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Abstract
Background: The Isolation by Distance Web Service (IBDWS) is a user-friendly web interface for
analyzing patterns of isolation by distance in population genetic data. IBDWS enables researchers to
perform a variety of statistical tests such as Mantel tests and reduced major axis regression (RMA), and
returns vector based graphs. The more than 60 citations since 2005 confirm the popularity and utility of
this website. Despite its usefulness, the data sets with over 65 populations can take hours or days to
complete due to the computational intensity of the statistical tests. This is especially troublesome for web-
based software analysis, since users tend to expect real-time results on the order of seconds, or at most,
minutes. Moreover, as genetic data continue to increase and diversify, so does the demand for more
processing power. In order to increase the speed and efficiency of IBDWS, we first determined which
aspects of the code were most time consuming and whether they might be amenable to improvements by
parallelization or algorithmic optimization.

Results: Runtime tests uncovered two areas of IBDWS that consumed significant amounts of time:
randomizations within the Mantel test and the RMA calculations. We found that these sections of code
could be restructured and parallelized to improve efficiency. The code was first optimized by combining
two similar randomization routines, implementing a Fisher-Yates shuffling algorithm, and then parallelizing
those routines. Tests of the parallelization and Fisher-Yates algorithmic improvements were performed
on a variety of data sets ranging from 10 to 150 populations. All tested algorithms showed runtime
reductions and a very close fit to the predicted speedups based on time-complexity calculations. In the
case of 150 populations with 10,000 randomizations, data were analyzed 23 times faster.

Conclusion: Since the implementation of the new algorithms in late 2007, datasets have continued to
increase substantially in size and many exceed the largest population sizes we used in our test sets. The
fact that the website has continued to work well in "real-world" tests, and receives a considerable number
of new citations provides the strongest testimony to the effectiveness of our improvements. However, we
soon expect the need to upgrade the number of nodes in our cluster significantly as dataset sizes continue
to expand. The parallel implementation can be found at http://ibdws.sdsu.edu/.
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Background
According to the National Institutes of Health, by 2005
the rate of DNA sequence submission to National Center
for Biotechnology Information's (NCBI) GenBank data-
base increased to approximately 3 million new sequences
each month or 4,000 sequences per hour [1], and the rate
of deposition has continued to accelerate ever since. As
more genetic information becomes available, the demand
for more computing power to analyze this information
grows proportionally. Although CPU speed continues to
increase at a remarkable rate, the large quantity of
sequence data has outpaced the rate at which computer
hardware is improving. The idea, popularized by Gordon
Moore [2], that the processing speed of sequential com-
puters doubles every two years is insufficient to keep up
with the expanding complexity of genetic information.
Thus, optimization and parallel processing need to be
employed in order to develop algorithms that offer signif-
icantly more efficient data processing.

Parallelization coupled with optimization has been par-
ticularly effective in speeding up the most heavily used
bioinformatics tool NCBI BLAST [3]. BLAST has a web
interface that makes it accessible to the widest possible
array of users. Web interfaced tools are popular among
biologists because they are easy to use, require only a web
browser to execute, and typically return valuable informa-
tion in an intuitive format. BLAST has been adapted to
handle the influx of data with efficient search algorithms
and several approaches for parallel processing [4,5]. Aste-
rias, ParaMEME, and CBSU's Web Computing Interface
[6-8] are also web-based bioinformatics analysis tools that
have improved processing time by subdividing work
among multiple processors. For example, CSBU has tools
specifically of interest for population and evolutionary
genetics analysis (e.g., MrBayes, Parentage, PLINK).

Like CSBU, the Isolation by Distance Web Service
(IBDWS) is a web-based program that performs statistical
analysis with a user-friendly interface for population
genetics [9]. Statistical analysis can be performed on the
relationships among individuals, or by grouping sets of
individuals into populations a priori. IBDWS is generally
designed to perform statistical tests on the latter. The web-
site is named after "Isolation by distance" (IBD), a popu-
lation genetics principle first described by Sewall Wright
[10]. IBD describes patterns in allelic frequencies that are
the consequence of spatially restricted gene flow, specifi-
cally an increase in the genetic distance between pairs of
populations as the geographic distance between them
increases. Two separate methods (the Mantel test and
Reduced Major Axis (RMA) regression) are used to deter-
mine the correlation between genetic distance and geo-
graphic distance. The Mantel algorithm tests for non-
random associations between a genetic distance matrix

and a matrix containing geographic distances [11]. As
described by Bohonak [12], the RMA regression quantifies
the strength of the IBD relationship, with slope and inter-
cept errors calculated through a variety of resampling
techniques.

