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Abstract
Background: The Glued gene of Drosophila melanogaster encodes the homologue of the vertebrate
p150Glued subunit of dynactin. The Glued1 mutation compromises the dynein-dynactin retrograde
motor complex and causes disruptions to the adult eye and the CNS, including sensory neurons
and the formation of the giant fiber system neural circuit.

Results: We performed a 2-stage genetic screen to identify mutations that modified phenotypes
caused by over-expression of a dominant-negative Glued protein. We screened over 34,000 flies
and isolated 41 mutations that enhanced or suppressed an eye phenotype. Of these, 12 were
assayed for interactions in the giant fiber system by which they altered a giant fiber morphological
phenotype and/or altered synaptic function between the giant fiber and the tergotrochanteral
muscle motorneuron. Six showed interactions including a new allele of atypical protein kinase C
(aPKC). We show that this cell polarity regulator interacts with Glued during central synapse
formation. We have mapped the five other interacting mutations to discrete chromosomal regions.

Conclusion: Our results show that an efficient way to screen for genes involved in central synapse
formation is to use a two-step strategy in which a screen for altered eye morphology precedes the
analysis of central synaptogenesis. This has highlighted a role for aPKC in the formation of an
identified central synapse.

Background
During the development of a neural connection the axon
of the growing neuron has to make morphogenic changes
to form the presynaptic apparatus needed for efficient syn-
aptic function once it has reached its target cell. This proc-
ess involves reception of signals by the presynaptic cell
followed by precise rearrangements of the cytoskeleton to
direct changes in cell shape and control the formation of
the presynaptic apparatus (see [1,2] for reviews).

The giant fiber system (GFS) is a unique neural circuit that
contains several of the few identified central synapses in

Drosophila and includes the largest in the fly between the
giant fiber (GF) interneuron and the leg extensor muscle
motorneuron, the tergotrochanteral motorneuron
(TTMn), the GF-TTMn synapse [3]. Several studies using
over-expression of dominant-negative transgenes, or
homozygous adult viable mutations, have recently shed
light on signaling mechanisms during the formation of
the GF-TTMn synapse. These include the receptors Sema-
phorin 1a and Roundabout [4,5]; the L-1 type cell-adhe-
sion molecule Neuroglian [6]; the endocytotic and
ubiquitin machinery [7-10]; the small GTPase DRac1
[11], and the transcription factor Ken [12]. However, the
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precise mechanisms by which these integrate during syn-
aptogenesis are yet to emerge.

Glued encodes the largest subunit of the retrograde motor
dynein-activating complex dynactin [13,14]. The
Glued1(Gl1) mutation results in a truncated protein prod-
uct [15] that disrupts the dynein-dynactin complex by
binding to dynein and microtubules but fails to bind to
cargoes [16]. Mutants have both visual and CNS defects
[17-19]. Glued has a key role in formation of the GF pre-
synaptic bend which may involve local cytoskeletal
dynamics and rearrangements [20]. Forward genetic
screens to identify gene products involved in post-mitotic
neural differentiation can be problematic as many of
these genes are plieotropic and will have vital functions
earlier in development, thus preventing mutants from
being recovered. Moreover, many of the genes may well
have several functions during differentiation of a single
neuronal type. Consequently, mutants, therefore, will
exhibit phenotypes that are difficult to interpret. Indeed,
this has been shown for the dynein-dynactin complex in
the formation of mushroom body neurons [21]. The eye
is not required for either viability or fertility of the adult
and genetic disruptions targeted to the eye have been
exceptionally useful in deducing signaling pathways, for
example the sevenless pathway [22], and also in identifying
mutant alleles that would cause lethality earlier in devel-
opment if they were to be expressed throughout the
organism [23-25]. This coupled with the fact that it has
been estimated that two thirds of the vital genes within
the Drosophila melanogaster genome (~2,500) are involved
in its development [26], makes the eye invaluable in a pri-
mary screen for genes with additional roles in processes
such as neural differentiation.

In this study we have undertaken a genetic modifier screen
in the adult eye and isolated 12 mutations that either
dominantly enhance or suppress a phenotype caused by
over-expression of a dominant-negative form of the Glued
protein (GlDN). We assayed these mutations for additional
interactions with Glued in the GFS and found that 6 show
interactions. Mapping of each modifier mutation is pre-
sented. One of the suppressors is an allele of aPKC, and we
found that other aPKC mutant alleles exhibit suppression
of the synaptic phenotype caused by over-expression of
GlDN.

