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Abstract
Background: Most methods for constructing aneuploid yeast strains that have gained a specific
chromosome rely on spontaneous failures of cell division fidelity. In Saccharomyces cerevisiae, extra
chromosomes can be obtained when errors in meiosis or mitosis lead to nondisjunction, or when
nuclear breakdown occurs in heterokaryons. We describe a strategy for constructing N+1 disomes
that does not require such spontaneous failures. The method combines two well-characterized
genetic tools: a conditional centromere that transiently blocks disjunction of one specific
chromosome, and a duplication marker assay that identifies disomes among daughter cells. To test
the strategy, we targeted chromosomes III, IV, and VI for duplication.

Results: The centromere of each chromosome was replaced by a centromere that can be blocked
by growth in galactose, and ura3::HIS3, a duplication marker. Transient exposure to galactose
induced the appearance of colonies carrying duplicated markers for chromosomes III or IV, but not
VI. Microarray-based comparative genomic hybridization (CGH) confirmed that disomic strains
carrying extra chromosome III or IV were generated. Chromosome VI contains several genes that
are known to be deleterious when overexpressed, including the beta-tubulin gene TUB2. To test
whether a tubulin stoichiometry imbalance is necessary for the apparent lethality caused by an
extra chromosome VI, we supplied the parent strain with extra copies of the alpha-tubulin gene
TUB1, then induced nondisjunction. Galactose-dependent chromosome VI disomes were
produced, as revealed by CGH. Some chromosome VI disomes also carried extra, unselected
copies of additional chromosomes.

Conclusion: This method causes efficient nondisjunction of a targeted chromosome and allows
resulting disomic cells to be identified and maintained. We used the method to test the role of
tubulin imbalance in the apparent lethality of disomic chromosome VI. Our results indicate that a
tubulin imbalance is necessary for disomic VI lethality, but it may not be the only dosage-dependent
effect.
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Background
Any change in chromosome number through the gain
and/or loss of part of a haploid set of chromosomes is
known as aneuploidy. Aneuploidy leads to defects in the
growth and development of an organism (reviewed in
[1,2]). In cases of chromosome gain, the phenotype of an
aneuploid is influenced by the effects of two phenomena:
(1) a general, physiological response to excess protein
expression, leading to a slowing of cell proliferation [3],
and (2) protein stoichiometry imbalances specific to
genes on the extra chromosome [1-3]. A complete under-
standing of the complex phenotype caused by any specific
aneuploid karyotype requires an ability to manipulate
chromosome contents and copy number.

In the yeast Saccharomyces cerevisiae, aneuploids have been
isolated in a number of ways over the years. Strains with
extra chromosomes have arisen spontaneously among lab
strains (for examples, see [4,5]), and have been generated
through meiosis of triploids [6]. Specific disomes (hap-
loids carrying an extra chromosome, karyotype N+1) have
been isolated by differentially marking two homologs in
a diploid, then selecting for meiotic segregants that con-
tain both homologs (for example, [7]). An alternative
method to generate disomes makes use of transient heter-
okaryons that form during mating between kar1- and
KAR1+ haploids [8]. At a certain frequency, chromosomes
are transferred from one nucleus to another before one
nucleus is lost. By differentially marking homologs in the
parents and selecting for progeny cells that retain both
homologs, haploid progeny carrying a disomic chromo-
some have been isolated [9,10]. This method, termed
chromoduction, was used to select for 14 of the possible
16 disomes of yeast in a recent systematic study of aneu-
ploidy [3]. Although the methods described above are
clearly effective at isolating disomic strains of yeast, each
of them requires a spontaneous failure of chromosome
segregation during cell division. The mechanisms that
underlie these failures (the breakdown of nuclear integrity
in a cell containing multiple nuclei or the bypass of the
spindle assembly checkpoint to allow nondisjunction
[11,12]) are not well understood, and may lead to addi-
tional, unplanned genetic changes.

We have devised a method for generating disomes that
does not rely on spontaneous failure in cell division integ-
rity. Instead, the method specifically blocks mitotic segre-
gation of the target chromosome alone. The method
comprises a novel combination of two well-characterized
genetic tools, a conditional centromere [13] and a dupli-
cation marker [14]. When these are placed at the centro-
mere of a target chromosome, disjunction of the
chromosome can be transiently blocked to generate dis-
omic cells, some of which are selectively identified by the
duplication marker.

We report the results of a proof-of-concept test with chro-
mosomes III, IV, and VI. The method efficiently generated
disomic III and IV strains, but did not produce disomic VI
unless TUB1 copy number was also increased.

