-
ator peak marker was used as the test marker as compared
to the trait peak marker. However, the CIT actually exhib-

ited lower type I error (and lower power) under these con-
ditions, possibly due to excessively weak locus-trait
associations at the mediator peak. This result is a nice
demonstration of the robustness of the CIT. To test
whether the potential mediator explains the full observed
locus-trait association, it necessary to use the marker with
the strongest observed effect, and this is the trait peak
marker.

It has been demonstrated that additional information
such as TFBS and protein-protein interaction data can
increase the predictive power of the network [10], how-
ever, we consider the question of how best to integrate
this information with causal inference methods an open
research question. Bayesian methods are naturally suited
to accounting for diverse sources of information through
priors, as demonstrated here with the BN.full. We showed
that the CIT compared favorably to BN.full and out-per-
formed the BN approach. However, not only could one
use purely Bayesian network methodology to integrate
this type of additional information, one could also
include CIT or CC results in a Bayesian analysis as priors

CIT reconstructed causal transcriptional regulatory networkFigure 10
CIT reconstructed causal transcriptional regulatory network. Yellow circles indicate putative hotspot regulators from 
Table 1, and red circles indicate those that have been experimentally validated.
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(work we are planning for a future paper). Another poten-
tial strategy would be to use TFBS predictors derived from
genomic data such as eQTL mapping results [20], as a fil-
tering device for selecting candidate gene pairs for subse-
quent CIT testing.

There are several possible reasons for the strong perform-
ance of the CC and CIT relative to the BN. First, the BN is
optimized based on a global objective function yet all
methods are evaluated on a local level. It is still possible
that the BN out-performed the other methods on a global
scale that was not evaluated (due to the difficulty of such
an evaluation). Secondly, the BN approach requires a
limit to the number of parents each node can have (five),
as well as the requirement of no feedback loops, which are
not required for the other methods. Third, it is possible
that an adjustment of priors could improve the perform-
ance of the BN approach.

The main caveat to all causal inference approaches consid-
ered here, is that there are limitations in our ability to
make causal inferences for any variable that is not experi-
mentally perturbed. For instance, a potential mediator
that tests positive may be acting as a surrogate for a tightly
linked unmeasured variable that is truly causal. However,
even in such a case the evidence of causality may help
direct the research to the true unmeasured factor.

We emphasized a semi-parametric approach here, which
is useful for high throughput data where computational
resources are often limiting, but the approach does

require the reliance on some distributional assumptions.
However, each component p-value of the CIT could be
computed using permutation tests, which would yield a
completely non-parametric approach. Alternatively, the
probit transformation could be used for the gene and the
trait to approximate normality, which is a valid approach
under large-sample conditions [1]. Also, we assumed a
linear relationship between the two quantitative traits,
which may not always yield the best fit but allows the
approach to be general, an advantage when the true rela-
tionship is unknown.

It's important to note that this is a flexible framework that
can be generalized to handle complex eQTL methods that
require the use of covariates and complex data structures
[21-23] as well as multilocus effects. For instance, rather
than F statistics, an analogous approach could be taken
with chi square statistics from likelihood ratio tests, which
would extend the method to logistic regression and gener-
alized linear models with other link functions.

Conclusion
As microarray gene expression profiling and other high-
throughput technologies for measuring intracellular
molecular traits become more commonly used, there is
increasing demand for statistical tools that distinguish
between competing causal models such as pleiotropic
(independence) and reactive transcriptional control. The
CIT is unique in that it provides a highly interpretable
quantitative measure of uncertainty in the form of a for-
mal p-value that can be computed for a trio of variables

Table 1: P-values for overlap of putative transcriptional regulators of eQTL hotspots identified in yeast

Bayesian Bayesian
Hot spot Gene Symbol Gene Chrom. Full Network CIT CC

Chr 2 560000 SUP45 2 0 0 2.04E-99
Chr 2 560000 ARA1 2 0 0 0
Chr 2 560000 TBS1 2 0 0 0
Chr 2 560000 CNS1 2 0 0 0
Chr 2 560000 AMN1 2 7.74E-73 1.52E-99 0 0
Chr 2 560000 CSH1 2 0 7.16E-21 7.46E-106
Chr 2 560000 TOS1 2 0 8.12E-287 0
Chr 3 1e+05 ILV6 3 1.57E-182 0 6.01E-147
Chr 3 1e+05 NFS1 3 2.04E-40 0 0
Chr 3 1e+05 LEU2 3 0 0 0 0
Chr 3 1e+05 CIT2 3 7.67E-43 0 0
Chr 3 1e+05 MATALPHA1 3 4.66E-63 9.18E-91 0 0
Chr 5 130000 URA3 5 2.04E-145 1.01E-157 3.74E-49
Chr 8 130000 GPA1 8 0 9.00E-307 1.69E-11 6.41E-07
Chr 12 680000 HAP1 12 0 0 3.63E-45 4.43E-83
Chr 12 107000 YRF1-4 12 0 0
Chr 12 107000 YRF1-5 12 0 0
Chr 14 503000 MSK1 14 1.39E-08 9.65E-09 2.96E-108 1.46E-141
Chr 14 503000 SAL1 14 0 0 0
Chr 14 503000 TOP2 14 1.51E-30 2.74E-73 5.56E-169 1.73E-174
Chr 15 180000 PHM7 15 0 4.48E-289 0 0
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when association between two implies causation and the
third is a potential mediator. The CIT can be conducted as
building block for a network reconstruction problem or as
an isolated test apart from a larger network.
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