Results
Screening for modifiers of a truncated Glued (GlDN) over-
expression eye phenotype
Gl1 is a true dominant-negative mutation and the effects of
the truncated product produced are dose-sensitive
[17,20,27]. We previously exploited this by generating a
UAS-GlDN transgene to over-express this "poison subunit"
using the GAL4-UAS system [28] and showed that disrup-

tion of retrograde motor function resulted in synaptic
defects in the GFS [20]. Our aim was to identify genes that
acted with Glued during GFS formation in the developing
CNS. Direct screening for alterations of an adult neural
phenotype is problematic and extremely labor-intensive
because it would involve an F2 screen. Individual mutant
stocks would need to be made and crossed into the appro-
priate mutant background followed by dissection and
staining of the adult CNS.

We therefore reasoned that since Gl1 affects the develop-
ment of the eye, monitoring the eye phenotype in a pri-
mary F1 screen would provide an excellent read-out for
defining interacting loci. Using the eye-specific GMR-
GAL4 line to target truncated Glued (GlDN) resulted in the
generation of adult flies possessing smaller eyes with
fused ommatidia and miss-arrayed eye bristles. As
expected, this was a more severe phenotype than that seen
in Gl1 mutants (Figure 1C &1D). This disruption provided
a sensitized background in which to base an F1 screen on
adult eyes to isolate novel mutations that altered this phe-
notype. We performed an EMS screen for second-site
modifiers that dominantly enhanced or suppressed the
over-expression phenotype in the eye (Figure 1A; see
materials and methods). We screened over 34,000 flies
and obtained both suppressors (Figure 1E) and enhancers
(Figure 1F) that reproducibly altered the eye phenotype.
We recovered nine lines with homozygous lethal muta-
tions on the second chromosome and seven lines with
homozygous lethal mutations on the third chromosome
that were either enhancers of Glued (EGs) or suppressors
of Glued (SGs). The lethal mutations were most likely the
dominant modifiers of the eye phenotype but we could
not rule out the posibility of second-site mutations on the
chromosomes that were responsible for altering the phe-
notype. The lines were crossed inter se for complementa-
tion. All mutations showed complementation illustrating
each of the 16 mutations map to independent loci (data
not shown). Twelve of these were analyzed further (see
below).

Identification of mutations that interact with Gl1 in the 
adult eye
Our sensitized screen allowed us to isolate mutations that
reproducibly dominantly enhanced or suppressed the eye
phenotype caused by over-expression of GlDN. From these
lines we wished to identify which mutations dominantly
interacted with Glued, rather than simply up- or down-reg-
ulated the GAL4/UAS system or interacted with the syn-
thetic GMR element which can cause disruptions if
homozygous or if the temperature is raised [29]. To do
this we tested whether these mutations could dominantly
interact with the Gl1 allele by making flies heterozygous
for both Gl1 and the novel EG or SG mutations and iden-
tifying subsequent alterations of the Gl1 eye phenotype.
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The GlDN sensitized screen in the adult eyeFigure 1
The GlDN sensitized screen in the adult eye. (A) Schematic of the screen in which UAS-GlDN males were mutagenized 
and crossed to GMR-GAL4 virgin females. In the F1 generation the flies were scored for any enhancement or suppression of 
the eye phenotype caused by over-expression of GlDN. (B-D) Scanning electron micrographs of adult eyes. (B) w; UAS-GlDN, 
showing a wild type eye with a regular array of ommatidia and bristles. (C) Gl1/+ exhibiting a roughened, smaller eye. (D) w; 
GMR-GAL4/UAS-GlDN (abbreviated to GMR>GlDN throughout) showing the much reduced and disorganized eye phenotype 
used as the basis for the screen. (E) shows the effects of a dominant suppressor (SG13/+) on the phenotype in (D), and (F) 
shows the effects of a dominant enhancer (EG37/+). (G) Gl1/+; EG162/+, showing an enhanced phenotype than for Gl1/+ alone 
depicted in (C).
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The Gl1 eye phenotype was clearly exacerbated by the
enhancer EG162 (Figure 1C &1G). Other mutations
caused more subtle alterations of the Gl1 adult eye pheno-
type that were either variable or could not be distin-
guished when viewed under a dissecting microscope. The
eyes of Gl1/+ individuals show irregular ommatidia and
bristle orientation as revealed by SEM (compare Figure 2B
to 2A). In addition retinal sections reveal a variable
number of rhabdomeres in each ommatidium, which are
often reduced in size, as well as clear disruption of the
accessory cells. As previously reported, these affects pro-
duce a distortion in the overall shape of the ommatidia
(Figure 2F), [17]. To determine whether we had isolated
interacting mutations we examined whole eyes by SEM
and retinal sections by light microscopy from the eyes of
Gl1/+ flies and those transheterozygous with an enhancer
(EG37) and a suppressor (SG13). When EG37 was intro-
duced into the Gl1 background (EG37/+; Gl1/+) we saw an
increase in bristles and an increase in ommatidial fusion
and disorganization (Figure 2C). Retinal sections of the
eyes from these flies revealed increased disruptions of
accessory cells and fused rhabdomeres (Figure 2G). The
number of rabdomeres per ommatidium was 4.43 ± 1.11