Results and discussion
General strategy to induce and select for a duplicated 
chromosome
The strategy involves modifying the centromeric region of
a target chromosome so that (1) the centromere can be
inactivated temporarily to cause nondisjunction and (2)
daughter cells that obtained two copies of the target chro-
mosome can be selected. The chromosome modification
strategy is outlined in Figure 1A and 1B. The conditional
centromere construct PGAL1-CEN3 URA3 [13] is PCR-
amplified with primers that provide homology to
sequence flanking the target centromere. The PCR frag-
ment is transformed into yeast and integrated into the tar-
get site by homologous recombination, replacing the
endogenous centromere [15] (Figure 1A). PGAL1-CEN3
functions as an autonomous centromere when placed
into plasmids or chromosomes, and its function can be
blocked when galactose induces GAL1 promoter activity
[13,16]. In galactose, many kinetochore proteins do not
assemble on the centromere, but within 20 minutes of a
switch to glucose, kinetochore assembly is observed [17].
Once the conditional centromere is in place, a marker that
can detect changes in ploidy is generated at URA3, follow-
ing a strategy devised by Chan and Botstein [14]. A plas-
mid containing HIS3 and an internal fragment of ura3 is
transformed into yeast, integrating into URA3 and dis-
rupting its function (Figure 1B, forward arrow). Chromo-
some duplication is detected based on the properties of
this integrated plasmid. The integration creates a 390 bp
direct repeat of a portion of ura3. Homologous recombi-
nation between the repeats causes excision and loss of
HIS3 and regeneration of functional URA3 (Figure 1B,
reverse arrow). (For simplicity, we refer to this event as
excision of HIS3 even though it can occur by a variety of
homologous recombination events including excision,
gene conversion and unequal sister chromatid exchange
[18].) Because HIS3 can be lost and URA3 regenerated, the
locus exists in one of two mutually exclusive states: either
it will contain an intact HIS3 or an intact URA3, but not
both. Duplication of this marker locus, followed by exci-
sion of HIS3, should lead to cells that contain both URA3
and HIS3. Such cells should exhibit Ura+His+ phenotypes.

The strategy for inducing and selecting disomic cells is
outlined in Figure 1C. A haploid strain with a chromo-
some containing the conditional centromere and duplica-
tion marker is exposed to galactose during one cell
division cycle. The conditional centromere is inactivated
and the target chromosome fails to disjoin during mitosis.
Among the daughter cells that contain two copies of the
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target chromosome, a fraction will spontaneously excise
one of the HIS3 markers to generate URA3. These cells will
be recovered as Ura+His+ colonies on selective medium.

Construction of modified chromosomes as targets for 
duplication
As a proof-of-concept test, we chose three chromosomes
(III, IV, and VI) to modify and target for duplication.
Chromosomes III and VI are among the smallest yeast
chromosomes (317 and 270 kb, respectively), whereas
chromosome IV is the one of the largest (1.53 Mb) [19].
We anticipated that chromosomes IV and VI would pose
a challenging test of this method because they were
among the least frequently isolated disomes using chro-
moduction [10], and disomic strains containing a single
extra chromosome VI failed to be isolated by Torres et al.
[3]. Rather, colonies selected for chromosome VI disomy
also contained extra, unselected chromosomes, suggesting
that simple chromosome VI disomes may be inviable [3].
We constructed each modified chromosome twice, inde-
pendently, and tested for concordance of phenotype. The
chromosomes were constructed in diploids (or in hap-
loids that were subsequently mated to wild type) to pro-
duce cells heterozygous for the conditional centromere
and duplication markers. When the heterozygotes were
sporulated, the modified chromosomes segregated 2:2

and produced haploid colonies on rich medium that were
indistinguishable from wild-type segregants (Additional
file 1A). We conclude that the centromeric modifications
themselves do not lead to growth phenotypes.

To test whether the conditional centromeres in our strains
could be inhibited by galactose to cause nondisjunction,
we tested for chromosome loss by constructing diploid
strains that were heterozygous for a conditional centro-
mere marked with URA3. Growth in galactose, followed
by plating to glucose-containing medium, resulted in the
appearance of many Ura- colonies. Consistent with Hill
and Bloom's observations [13], galactose exposure for 1–
2 generations led to the loss of the URA3 marker in
approximately 50% of the cells (Additional file 1B). In the
case of diploids carrying modified chromosome IV, most
of the galactose-induced Ura- colonies exhibited a severe,
slow-growth phenotype, suggesting that the Ura- colonies
were the result of losing the target chromosome (Addi-
tional file 1C). We conclude that the conditional centro-
mere allows for galactose-inducible nondisjunction in our
strains.