IBDWS arose as a conversion of the standalone Isolation
by Distance program for Macintosh and Windows [9,12].
IBDWS has progressively become more flexible through
its later versions (e.g., the ability to directly input raw
DNA data sets in v. 3.0). The conversion to IBDWS in
2004 allowed many users to process more data faster than
before and there was no other easily accessible web-based
software available for exploring IBD patterns. The papers
published in 2004 that cited IBDWS had an average pop-
ulation size of 16, with the largest 10% having an average
of 34 populations [13-23]. Between November 2006 and
November 2007 we tracked the number of populations in
the data sets used in IBDWS. Out of 7947 analyses, the
average number of populations was 23, with the largest
10% having an average of 95 populations. As the number
of populations increases, the complexity of the calcula-
tions increases and the time to process submitted data sets
grows exponentially.

In this paper, we set out to improve the speed and per-
formance of IBDWS using a combination of algorithmic
optimization techniques and parallel computing. Even
after algorithmic optimizations, the growing size of sub-
mitted data sets is already too large for rapid analysis on a
single server. For example, in the last implementation
prior to these modifications, 100 populations with
10,000 randomizations required at least 7 hours to com-
plete. In order to improve analysis speed, we first identi-
fied the time intensive parts of the program and
determined their time complexity. Randomization rou-
tines within the Mantel test and RMA calculations proved
particularly time-consuming but amenable to algorithmic
optimization and parallelization. Accordingly, we algo-
rithmically combined the Mantel test and RMA randomi-
zations, distributed the randomizations among several
processors, and implemented the Fisher-Yates shuffling
algorithm [24] for conducting the randomizations. The
differences in runtime between each algorithm enhance-
ment, the overall runtime changes, the predicted speedup,
and the effects of increasing the number of nodes are dis-
cussed.

Implementation
The parallel implementation of IBDWS is a straight-for-
ward master slave configuration diagrammed in Figure 1.
The parent node completes initial calculations and then
sends the resulting values to each child node. Each child
independently runs a section of code and then returns the
results to the parent node. The flow of information in par-
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allel IBDWS is as follows: (1) the user inputs data, (2) the
data are parsed, (3) statistical calculations are performed,
(4) the parent node initializes randomizations to generate
null distributions for the statistical calculations, (5) the
randomizations are equally divided among child nodes,
(6) the randomization results are returned to the parent,
(7) the parent sorts the randomizations results and calcu-
lates statistical significance, and (8) a HTML page displays
the text-based and graphical results for the user.

Runtime Analysis
In order to implement the most effective parallelization
strategy, we first determined what aspects of the analysis
required the most CPU time. Runtime tests revealed that
approximately 99% of the analysis time was consumed by
the sections of code that perform the RMA regression and
the Mantel tests (Figure 2). The remaining 1% is involved
in tasks such as parsing input, calculating genetic dis-

tances from raw data, and generating output. None of
these would benefit from parallel processing.

IBDWS is designed to analyze the relationship between a
lower triangular matrix of genetic distances between all
pairs of populations, and the corresponding geographic
distance matrix. The statistical significance of this rela-
tionship is tested using a Mantel test [11], where the test
statistic Z is calculated as:

A refers to the matrix of genetic distances, B is the matrix
of geographic distances, and N is the dimensionality of
two matrices. The correlation coefficient r is obtained by:

Z A Bij ij

i j

N

= å
,

,

Parallel IBDWSFigure 1
Parallel IBDWS. Diagram of parallel IBDWS showing input, parallelization and data return.
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with sA and sB representing the standard deviation of A
and B respectively. The r value can range from -1 to 1. The
rows of matrix A can then be randomly permutated to cre-
ate a null distribution to calculate the probability that the
observed r and Z occur under a null hypothesis of no rela-
tionship. Since each row and column (corresponding to a
single population) is treated as a functionally linked
group during the randomizations, the Mantel test is more
suitable than other statistical tests which operate under
the assumption that each population pair is independent.
The major time consumption in this section of code is the
shuffling to randomize matrix A O(n2), and the loop to
calculate Z and r in each iteration O(n).