(n = 195, P < 0.001) compared to those from flies contain-
ing Gl1/+ alone which had 5.03+1.28 (n = 119). We also
sometimes saw holes between some ommatidia in the sec-
tions (data not shown). With SG13 in the Gl1 background
(SG13/+; Gl1/+), the ommatidia and bristles became more
ordered than is seen in Gl1 alone (Figure 2, compare D
[inset] with B [inset]) and the sections revealed a return to
a more hexagonal lattice of accessory cells and trapezoidal
pattern of the rhabdomeres (Figure 2H). These contained
an average of 5.89 ± 1.13 (n = 195, P < 0.001) rhab-
domeres per ommatidium. These data indicated that, for
at least two of our mutations, we had isolated loci that
genetically interact with Glued during eye development. A
third suppressor, SG46, was also analysed in this way and
also showed supression of the Gl1 eye phenotype (data not
shown).

Mutations that interact with Glued in the Giant Fiber 
System and alter axon morphology
The presynaptic terminal of the GF-TTMn synapse is a dis-
tinctive bend at the end of the GF axon closely apposed to
the TTMn dendrite [30]. Several studies have reported that
this bend is often absent or altered when the two neurons
fail to form a proper synapse [4,6,7,9,11,20,31]. Since our
main aim was to identify genes involved in synapse for-
mation within the GFS we next performed morphological
analysis of the giant fiber neurons in adult flies carrying an
EG or SG mutation and with disrupted Glued function.

We used the GF-specific GAL4 enhancer-trap line, A307
[GAL4] (hereafter referred to as A307), to identify altera-
tions of the GF morphological phenotype, brought about
by GlDN over-expression, in the presence of the dominant
enhancers or suppressors (Figure 3, Table 1). Our previ-
ous work indicated that there are two aspects to the phe-
notype observed when GlDN is targeted to the GF. First, the
distinctive terminal bend does not form after 48 hrs of
pupal development indicating that synaptogenesis with
the TTMn is defective. Second, as the GF axon develops
during later pupal stages, the tip swells, often to several
times the axon diameter, presumably because of a build-
up of cellular material that the motor is unable to move
toward the cell body [20]. Like many GAL4-generated
phenotypes there is some variation between preparations,
most notably on the extent of axon swelling (compare Fig-
ure 3C and 6B). While both the lack of terminal bend and
axon swelling are a result of retrograde motor disruption,
any link between the two phenotypes is unclear. Both
SG13/+ and SG46/+ showed suppression of these two
phenotypes when GlDN was expressed using A307 (Figure
3F &3H, Table 1). Swollen axon tips were rarely seen and
the axons were either "bendless," or showed at least one
bend in a preparation (Figure 3F [arrowhead] &3H, Table
1), a phenotype not seen when the dominant-negative
subunit is expressed alone (Table 1). SG58/+ showed a

An enhancer and a suppressor interact with Gl1 in the adult eyeFigure 2
An enhancer and a suppressor interact with Gl1 in the 
adult eye. (A-D) Scanning electron micrographs of adult 
eyes. (A) Wild type. (B) Gl1/+, (C) EG37/+;Gl1/+, both exhib-
iting a roughened, smaller eye. (D) SG13/+;Gl1/+ showing a 
slight amelioration of the Gl1 phenotype. Insets are higher 
magnifications. (E-H) Tangential sections of adult eyes. (E) 
Wild type showing the regular pattern of ommatidial assem-
bly and the stereotyped trapezoidal pattern of the rhab-
domeres of the photoreceptor cells (R1-R7). (F) Gl1/+ eye 
showing disordered and irregular shaped ommatidia often 
with aberrant numbers of rhabdomeres. (G) The disorganiza-
tion is exacerbated in the presence of EG37/+ with the 
rhabomeres often fused. (H) In the presence of SG13/+ the 
ommatidia show a more ordered, regular, pattern with each 
ommatidia often having the correct array of rhabdomeres 
(compare with E and G).
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mild suppression of the GF morphology phenotype with
consistently fewer neurons exhibiting swollen axons
(Table 1, see below). However no bends or partial bends
were observed (Figure 3G). We could not unequivocally
rule out the possibility of these mutations altering the
effectiveness of the GAL4/UAS system, however, the phe-
notypes observed for SG13/+ and SG46/+ were different
from those seen if GAL4 expression was suppressed by
reducing temperature (M.J.A unpublished observations).
SG16/+ showed no rescue of the GF morphology pheno-
type, suggesting that this mutation does not interact with
Glued in the GFS. The EG162/+ and EG165/+ caused dom-
inant lethality in the A307>GlDN background (Table 1)
presumably because they affected other cells expressing
GlDN in the A307 line that eliminated viability. 20% (4/
20) of EG28/+ preparations exhibited GF axons which