To characterize the ura3::HIS3 duplication marker, we
measured the frequency of HIS3 excision and reconstitu-
tion of URA3 at each modified centromere. Each marker

Strategy for modifying and duplicating target chromosomesFigure 1
Strategy for modifying and duplicating target chromosomes. (A) PCR amplifies PGAL1-CEN3 URA3 from the plasmid 
pGALCEN-JC3-13 [13] and, upon transformation into yeast, replaces the target centromere by homologous recombination. 
(B) The HIS3 plasmid pKA52 is integrated into URA3 adjacent to the conditional centromere, disrupting the URA3 open reading 
frame and generating direct repeats (shaded). At an approximate frequency of 10-4, HIS3 is lost by homologous recombination 
between the direct repeats, regenerating a functional URA3 gene (reverse arrow). The recipient strain carries the deletion alle-
les ura3Δ0 and his3-Δ200. (C) A haploid carrying a modified chromosome from (B) is grown in galactose for one cell division, 
generating N+1 and N-1 cells by nondisjunction. Since the ura3::HIS3 marker is present in two copies, cells with URA3 and HIS3 
can be produced by HIS3 excision and are identified as Ura+His+ papillae on selective medium.
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excised HIS3 to produce Ura+ papillae at a frequency near
10-4 (Table 1). Galactose did not alter this frequency.
When cultures were placed under selection for Ura+His+

papillae, strains with two copies of the marker produced
colonies at the frequency of HIS3 excision, whereas strains
with one copy produced colonies at a much lower fre-
quency (Figure 2). To produce these rare Ura+His+ papil-
lae, the strains with a single marker had to undergo
spontaneous duplication of the chromosome (or the
marker itself) in addition to HIS3 excision. Under selec-
tion for this kind of duplication marker, Chan and Bot-
stein found that most events (85%) were likely
catastrophic increases in ploidy rather than single chro-
mosome gains [14]. We conclude that the ura3::HIS3
marker constructed here should identify cells that have
gained an extra copy of the modified chromosome.

Targeted chromosomes are duplicated after 
nondisjunction is induced
If nondisjunction of the conditional centromere causes
chromosome gain as well as chromosome loss, induced
disomic cells should be detectable by an increase in the
frequency of appearance of Ura+His+ colonies. To select
directly for Ura+His+ disomes, haploid cells carrying a
modified chromosome were grown to log phase in
medium containing raffinose, the cultures were split, and
galactose was added to one of the resulting cultures. After
1–1.3 culture doublings, cells were spread to selective
plates. In the absence of galactose, all strains produced
spontaneous Ura+His+ papillae at a frequency of approxi-

mately 10-6 (Figure 3). For strains containing modified
chromosome III or IV, growth in galactose increased the
frequency of Ura+His+ papillae formation (Figure 3A),
suggesting that many of the papillae had developed from
disomes that formed by galactose-induced nondisjunc-
tion. In contrast, the strains containing modified chromo-
some VI showed no increase in the appearance of
Ura+His+ papillae when grown in galactose. (We consider
this lack of chromosome VI duplication below.)

In addition to direct selection for Ura+His+ colonies, we
tested whether a "delayed selection" scheme could iden-
tify candidate disomes (Figure 4A). Cells carrying a mod-
ified chromosome IV were grown in galactose for 1.3
culture doublings, diluted, and plated to rich medium.
The resulting colonies were replica-plated to selective
medium and screened for colonies that produce numer-
ous Ura+His+ papillae (Figure 4B). Among colonies from
7 independent galactose-treated cultures, 4.8% behaved
as candidate disomes, whereas only 0.37% of the colonies
from cultures that were not exposed to galactose looked
like candidate disomes (standard deviations were 2.8%
and 0.43%, respectively).

To determine whether Ura+His+ isolates were disomic, we
examined chromosome copy number by microarray-
based comparative genomic hybridization (array CGH).
Among galactose-induced cultures, we tested 3 isolates
that targeted chromosome III and 6 that targeted IV (1
selected directly and 5 from the delayed selection proto-
col). All of these isolates contained a single, extra copy of
the target chromosome (see Figure 5 for examples of each
karyotype). In contrast, among spontaneous Ura+His+ iso-
lates, 1/6 that targeted chromosome IV (1/3 direct selec-
tion, 0/3 delayed selection) displayed disomy. We
conclude that this method, placing a conditional centro-
mere and duplication marker on a target chromosome,
allows for efficient isolation of newly formed disomic
strains of yeast.

Extra copies of TUB1 allow the isolation of chromosome 
VI disomes
Since galactose exposure did not increase the frequency of
Ura+His+ papillae in strains carrying a modified chromo-
some VI (Figure 3A), we did not have confidence that the
selected colonies were disomic. Indeed, when 5 isolates
were examined by array CGH, aneuploidy was not
detected (data not shown). This result is consistent with
the notion that chromosome VI disomy is lethal, as sug-
gested by previous studies that found VI disomy to be
either rare or absent [3,6,10,20]. For example, disomic
haploids are frequently found among the rare, viable
spores produced by interspecific hybrids of Saccharomyces
cerevisiae and paradoxus [20]. Hunter et al. examined 300
such spores by CHEF gel analysis and observed no occur-