The RMA regression is the second most computationally
intensive section of the code. RMA regression is used to
estimate the linear slope and intercept of the IBD relation-
ship using standard regression approximations:

The coefficient of determination, r2 is found by:

Bootstrapping and jackknifing re-sampling methods are
both used to measure error in the RMA regression, since
groups of points corresponding to contrasts with the same
population are not independent in matrix-based analyses
such as these. The bootstrap resampling requires the most
time in this section of the code, with O(n) time complex-
ity. Both the RMA and Mantel test can be run up to four
times, if various logarithmic data transformation options
are chosen.

Speedup Strategy
Reducing the processing time for IBDWS involved three
steps: (1) combining the loop that bootstraps for RMA
and the overall randomization loop for the Mantel test,
(2) changing the algorithm that randomly shuffles matrix
A in the Mantel test, and (3) splitting the combined RMA
Mantel randomization loop among multiple processors.

Serial Optimization
The Mantel and RMA algorithms performed similar rand-
omization loops in separate locations of the code, with
the number of randomizations chosen by the user. Com-
bining the loops decreased loop overhead and therefore
improved runtime. However, since loop overhead is only
a constant multiplicand, time complexity remains at O(n)
after this improvement. This optimized version of the ran-
domizations will be referred to as the combined randomi-
zation.

The original code utilized an inefficient "unoptimized"
shuffling algorithm that shuffled the rows and columns of
matrix A by randomly selecting a number between 1 and
N, placing it in a new array, and then checking to see
whether that number had previously been used in the new
array. This algorithm took n times to go forward and n
times to check backward for a complexity of O(n2), much
like a modified bubble sort. (In bubble sort, each element
is compared to insure in sequential order, and in this case
each element is compared to insure random order.) We
implemented the Fisher-Yates shuffling algorithm to
reduce the time spent shuffling the matrix down to O(n).
With the Fisher-Yates method, each element is swapped
with a random element in the matrix [24]. This reduced
the time complexity because it was no longer necessary to
check previous elements as in the unoptimized shuffling
algorithm.

Parallel Optimization
Further improvements were also made by exploiting par-
allelism in the algorithm. The architecture of parallel
IBDWS consists of seven total processing elements. The
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Runtime analysisFigure 2
Runtime analysis. Runtime analysis of the original version 
of IBDWS, demonstrating that the majority of the processor 
time was spent performing the RMA and Mantel tests.
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parent node submits data sets with a large number of pop-
ulations (defined later) to the batch processor, which
queues jobs to run on the other 6 other processors. There-
fore, small jobs never overlap larger jobs. Small jobs only
run on the parent node and do not need to wait for larger
jobs to finish processing.

The combined randomization proved ideal for paralleli-
zation, as it contained independent iterations with no
loop-carried dependences. To implement multi-node
processing, the randomizations were divided equally to
each Processing Element (PE). If the number of randomi-
zations did not divide among the number of PEs, an addi-
tional randomization was added to some PEs to achieve
equality, although these were ignored in later calcula-
tions. If the user chooses fewer randomizations than the
number of PEs (which is unlikely), then each PE performs
one randomization and the additional randomizations
are discarded in later calculations. Each PE was tasked
with calculating bootstrap pseudoreplicates for both the
Mantel test and RMA regression. MPI was initialized at the
point of bootstrapping. When the bootstrap iterations
completed MPI_Gather was used to combine the arrays
from each PE into one large array for further calculations.

Experimental Design
To evaluate the processing enhancements of parallel
IBDWS, we compared runtimes to the serial version of
IBDWS. The algorithmic improvements were also tested
for the single processor version. The results of our tests
allowed us to set a cutoff for the number of populations
required for parallel processing, calculate speedup, and
examine scalability.

To determine if parallel IBDWS was an improvement over
the previous serial version, two variables were considered
when creating the data sets: the population size and the
number of randomizations performed. Five data sets of
size 10, 20, 30, 40, and 50 populations were randomly
generated by creating one large matrix of values. Because
all data sets were derived from this single matrix, the
smallest data set (a 10 population matrix) was a subset of
each of the larger data sets, reducing possible bias. Each
data was analyzed using 100, 1000, and 10000 randomi-
zations. To evaluate the behavior of the system for
extremely time intensive data, we additionally ran two
very large data sets of 100 populations and 150 popula-
tions with 10000 randomizations. These final two tests
represent the size of data sets that we predict will become
typical for IBDWS within the next few years.

The data used in these tests were input as user-provided
genetic distances and geographic distances. IBDWS also
accepts raw data in the form of diploid genotypes or DNA
sequences. We did not analyze these raw data set types,

because they take relatively little additional time, and are
irrelevant to optimization and parallelization of the code.