remained in the brain (Figure 3E). This is likely to be due
to a failure to exit the brain on outgrowth, or retraction
after a failure in synatogenesis. No obvious enhancement
of the GF phenotype was observed with EG37/+ (Figure
3D).

We reasoned that mutations in genes involved in synap-
togenesis may not greatly enhance the already severe GlDN

synaptic phenotype. Mutations in genes that have a role
earlier in development, for example in axon guidance,
may give rise to a discernable enhancement, such as incor-
rect GF axon growth as was the case for EG28/+. In Gl1

mutants the GFs look morphologically normal, although
they have GF-TTMn synaptic defects [20]. Therefore, we
tested for dominant effects of the EG mutations on the
morphology of the GFs in a Gl1/+ background by generat-

Mutations that interact with Glued and alter GF axon morphologyFigure 3
Mutations that interact with Glued and alter GF axon morphology. (A) Schematic of the adult CNS with the GFs indi-
cated. Hatched box indicates the approximate area of the ventral ganglia depicted in B-D & F-K. (B-K) Dissected adult nervous 
systems stained for LacZ expression. (B) UAS-LacZ; A307 control showing normal GFs with their characteristic bends in the 
mesothoracic neuromere (arrowhead) where the GF synapses with the TTMn. (C) A fly also expressing UAS-GlDN exhibits 
swollen, bendless, axon tips (asterisk). (D) The introduction of EG37/+ did not noticeably enhance the swollen axon pheno-
type. (E) The whole nervous system is shown for this preparation in which the introduction of EG28/+ results in a more severe 
phenotype with one GF remaining in the brain. (F-H) Three different suppressors showing amelioration of the swollen axon 
phenotype. Note that GFs from specimens carrying SG13/+ or SG46/+ show normal diameter axons and sometimes a terminal 
bend (arrowhead) and that the GFs from specimens carrying SG58/+ also exhibit normal diameter axons. (I) A fly carrying the 
Gl1 mutation exhibits wild type GF morphology. (J&K) preparations from flies carrying Gl1 and an enhancer sometimes showed 
enhancement or altered GF phenotypes (see Table 1 and text for details). Scale bar is 5 μm.
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ing flies with A307, UAS-LacZ, Gl1 and our third chromo-
some EGs (Figure 3I-K, Table 1). We saw an increase in the
frequency of "bendless" axons in 3 of 4 EG mutations
tested, suggesting an enhancement of the Gl1/+ pheno-
type, but no appearance of the swellings seen with over-
expression of the dominant-negative subunit. Unusually,
preparations containing EG28/+ and Gl1/+ exhibited a
reduction in "bendless" axons and often had ectopic
axonal branching (Figure 3K). Taken together with the
phenotype seen with GlDN (see above), we presume this
mutation is at a locus that has a role in axon growth and/
or guidance. We were unable to do this with the muta-
tions on chromosome two, using any GAL4 GF marker
lines, since the mutations are on the same chromosome as
the UAS-GlDN insert resulting in over-expression of GlDN

in any cell that express GAL4 and contain the mutation.
The UAS-GlDN element and the interacting mutations
would need to be separated onto different chromosomes
by either recombination or precise excision of the P-ele-
ment containing the UAS-GlDN transgene. As an alterna-
tive, morphology of the GF can be observed using dye-
filling techniques [31-33]. However, these techniques are
labor-intensive and were not practicable for screening
purposes.

Mutations that interact with Glued in the Giant Fiber 
System and alter synaptic function
We used electrophysiology to assay GFS function, which,
in combination with morphological analysis, can reveal

abnormalities of synaptogenesis during development [4-
7,9,11,12,20]. A severe GF-TTMn synaptic phenotype is
caused by over-expression of GlDN ; some flies fail to
respond to brain stimulation and those that do respond
exhibit a long response latency and show only a single
response or poor following to repetitive stimuli ([20]; Fig-
ure 4). We put the SG mutations which had exhibited
morphological rescue into the A307/UAS-GlDN back-
ground. Corresponding with the observed morphological
suppression (Figure 3F &3H, Table 1), flies also contain-
ing either SG13/+ or SG46/+ exhibited an increase in GF-
TTMn synaptic function. All preparations responded to
brain stimulation and had shorter response latencies and
increased following at 100 and 250 Hz than is seen with
simple over-expression of GlDN (Figure 4). SG58/+ also
exhibited a detectable increase in synaptic function with
all preparations responding upon stimulation, a slight
reduction in the long latency seen when GlDN is over-
expressed and also a corresponding increase in following
to repetitive stimuli which was significant at 100 Hz (Fig-
ure 4).