Papillation pattern in strains that contain one or two copies of the duplication marker ura3::HIS3Figure 2
Papillation pattern in strains that contain one or two 
copies of the duplication marker ura3::HIS3. Ura-His+ 

strains were grown overnight in YPD rich medium. 106 and 
104 cells from each culture were spotted to plates containing 
selective media lacking uracil (-ura) or uracil and histidine (-
ura, -his). Papillae were scored after 3 days. The strains 
shown are KAY579 (haploid), KAY626 (hemizygous diploid), 
and KAY625 (homozygous diploid).
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rences of chromosome VI disomy among the nine chro-
mosomes detectable by this method, consistent with a
possible lethality of disomic chromosome VI [20]. Simi-
larly, in a systematic study of chromoduction, Dutcher
found that when chromosome VI disomy was selected,
the frequency of its appearance was much lower than
other chromosomes of its size, perhaps because there is
strong selection against chromosome VI disomes [10].
More recently, Torres et al. used chromoduction to con-
struct and study a nearly complete set of N+1 disomic
strains [3]. However, when chromosome VI disomy was
selected and the resulting cells were examined by array
CGH, the unselected chromosomes I and XIII were also
present. The absence of single chromosome VI disomes
suggests that such a karyotype may be lethal, and that the
presence of chromosomes I and XIII suppresses this
lethality [1,3].

If chromosome VI disomy is lethal, expression of one or
more genes on the extra chromosome VI may cause stoi-
chiometry imbalances severe enough to prevent viability.
There are several well-studied genes on chromosome VI
that are known to be deleterious upon overexpression,
including CDC14, ACT1 and TUB2 [21-25]. For example,
TUB2, which codes for beta-tubulin, has been shown to
be exquisitely dosage-sensitive. Overexpression of TUB2
causes lethality, even when a single, extra copy is inte-
grated into a haploid genome [23]. This lethality can be
suppressed by increased expression of alpha-tubulin in
the cell, encoded by the chromosome XIII genes TUB1
and TUB3 [26,27]. The observations of Torres et al. sup-
port the idea that the extra dose of TUB2 contributes to the
lethality of disomic chromosome VI: in the viable strains
that are disomic for I, VI, and XIII, the extra copy of chro-
mosome XIII can supply the cell with additional alpha-
tubulin, eliminating the stoichiometry imbalance caused
by the extra copy of TUB2 [3].

Clearly, a second copy of TUB2 in a haploid is sufficient
to cause lethality, as demonstrated by the TUB2 integra-
tion experiments of Katz et al. [23]. But when the entire

chromosome VI is duplicated, is the duplication of TUB2
necessary for the extra copy of chromosome VI to cause
lethality? If it is, then eliminating the tubulin imbalance
alone should allow for the viability of chromosome VI
disomes. However, if additional chromosome VI genes
cause dosage imbalances severe enough to prevent viabil-
ity, then simply eliminating the tubulin imbalance should
not suppress the lethality of disomic chromosome VI.

We used the chromosome duplication method described
here to test whether the tubulin imbalance is necessary for
the lethality of VI disomy. We supplied TUB1-containing
plasmids to haploid strains carrying modified chromo-
some VI, then induced nondisjunction and selected for
duplication of the ura3::HIS3 marker. In contrast to
strains without excess TUB1, many Ura+His+ candidate
disomes did appear after exposure to galactose when the
cells harboured a TUB1 plasmid (Figure 3B). The effect
occurred when TUB1 was carried on a low-copy CEN plas-
mid or on a high-copy 2-micron plasmid.

Most of the Ura+His+ isolates, although viable, produced
slow-growing, tiny colonies (Additional file 2). We grew 9
isolates in liquid culture, extracted DNA and performed
array CGH. Although one culture did not exhibit aneu-
ploidy, the other 8 were disomic for chromosome VI: 3
isolates were simple disomes, 3 isolates also contained an
extra, unselected chromosome XII, and 2 contained extra
chromosomes II and XII (see Figure 5 for examples of each
karyotype). Since a number of colonies were isolated that
contained the single, extra chromosome VI, and since
these were only isolated when extra copies of TUB1 were
present, we conclude that minimizing (or eliminating)
the effect of TUB2 overexpression allows for the viability
of chromosome VI disomes. TUB2 overexpression is
therefore essential for the inviability of chromosome VI
disomy.