Implementation and Platform
IBDWS was written predominately in C++ with MPI code
running on Apache 2.2.0. The C++ code was compiled
with a g++ and mpich-1.2.7 compilers. In addition to
C++, scripting language Perl 5.8.8 was used to initialize
the batch processor. Webpage data were parsed via cgic (a
publicly available C++ code) [25]. Images were created
with CGraph (a C++ plotting library). Distributed
processing resources were managed by TORQUE 2.1.6, a
predecessor of OpenPBS, using Maui 3.7.6p17 scheduler
[26]. We have implemented IBDWS on a cluster of 4
nodes. The parallel compute nodes were three dual core
AMD Opteron Processor 246 with 2.0 GHz and 3 GB of
RAM. The fourth node was an AMD Athlon 64 Processor
3500+ with 2.2 GHz and 3 GB RAM, which was the web
server and processed the small serial jobs. The code can be
downloaded at sourceforge.net: http://sourceforge.net/
projects/parallelibdws/

Results and Discussion
Algorithmic improvements as a function of time
Initial experiments were performed to test the two code
enhancements prior to parallelization: Mantel/RMA com-
bined and Fisher-Yates shuffling. First, the method of
combining the RMA and Mantel randomization loops
into one loop was tested with the expectation that the
amount of time should decrease, but overall time com-
plexity should stay the same at O(n). (For details on how
we calculated the expected speedup improvements, see
Additional File 1 – Time complexity analysis.) The runs
behaved as expected for a range of population sizes and
number of randomizations (Figure 3, 4). As the number
of populations increased, the time was consistently less
for the combined loop at every point (Figure 3), and also
lower for 1000 and 10,000 randomizations (Figure 4).

Next, run times were compared before and after imple-
mentation of the Fisher-Yates matrix shuffling in the Man-
tel test. Unlike the previous code optimization, we
predicted that the unoptimized shuffling algorithm
would have exponential growth with increasing popula-
tions, and the optimized Fisher-Yates algorithm would be
linear. The timing of data sets demonstrated trends as
expected (Figure 5, 6).

Comparing parallel configuration
One of the goals of timing the parallel and serial code was
to determine at what point the analyses benefited from
parallelization. Timing tests revealed that data sets with
greater than 30 populations and more than 100 randomi-
zations would benefit from parallelization, given the CPU
speed (data not shown). Once a cutoff was set, the final
Page 5 of 9
(page number not for citation purposes)

http://sourceforge.net/projects/parallelibdws/
http://sourceforge.net/projects/parallelibdws/


BMC Genetics 2009, 10:28 http://www.biomedcentral.com/1471-2156/10/28

Page 6 of 9
(page number not for citation purposes)

Effect of loop randomization combination by population sizeFigure 3
Effect of loop randomization combination by popula-
tion size. Speed improvements from combining the RMA 
and Mantel randomizations into a single loop. Data sets of 
various population sizes were analyzed with 10,000 randomi-
zations.

Effect of loop randomization combination by number of ran-domizationsFigure 4
Effect of loop randomization combination by number 
of randomizations. Tests of combined loop randomiza-
tions with a data set of 50 populations, analyzed with 100, 
1000, and 10,000 randomizations.

Effect of Fisher-Yates shuffling by population sizeFigure 5
Effect of Fisher-Yates shuffling by population size. 
Changes in time complexity from exponential to linear after 
implementation of Fisher-Yates shuffling. Data sets of various 
population sizes were analyzed with 10,000 randomizations.

Effect of Fisher-Yates shuffling by number of randomizationsFigure 6
Effect of Fisher-Yates shuffling by number of rand-
omizations. Implementation of Fisher-Yates shuffling was 
tested with a data set that included 50 populations analyzed 
with 100, 1000, and 10,000 randomizations.
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configuration was determined with seven PEs configured
as previously described. We compared this setup to the
serial program and found that the time savings becomes
more dramatic with larger population sizes (Figure 7, 8).
(With regards to the user interface, the switch between
one processor and multiple processors is completely
transparent.)

Speedup
In addition to comparing the complete cluster against a
single processor, we compared the performance of our

code against increasing numbers of processors. Again,
time decreased for across the range of data set sizes and
number of randomizations (Figure 9). For each processor
added to parallelization we saw an improvement,
although resources limited us to only testing a maximum
of six processors (Figure 10).