Gl1/+ mutants show a functional defect in the GF-TTMn
synapse when tested using electrophysiology. They exhibit
a response latency not significantly different from wild
type (χ = 1.1 ms, n = 8) to brain stimulation, but do not
follow 1:1 on stimulation at a frequency of 250 Hz as
observed in wild type flies ([20]; Figure 5A &5C). We
crossed the EGs into the Gl1/+ background to observe any

Table 1: Effects of enhancers and suppressors on GFS morphology

GF morphology in A307>GlDN background

Enhancer or suppressor n† Swollen "bendless" axons (%) "Bendless" axons (%) Partial or "Wild type" bends (%)

None 29 86 14 0
EG28/+ 38 97* 3 0
EG37/+ 24 92 8 0
EG162/+ - Lethal Lethal Lethal
EG165/+ - Lethal Lethal Lethal
SG13/+ 42 0 17 83
SG16/+ 32 88 12 0
SG46/+ 40 23 32 45
SG58/+ 43 65 35 0

GF morphology in Gl1/+ background

3rd C'some enhancer n† Swollen "bendless" axons (%) "Bendless" axons (%) Partial or "Wild type" bends (%)

None 36 0 8 92
EG7/+ 24 0 25 75
EG28/+ 32 0 3 97
EG56/+ 23 0 13 87
EG79/+ 22 0 18 82

†GFs were scored individually since the two neurons within one CNS could have different phenotypes.
* some axons failed to exit the brain (see figure 3F).
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Mutations that suppress the electrophysiological phenotype seen in A307>GlDN adult fliesFigure 4
Mutations that suppress the electrophysiological phenotype seen in A307>GlDN adult flies. (A) Schematic depicting 
the GF, TTMn and the positioning of the stimulating and recording electrodes to test the function of the GF-TTMn synapse 
(circled). (B) Traces from individual flies showing the response latency upon a single stimulus and following to 10 stimuli at 250 
and 100 Hz. A fly containing A307 alone shows a short response latency and 1:1 following at 250 and 100 Hz. A fly expressing 
GlDN exhibits a longer latency and gives only a single response or follows poorly at either 100 or 250 Hz. The addition of SG13/
+ reduces the response latency back toward that of the control fly and increases following to stimuli at both 250 and 100 Hz. 
(C) Histograms showing the average response latencies and following to 10 stimuli at the two frequencies for the three sup-
pressors tested. As indicated, responses from A307>GlDN flies were compared to A307-containing flies and all others were 
compared to A307>GlDN flies. *P < 0.05, **P < 0.01, ***P < 0.001 in unpaired Student's t-test.
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enhancement of this synaptic phenotype. Because this test
did not rely on GAL4 expression we were able to assay any
of the EG mutations, regardless of their chromosomal
location. All of the EGs tested showed significantly
increased reponse latencies (Figure 5B) and exhibited
poor following. To analyse this more carefully we looked
at the probability of a response being seen with each
sequential stimulus at 250 Hz. When 10 stimuli were
given to Gl1/+ mutants, the flies demonstrated a depres-
sion in response to stimuli 1 through 10 with a plateau
after stimulus 6 (Figure 5D), probably due to TTMn not
always reaching threshold. This resulted in a 30% (proba-
bility 0.3) chance of responding to the last 4 stimuli for
Gl1/+ flies whereas wild type flies will typically have >
90% (probability > 0.9) chance of responding (Figure
5D). When EG37/+ or EG162/+ were trans-heterozygous
with Gl1/+ an enhancement of the phenotype was seen
since 100% of Gl1/+ flies responded to stimulus number 3
whereas the probability of responding fell to 0.6 with
EG37/+ and <0.2 with EG162/+ added (Figure 5D). We
used root mean square deviation (RMSD) to measure the
differences in the depression curves and compared them
to that seen with Gl1/+. The average deviation between
Gl1/+; EG37/+ and Gl1/+ was 0.23 (P < 0.1) and between
Gl1/+; EG162/+ and Gl1/+ was 0.48 (P < 0.001). For most
of the other enhancers tested there was no significant
enhancement of the depression seen with Gl1/+ alone
(Figure 5E). This included EG28/+ which had given out-
growth/retraction phenotypes when combined with GlDN