Although viable, the chromosome VI disomes exhibited
growth defects (Additional file 2). We do not know
whether these defects are the result of residual tubulin

Table 1: Frequency of Ura+ cells in haploid strains containing ura3::HIS3 integrated next to a centromere

Chromosome containing ura3::HIS3 Galactose exposure prior to selection Frequency of Ura+

III - 3.4 ± 3.2 × 10-4

IVa - 1.0 ± 0.0 × 10-4

VIb - 9.7 ± 1.8 × 10-5

VIb + 1.3 ± 0.6 × 10-4

Haploid cells were grown overnight in YPD rich medium. 106 cells were plated onto selective medium lacking uracil. Colonies were counted after 3 
days. The mean frequency and standard deviation obtained from at least 4 independent cultures are shown.
a Only 2 independent cultures were tested.
b Cultures were grown in supplemented minimal medium containing raffinose. Where indicated, galactose was added to 1.5% and culture was 
grown for 1.3 doublings prior to plating onto selective medium. Diluted cultures were also plated to YPD to score viable cell density. Ura+ 

frequency was computed per viable cell plated. A paired t-test indicates that the frequencies were not different (2-tailed, P > 0.1).
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dosage problems, other gene-specific effects, or a combi-
nation of the numerous ways that aneuploidy affects phe-
notype [1]. Further, it is not clear what role, if any, the
unselected chromosomes II and XII play. Since the aim of
this report is to describe our method for manipulating
chromosome copy number, a complete study of the basis
for chromosome VI dosage phenotypes will be reported
elsewhere.

Conclusion
We have described a new method for inducing and select-
ing disomic yeast strains which does not rely on spontane-
ous errors in chromosome segregation. The method
allowed for efficient isolation of disomic strains carrying
either chromosome III or IV. We used the method to test
a specific dosage relationship between chromosome VI
and the alpha-tubulin gene TUB1, and found that chro-
mosome VI disomes could be isolated with this method
when plasmid-borne TUB1 was present. Our proof-of-
concept test was therefore successful for each of the three
chromosomes we tested.

Frequency of appearance of Ura+His+ papillae in strains car-rying a modified chromosomeFigure 3
Frequency of appearance of Ura+His+ papillae in 
strains carrying a modified chromosome. Haploid 
strains were grown to log phase in raffinose-containing 
medium, exposed to galactose (dark bars) or not (light bars), 
then plated to glucose-containing medium lacking uracil and 
histidine. Papillae were scored after 3 days. Bars represent 
the mean frequencies ± standard deviations from at least 2 
independent trials. (A) Strains carrying modified chromo-
some III were KAY418 and KAY419; modified IV, KAY614 
and KAY619; modified VI, KAY539 and KAY568. (B) Strains 
carrying modified chromosome VI were KAY591 and 
KAY628 that harboured vectors pRS425 (2-micron) or 
pRS315 (CEN), or TUB1 plasmids pRB327 (2-micron) or 
pKA55 (CEN). The frequencies in strains treated with no 
galactose (light bars) are not statistically different from each 
other, with one exception. Strains with modified VI that 
carry pTUB1 plasmids exhibited higher spontaneous frequen-
cies than did VI strains without pTUB1 (Tukey-Kramer test, p 
< 0.05).
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Delayed selection strategy to identify chromosome IV dis-omesFigure 4
Delayed selection strategy to identify chromosome 
IV disomes. (A) Cells were grown approximately one dou-
bling in the presence of galactose to induce nondisjunction, 
diluted and plated to YPD rich medium to allow all viable 
cells to form colonies. If any colonies are clones of stable dis-
omes, they should produce Ura+His+ papillae at high fre-
quency when replica-plated to selective medium. 
Spontaneous duplications that occur after colony formation 
on YPD should appear as isolated papillae on selective 
medium. (B) Photographs of replica plates after 3 days. 
Medium lacks uracil and histidine. Triangles indicate isolated 
papillae appearing on non-growing "ghost colonies." Arrows 
indicate single colonies on which numerous papillae appear. 
Strain shown is KAY614. Bar is 5 mm.
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In principle, any strain that already contains a conditional
centromere could be supplemented with a duplication
marker and used to generate disomic aneuploids. Reid et
al., for example, have generated conditional centromeres
on all 16 chromosomes for inducing loss of heterozygos-
ity [28,29], and these chromosomes could be further
modified as described above for the induction and selec-
tion of disomes. The method should be useful in studies
investigating the genetic basis of aneuploid phenotypes,
and any study that wishes to efficiently duplicate a chro-
mosome de novo.

Methods
Media and genetic manipulations
Standard methods were used for growth and genetic anal-
ysis of yeast [30], except that YPD medium was supple-
mented with 50 mg/l adenine sulfate and 20 mg/l uracil.
Sporulation was induced as described [31]. Unless other-
wise noted, carbon sources were supplemented to 2% (wt/
vol) and cells were grown at 30°C in supplemented min-
imal media to maintain plasmids or unstable integra-
tions. Cell density was determined using a
hemacytometer.