Ideally, the speedup of serial time over parallel time
should be linear. In our experiments, we found that the
speedup becomes more linear as the number of popula-
tions increases (data not shown). Relationships for data
sets with the most populations are more linear, because
the efficiency decreases more dramatically for smaller

Effect of parallelization by population sizeFigure 7
Effect of parallelization by population size. Time com-
plexity improvement of parallelization with test population 
sizes greater than 30 (10,000 randomizations).

Effect of parallelization at small population sizesFigure 8
Effect of parallelization at small population sizes. 
Effects of parallelization strategy with small population sizes 
(10,000 randomizations).

Effect of adding processors by number of randomizationsFigure 9
Effect of adding processors by number of randomiza-
tions. Reduction in runtime with the addition of processors 
reduces, for a data set with 50 populations.

Effect of adding processors by population sizeFigure 10
Effect of adding processors by population size. Effect 
of adding processors on runtime with populations of differing 
sizes (1000 randomizations).
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populations (Figure 11). However, the efficiency of 50
populations remained above 80% for all processors divi-
sions, which is promising for future needs to analyze
greater numbers of populations with more processors.
Careful future testing will be needed to determine the
optimal number of processors for data sets of various
sizes.

To assure that no computational errors were inadvertently
introduced when modifying the source code, we ran 84
test data sets via a web browser from an external compu-
ter. These runs constituted 3–6 replicates from each cell of
a fully factorial design with 2 IBDWS versions (serial or
parallel), 2 data sets (10 or 100 populations), 3 levels of
randomization (100, 1000 or 10000 randomizations),
and containing/lacking an indicator matrix. (The indica-
tor matrix, which is an optional component of submitted
data sets, is essentially a second independent variable.
Presence of the indicator variable triggers an additional set
of Partial Mantel Test analyses.) We verified that seven
parameters did not change between serial and parallel ver-
sions of the program. These parameters were four point
estimates (Mantel Test r, Partial Mantel Test r, RMA inter-
cept, RMA slope) and four output parameters generated
from randomizations (p-values for Mantel Test and Par-
tial Mantel Test, and lower/upper bounds from 95% CI of
RMA intercept using the "bootstrap over all points"
option). For any particular input data set, the four ran-
domly generated output parameters did not vary signifi-
cantly (p-values varied from 0.11 to 0.97 across eight
ANOVAs), and none of the four point estimates changed
in any run.

Conclusion
We have developed a parallel method for data analysis in
the Isolation by Distance Web Service program (IBDWS).
A logical approach to code optimization and parallel
processing of the data yielded notable improvements in
response time, particularly for large data sets. Our algo-
rithmic changes improved the time complexity of the
shuffling algorithm from O(n2) to O(n), eliminated
redundancy in the code, and allowed for seamless paral-
lelization. On our small cluster we encountered larger
improvements. For instance, a seven hour run of 100 pop-
ulations and 10,000 randomizations on the serial IBDWS
was reduced to one hour on the parallel implementation.
We found that these improvements are in concordance
with our theoretical time complexity calculations. The
unoptimized program had run times that increased expo-
nentially as the populations increased, which would be
correct with the population being squared in the estimate
of O(kp2). When the program was algorithmically opti-
mized the shuffle algorithm no longer had exponential
growth with increasing populations and the growth was
more linear, which matches a time complexity of O(kp).
The final theoretical time complexity we calculated of
O(pN) for the parallel version, also could be seen in our
runtime analysis when incrementally increasing the
number of processors. The speed of the program is
dependent on the number of processors. The theoretical
calculations however fail to take into account the time to
transport information, so small datasets can not be
divided infinitely without increasing the processing time.
We expect that this will increase the usability to research-
ers, and immediately after updating IBDWS to the parallel
version, users were analyzing data sets as large as 200 pop-
ulations with increased speed. Future directions of this
research will include transition to a larger computational
cluster and implementing methods to detect non-linear
IBD patterns.

Availability and requirements
Project name: Isolation by Distance Web Service

Project home page: http://ibdws.sdsu.edu/~ibdws/ and
http://sourceforge.net/projects/parallelibdws/

Operating system(s): Available using any web browser at
the URL above.

Programming language: Python, C++

Other requirements: No installation requirements. Users
can test the website using sample data available at the
project homepage.

License: GPL Version 3

Efficiency analysisFigure 11
Efficiency analysis. Efficiency percentage as a function of 
increasing population size. Efficiency increased, approaching 
linearity, as the number of populations increased.
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