(see Figure 3). Two of the EGs, EG56/+ & EG79/+, seemed
to suppress the depression (Figure 5F) despite the fact that
they caused an increase in the reponse latency (Figure 5B).
The reason for this is not known.

aPKC, but not Su(H), interacts with Glued in synapse 
formation
We mapped the six mutations that showed significant
interactions with Glued in the GFS using deficiencies and
known lethal alleles (see materials and methods). This
was assuming that the lethality was associated with the
enhancer or supressor. A caveat being that lethality could
be due to a second mutation and the interaction with
Glued due to a viable allele. Two of the mutations mapped
to known genes, aPKC and Su(H), and the others were
mapped to small regions on chromosome two or three
(Table 2). To determine whether the suppression of the
GlDN phenotype in the GF by SG58 was due to the muta-
tion in aPKC we recombined both the aPKC06403 and
aPKCEY22496 alleles onto the UAS-GlDN chromosome and
crossed these lines to A307. Morphological examination
of the GF axons revealed that they were less swollen than
seen in A307>UAS-GlDN preparations and occasionally
were seen to have a bend (Figure 6). GF-TTMn synaptic
function was also increased compared to A307>GlDN flies.
When tested using electrophysiology, 89% (16/18) of

A307>GlDN, aPKC06403/+ flies responded upon GF stimu-
lation compared to 66% (10/15) of A307>GlDN flies and
they exhibited a slightly reduced latency (Figure 6F &6G)
and a statistically significant increase in following at 100
Hz (Figure 6F &6H). With the aPKCEY22496 allele, weaker
suppression was seen with 78% (14/18) responding and
they exhibited an increase in following at 100 Hz (Figure
6F &6H). Overall, the results show weak support for the
aPKC interaction with A307>UAS-GlDN from the
aPKC06403 allele and weaker support from the aPKCEY22496

allele, however, they are very similar to the effect of the
SG58/+ (Figures 3 &4) and indicate that aPKC interacts
with Glued genetically to alleviate the phenotype caused
by the over-expression of the poison subunit.

To determine whether the enhancement of the Gl1/+ phe-
notype in the GF by EG37/+ was due to the mutation in
Su(H) we generated Su(H)1/+; Gl1/+ double heterozygotes
and again looked at both the morphology of the GFs, with
our A307 line, and performed electrophysiology to assay
the function of the GF-TTMn synapse. No enhancement of
the Gl1/+ phenotype was observed in these flies (data not
shown). We cannot therefore rule out the presence of a
second unmapped mutation on the EG37 chromosome.
Alternatively, the mutation in EG37 may have different
properties than the Su(H)1 allele.

Discussion
The success of our two-stage screening approach may have
been facilitated by the fact that Glued has a plethora of dis-
tinct roles during eye development, including organizing
optic neural architecture [17,34,35] and an involvement
in the formation of sensory neuronal circuits [18,19].
Therefore we had an eye phenotype on which to base the
screen. However, this does not preclude such a method
being used for identifying genes involved in other aspects
of neural differentiation. We found that 50% (6/12) of the
isolated mutation-containing chromosomes that altered
the eye phenotype also altered GFS phenotypes when
tested.

The over-expression of the truncated Glued protein
caused strong phenotypes in both the eye and GF neu-
rons, greater than those caused by heterozygosity for the
dominant Gl1 allele. This is likely to be due to the GAL4-
UAS system producing many more molecules of the trun-
cated product than Gl1/+ cells in which, theoretically, a
maximum of half of the Glued molecules will be trun-
cated. Consistent with this observation, both the suppres-
sors and enhancers isolated during this screen showed
stronger effects on GlDN eye phenotypes than on those
produced by Gl1. Determining interactions with the
Gl1allele also allowed us to confirm GAL4-independent
interactions with the Glued locus. For all of the mutations
(with the exception of EG162), the alterations of the
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Mutations that enhance the electrophysiological phenotype seen in Gl1/+ adult fliesFigure 5
Mutations that enhance the electrophysiological phenotype seen in Gl1/+ adult flies. (A) Traces from individual flies 
showing the response latency upon a single stimulus. Both yw controls and Gl1/+ flies show short response latencies. The addi-
tion of EG37/+ into the Gl1 background causes an increase in the latency. (B) Histograms showing the average response laten-
cies recorded for all enhancers in the Gl1 background. The number of preparations tested (n) is given above each bar and 
latencies for flies containing Gl1/+ plus enhancers compared to flies containing Gl1/+ alone. *P < 0.05, **P < 0.01, ***P < 0.001 
in unpaired Student's t-test. (C) Traces from individual flies showing following to 10 stimuli at 250 Hz. yw controls usually gave 
a response to each stimulus (1-10) whereas this was depressed in Gl1/+ individuals which often gave a response to stimuli 1-3 
and then failed to respond to the remaining 7 stimuli. The addition of EG37/+ enhances this effect. (D-F) Graphs showing the 
average probability of a response for stimuli 1 through 10 at 250 Hz. The data for yw and Gl1/+ flies is shown in each panel for 
comparison against flies trans-heterozygous for Gl1/+ and the various enhancers. Enhancers EG37/+ and EG162/+ seemed to 
increase the depression seen in Gl1/+ flies with a decrease in the probability of obtaining a response with subsequent stimuli 
(D). Other enhancers either had no effect (E) or slightly increased the probability of a response from the late (7-10) stimuli (F).
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weaker Gl1/+ eye phenotype were not obvious, however,
SEM and sectioning was performed to show interactions
with two of the mutations (EG37 & SG13).