Construction of plasmids
Plasmids are listed in Table  2[13,26,32,33]. Oligonucle-
otides were designed with Primer3 [34] and are listed in
Additional file 3. Standard methods of DNA manipula-

tion were used, unless otherwise noted [30,35]. To con-
struct the plasmid pKA52, a 390 bp fragment internal to
URA3 was amplified from pGALCEN-JC3-13 template
DNA with the use of oligonucleotide primers URA3int_F
and URA3int_R in a high-fidelity Pfu polymerase chain
reaction (PCR) (Stratagene). This fragment was digested
with BamHI and EcoRI, then ligated into the BamHI/EcoRI
sites of pRS303. The plasmid pKA55 was constructed
using homologous recombination in yeast [36] to replace
the URA3 marker of pRB326 with LEU2. A 3.7 kb SphI/
PvuII fragment containing LEU2 and flanking vector
sequence was cut from pRB327, gel-purified with the
Qiaquick gel extraction kit (Qiagen), then combined with
SmaI-linearized pRB326 DNA to co-transform a leu2- yeast
strain. pKA55 was recovered by isolating DNA from Leu+

transformants and transforming E. coli strain JM109. To
confirm that pKA55 contained functional TUB1, it was
transformed into a tub1Δ strain containing the TUB1-
URA3 plasmid pRB326. Cells were grown in medium sup-
plemented with uracil to allow loss of pRB326, plated to
YPD, then replica-plated to medium selecting for Leu+.
Colonies were identified that were Leu+Ura-, indicating
that the sole source of TUB1 was from pKA55.

Construction of yeast strains
Yeast strains used in this study are listed in Table 3. All
strains were derived from the S288C-related BY4741 and
FY strains [37,38]. KAY519, KAY530 and KAY587 were

Karyotypes of Ura+His+ candidate disomesFigure 5
Karyotypes of Ura+His+ candidate disomes. Haploid strains carrying a modified chromosome were treated with galactose 
and plated to select Ura+His+ papillae as described in the text. To assess chromosome copy number, DNA from Ura+His+ iso-
lates (red) was combined with DNA from a haploid parent strain (green) and hybridized to microarrays containing the genomic 
collection of yeast open reading frames. Log-transformed red:green ratios are displayed in histogram format for each gene 
along each chromosome, using the Karyoscope viewer of Java Treeview [44]. Results from representative arrays are shown 
(disomic III: KAY495; disomic IV: KAY638; disomic VI: KAY605; disomic VI, XII: KAY679; disomic II, VI, XII: KAY681). Com-
plete data from all arrays are deposited at GEO [45].
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descended from a cross between BY4741 and the FY3-
derived DBY10147.

Haploid yeast strains were constructed to contain a mod-
ified chromosome (III, IV, or VI) that harbors a condi-
tional centromere and a set of duplication markers
(Figures 1A, B and Additional file 4). To construct KAY418
and KAY419, which carry a modified chromosome III,
DNA containing PGAL1-CEN3 URA3 from plasmid pGAL-
CEN-JC3-13 was transformed into strains DBY8923 and
DBY8869, respectively, replacing chromosomal CEN3 as
described [13]. To generate the ura3::HIS3 duplication
marker, these strains were transformed with the integra-
tive plasmid pKA52, which had been cut at the unique
StuI site within its URA3 fragment. The strains were then
backcrossed. Genetic linkage to chromosome III markers
and centromere confirmed the CEN3 location of the inte-
grated DNA. To generate KAY541 and KAY542, the strains
were crossed to KAY530 to replace ura3-52 with ura3Δ0 as
described below.

To construct KAY614 and KAY619, which carry a modified
chromosome IV, a 2.6 kb fragment containing PGAL1-
CEN3 URA3 was amplified with high-fidelity Phusion PCR
(Finnzymes) using the primers CEN4_REPL_F and
CEN4_REPL_R and pGALCEN-JC3-13 template DNA.
Each primer contains at its 5' end a 50 nt sequence identi-
cal to that found adjacent to CEN4. The PCR fragment was
gel-purified (Qiaquick gel extraction kit, Qiagen) and
used to transform the diploid strain DBY8869 ×
DBY8925. An independently-amplified fragment was
used to transform the isogenic diploid DBY8871 ×
DBY8923. Each resulting strain was transformed with
StuI-digested pKA52 to generate ura3::HIS3. To confirm
that the conditional centromere integrated at CEN4, DNA
from Ura-His+ transformants was amplified by PCR using
the primers CEN4_F (located outside the integration site
near CEN4) and URA3_int_R (located in the conditional
centromere sequence). To generate haploid strains, the
heterozygous, transformed diploids were sporulated and
the ura3::HIS3 marker segregated 2:2. When these strains
were used to select for duplication of chromosome IV (see
Induction and selection of N+1 disomes, below), some
Ura+His+ derivatives were found in which the ura3-52
allele on chromosome V (which consists of the full-length
URA3 gene with a Ty1 insertion [39]) had recombined
with ura3::HIS3 on chromosome IV to generate URA3+

without duplicating the intact target chromosome (data
not shown). To prevent this unwanted event, ura3-52 was
replaced with ura3Δ0 by crossing the haploid strains con-
taining PGAL1-CEN3 ura3::HIS3 to KAY530. Spore clones
that contained ura3Δ0 were identified by the PCR-ampli-
fication of a 550 bp fragment from spore clone DNA using