We used two different disruptions of Glued function, one
strong and the other weaker, to assay successfully the
effects of both enhancer and suppressor mutations in the
GFS using both morphological and electrophysiological
criteria. The severe disruptions of GF morphology and
synaptic function enabled the effects of suppressor muta-
tions to be clearly observed. This was less reliable when
assaying the effects of mutations isolated as enhancers as
either no increase of the already severe phenotype was
seen or the interaction was lethal. For the enhancers,

therefore, we relied on generating double heterozygotes
with Gl1/+. As was the case in the eye, interactions were
less pronounced and only two enhancers, EG37/+ and
EG162/+ showed enhancement of the Gl1/+ electrophysi-
ological phenotype. Indeed, the subtlety of some interac-
tions with Gl1/+ may have resulted in our analyses being
unable to detect some positive interacting loci in the GFS
that altered the eye phenotype caused by GlDN.

We have generated some EMS alleles, two of which we
have mapped to known genetic loci (see below) and four
of which we have mapped to discrete chromosomal loca-
tions (Table 2). However, these four complement all the
available lethal alleles in these regions indicating that our

Mutations in aPKC suppress the A307>GlDN phenotypeFigure 6
Mutations in aPKC suppress the A307>GlDN phenotype. (A-D) Dissected adult nervous systems stained for LacZ 
expression. Addition of a copy of either aPKC allele to the A307>GlDN background (C&D) suppresses the swollen and bendless 
axon tips seen in A307>GlDN preparations (B). (E) Quantification of the morphological phenotypes revealing the extent of sup-
pression. Numbers of GFs scored are given above bars. Severely swollen axons were those that were > 3 times the normal 
diameter. (F) Traces from individual flies showing the response latency upon a single stimulus and following to 10 stimuli at 100 
Hz in controls, A307>GlDN flies, and those also carrying the aPKC alleles tested. (G&H) Histograms showing the average 
response latencies and following at 100 Hz for the same genotypes. *P < 0.05 in unpaired Student's t-test. Controls were a 
mixture of UAS-GlDN, aPKC06403/+ and UAS-GlDN, aPKCEY224964/+ flies that did not carry A307.
Page 10 of 14
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mutations lie in loci for which there are few or no lethal
alleles available. Identification of the location of these
new alleles will require either new rounds of mutagenesis,
such as via P-element excision in the mapped regions,
finer mapping using SNPs [36-38] or custom made defi-
ciencies using stocks from the DrosDel project [39]. Com-
pletion of the BDGP Gene Disruption Project may also
enable mapping of the lesions [40] along with more
recent approaches using other transposable elements that
may disrupt genes refractory to P-element disruption [41-
43]. Interestingly, we appear not to have isolated any
mutations in genes that encode known components of the
retrograde motor complex including any further alleles of
Glued. During some of the early genetic analysis of the
Glued locus, dominant second-site suppressors of the Gl1

eye phenotype were isolated and reported [27]. Of these,
two were mapped to the X chromosome (Su [Gl]27 &Su
[Gl]57,[27]) and the others, Su(Gl)77 &Su(Gl)102 are
alleles of Dynein heavy chain 64C [44,45]. From the map
positions of our mutations, we have not re-isolated simi-
lar alleles. Because our primary screen involved making
only the eye mutant for Glued, we could potentially isolate
mutations that are lethal in combination with Gl1 and
would, therefore, not have been isolated Harte and Kan-
kel's screen. However, none of the enhancers tested were
lethal with Gl1.