Table 2: Plasmids used in this study

Plasmid Genotype Source

pGALCEN-JC3-13 PGAL1-CEN3, URA3 [13]
pRS303 HIS3 [32]
pRS315 LEU2, CEN6, ARSH4 [32]
pRS425 LEU2, 2 μ [33]
pRB326 TUB1, URA3, CEN4, ARS1 [26]
pRB327 TUB1, LEU2, 2 μ [26]
pKA52 HIS3, ura3 (390 bp fragment) This study
pKA55 TUB1, LEU2, CEN4, ARS1 This study

Table 3: Yeast strains used in this study

Strain Genotype Source

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [38]
DBY10147 MATα D. Botstein (Princeton University)
DBY8869 MATa his3-Δ200 ura3-52 D. Botstein (Princeton University)
DBY8871 MATα his3-Δ200 ura3-52 D. Botstein (Princeton University)
DBY8923 MATa his3-Δ200 ura3-52 ade2Δ leu2-Δ1 lys2Δ D. Botstein (Princeton University)
DBY8925 MATα his3-Δ200 ura3-52 ade2Δ leu2-Δ1 lys2Δ D. Botstein (Princeton University)
KAY519 MATa leu2Δ0 This study
KAY530 MATα his3-Δ200 ura3Δ0 This study
KAY587 MATα his3-Δ200 leu2Δ0 ura3Δ0 This study
KAY418, 419 MATa his3-Δ200 ura3-52 cen3::PGAL1-CEN3 ura3::HIS3(at CEN3) This study
KAY541, 542 MATa his3-Δ200 ura3Δ0 cen3::PGAL1-CEN3 ura3::HIS3(at CEN3) This study
KAY614, 619 MATa his3-Δ200 ura3Δ0 cen4::PGAL1-CEN3 ura3::HIS3(at CEN4) This study
KAY539, 568 MATa his3-Δ200 ura3Δ0 cen6::PGAL1-CEN3 ura3::HIS3(at CEN6) This study
KAY591, 628 MATa his3-Δ200 leu2Δ0 ura3Δ0 cen6::PGAL1-CEN3 ura3::HIS3(at CEN6) This study
KAY579 MATα his3-Δ200 ura3Δ0 ade2Δ cen6::PGAL1-CEN3 ura3::HIS3(at CEN6) This study
KAY626 MATα/MATa his3-Δ200/his3-Δ200 LEU2/leu2Δ0 ura3Δ0/ura3Δ0 ade2Δ/ADE2 cen6::PGAL1-CEN3/

CEN6 ura3::HIS3(at CEN6)
This study

KAY625 MATα/MATa his3-Δ200/his3-Δ200 LEU2/leu2Δ0 ura3Δ0/ura3Δ0 ade2Δ/ADE2 cen6::PGAL1-CEN3/
cen6::PGAL1-CEN3 ura3::HIS3(at CEN6)/ura3::HIS3(at CEN6)

This study
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the primers URA3_del_F and URA3_del_R, which flank
the URA3 coding region.

KAY539 and KAY568, which carry a modified chromo-
some VI, were constructed with the same methods as were
KAY614 and KAY619, except the primers CEN6_REPL_F
and CEN6_REPL_R were used to target PGAL1-CEN3 URA3
to replace CEN6, and the primer CEN6_F was used with
URA3_int_R in a PCR to confirm that the conditional cen-
tromere had integrated at CEN6. KAY591 and KAY628
were constructed by crossing KAY539 and KAY568,
respectively, to KAY519.

Induction and selection of N+1 disomes
Haploid strains carrying PGAL1-CEN3 ura3::HIS3 at the
centromere of the target chromosome were grown to sat-
uration (2 days) in supplemented minimal medium that
contained raffinose as its nonrepressing carbon source
[40], diluted at least 2000-fold into fresh medium and
grown overnight to obtain log-phase cultures. The cul-
tures were split when the density was 0.5–1 × 107 cells/ml.
To one half, galactose was added to a final concentration
of 1.5%. Cell density was monitored until cultures had
grown approximately 1.3 doublings (2.5-fold increase in
density). The cells were pelleted, resuspended in water,
diluted and plated to YPD and selective media lacking
uracil or lacking both histidine and uracil. Ura+ colonies
were scored to determine HIS3 excision frequency.
Ura+His+ colonies were scored to determine frequency of
duplication and excision, and were picked as candidate
disomes (direct selection method). Colonies that grew on
YPD were scored to determine viable cell density of plated
cultures, and replica-plated to selective plates lacking
uracil (to monitor excision) and to plates lacking histidine
and uracil (to monitor duplication and excision). Replica-
plated colonies on which many Ura+His+ papillae grew
were considered candidate disomes and Ura+His+ papillae
were picked (delayed selection method).

Microarray-based comparative genomic hybridization 
(array CGH)
Microarrays were produced by spotting PCR-amplified
DNA fragments from approximately 6200 yeast open
reading frames (kindly donated by D. Botstein, Princeton
University) onto poly-lysine coated glass slides as
described [41]. Genomic DNA was isolated by glass bead
lysis according to the protocol of Hoffman and Winston
[42]. To label each sample, 2 μg DNA was digested with
HaeIII, purified, then resuspended in water. The DNA was
boiled in the presence of 15 μg random nonamer nucle-
otide primers, then cooled on ice. The hybridized primers
were extended with the use of 20 units of exo- Klenow
polymerase (New England Biolabs) in a 50 μl reaction
containing 180 μM each of dATP, dGTP, dCTP, 72 μM
dTTP, 108 μM 5-(3-aminoallyl)-dUTP, 50 mM NaCl, 10

mM Tris (pH 7.9), 10 mM MgCl2, and 1 mM dithiothrei-
tol. After 2 hours at 37°C, EDTA (pH 8.0) was added to 45
mM. The primer-extension products were purified
through a DNA Clean and Concentrator-5 spin column
(Zymo Research) and resuspended in 50 mM sodium
bicarbonate (pH 9). Reactive Cy3 (or Cy5) mono NHS
ester dyes (GE Healthcare, Cat. No. PN5661) were cou-
pled to the aminoallyl groups in the DNA as directed by
the supplier. The labeled DNA was purified through
another spin column and resuspended in 20 μl 10 mM
Tris (pH 8.5). Cy3- and Cy5-labeled DNAs were com-
bined and hybridized to the microarrays at 65°C for 18
hours in a solution of 3× SSC, 730 μg/ml PolyA RNA, 240
μg/ml tRNA, 24 mM HEPES buffer (pH 7), and 0.24%
SDS. Arrays were washed in 0.05× SSC at room tempera-
ture and imaged with a GenePix 4000B scanner (Molecu-
lar Devices). Array images were analyzed with ScanAlyze
[43]. Data was filtered for signal intensity at least 2-fold
above background in both channels, ratios were normal-
ized to average 1 across all unaffected chromosomes, and
log ratios were visualized with the Karyoscope viewer of
Java Treeview [44].

Accession number
The raw microarray data, accession number GSE14377,
are deposited at GEO [45].
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CGH: comparative genomic hybridization; PCR: polymer-
ase chain reaction; YPD: yeast extract, peptone, and dex-
trose; YP-galactose: yeast extract, peptone, and galactose
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Additional file 1
Characterization of conditional centromere. (A) Conditional centro-
mere does not cause growth defects on glucose. The heterozygous parent of 
KAY614, containing PGAL1-CEN3 and ura3::HIS3 at the CEN4 locus, 
was sporulated and tetrads were dissected onto YPD rich medium. (B) 
Kinetics of galactose-induced chromosome loss. A diploid strain, hetero-
zygous for PGAL1-CEN3 URA3 at CEN3, was grown in YPD to log phase, 
washed and incubated in YP-galactose, plated to YPD, then phenotyped. 
The non-repressing sugar raffinose was used in later experiments instead 
of glucose [40], which is expected to allow more rapid induction of GAL1 
promoter activity. (C) Galactose-induced loss of chromosome IV yields 
unstable 2N-1 phenotype. A diploid strain, heterozygous for PGAL1-CEN3 
URA3 at CEN4, was grown overnight in YPD or YP-galactose, then 
plated to YPD. Most of the small colonies were Ura- and unstable, rapidly 
reverting to normal growth but remaining Ura-. This is consistent with 
endoreduplication of the remaining chromosome IV, as observed by Alvaro 
et al. [29].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-10-36-S1.pdf]

Additional file 2
Galactose induction of candidate chromosome VI disomes. Galactose 
induces the appearance of many small Ura+His+ papillae in a strain car-
rying a modified chromosome VI. Strain KAY628, harbouring the LEU2-
marked TUB1 plasmid pKA55, was grown to log phase in raffinose-con-
taining medium, split, and one-half was exposed to galactose for 1.3 cul-
ture doublings. 107 cells were spread to plates selecting for Ura+His+Leu+ 

papillae. Plates were incubated 3 days and photographed. Papillae were 
picked, colony-purified, then cultured for DNA isolation and array CGH 
as described in the text.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-10-36-S2.jpeg]

Additional file 3
Oligonucleotides used in this study. This table contains nucleotide 
sequences and genome coordinates of the oligonucleotides used for PCR.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-10-36-S3.pdf]

Additional file 4
Strain construction summaries. This file contains flowcharts that sum-
marize the construction of yeast strains in this study.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-10-36-S4.pdf]
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