We have successfully isolated two new alleles of known
genes, Su(H) and aPKC. Of the two, we have shown that
alleles of aPKC genetically interact with Glued in the GFS
and suppress the abnormalities in GF-TTMn synapse for-
mation seen when the retrograde motor complex is com-
promised by GlDN. These abnormalities are: a lack of the
presynaptic "bends"; a branching event that takes place
after the two neurons have met [31]; swollen axon tips
and a weak or absent functional synapse [20]. aPKC is part
of a protein complex, with PAR-3 (Bazooka in Drosophila)
and PAR6 that regulates cell polarity in a number of differ-
ent tissues/cells of Drosophila and vertebrates including
neurons [46-48]. So what is the role of aPKC in the GF
neuron? In vertebrate neurons aPKC is needed for neurite
outgrowth [49-51]. In contrast, aPKC in flies is an essen-
tial part of the machinery that polarizes dividing neurob-
lasts [52] but is not needed postmitotically for outgrowth

[53]. Our data also indicate that aPKC is not needed for
neurite extension since the introduction of aPKC muta-
tions into our sensitized background has no effect on GF
outgrowth. aPKC is involved in memory formation in
Drosophila [54] and at the developing larval NMJ it regu-
lates microtubules (MTs) both pre- and postsynaptically
during synapse formation [55]. Indeed MTs are one of the
major targets of the PAR-3/PAR-6/aPKC complex in sev-
eral contexts [56-58]. aPKC regulates MT orientation in
fibroblasts [59,60] and MT organization in the early
embryo [61]. At the NMJ it controls MT stability with a
reduction in aPKC activity causing a decreased association
of MTs with the microtubule associated protein Futsch
and MT fragmentation [55]. Dynein-dynactin is known to
be involved in MT organization during growth cone
remodeling as well as polarizing MTs in axons [62,63].
Our data indicate that dynein-dynactin and aPKC are act-
ing antagonistically during formation of the GF presynap-
tic structure and suggest that both are needed to control
microtubule organization and dynamics in synapse for-
mation but have opposing roles. One simple explanation
is that one of the roles of dynein-dynactin in the GF is to
alter MT dynamics at the tip of the axon, when it has
reached its post-synaptic target, so that they are more
mobile enabling the presynaptic bend to be formed. aPKC
regulates the stability of MTs thereby confining axon
branching to a single bend. Blocking dynein-dynactin
function prevents the MT re-organization needed for for-
mation of the bends and this is ameliorated when aPKC
function is reduced.

Conclusion
We have used a novel approach to screen for genes
involved in central synapse formation by performing a
primary screen, using a sensitized background, on the
adult eye and then a secondary screen, on the isolated
mutations, for synaptic phenotypes. This study shows that
forward genetic screens are powerful tools for identifying
genes with roles in CNS development.

Methods
Drosophila strains
The A307 [GAL4] enhancer-trap line and the line contain-
ing the UAS-GlDN transgene on chromosome 2 (UAS-
GlΔ96B) have been described previously [20,33,64], as has
the eye specific GMR-GAL4 line [65]. Stocks containing
balancers, deficiency stocks, lethal alleles, aPKC06403,
aPKCEY22496 and Su(H)1 flies were obtained from the
Bloomington Drosophila Stock Center, Indiana, USA.

GlDN over-expression screen
w; UAS-GlDN males, isogenized on the second and third
chromosomes, were mutagenized by feeding overnight
with a 0.25 mM solution of EMS in 1% sucrose. This dose
was to generate, on average, only one lethal mutation per

Table 2: Location of mutations isolated in the screen

Mutation Chromosomal location or gene

SG13 60F5
SG46 22F
SG58 aPKC
EG28 84F7-12
EG37 Su(H)
EG162 46D-E
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genome to facilitate downstream analysis. The muta-
genized males were then mated to w; GMR-GAL4; TM6B/
MKRS virgin females and the eyes of the progeny were
scored for an enhancement or suppression of the GlDN eye
phenotype. We isolated 324 adults with altered eye mor-
phology; 215 potential enhancers and 109 potential sup-
pressors. Mutations were recovered by mating flies with
altered eye phenotypes individually to w; CyO/Sco;
MKRS/TM6B flies. Sibling crosses were then performed to
obtain lines with recessive lethal, or recessive viable,
mutations on chromosomes 2 or 3 balanced over CyO,
MKRS or TM6B. One hundred and sixteen lines were
recovered with either a recessive lethal on chromosome 2,
3, or both. We did not obtain any recessive mutations that
gave a homozygous visible phenotype. The 116 lines were
crossed back to w; GMR-GAL4; TM6B/MKRS flies to con-
firm that the recovered mutations altered the GMR-GAL4/
UAS-GlDN eye phenotype. This resulted in 26 lines con-
taining mutations that enhanced the phenotype and 15
lines that suppressed the phenotype.

Scanning electron microscopy (SEM) and Retinal 
sectioning
Whole flies were fixed in 2% glutaraldehyde and dehy-
drated in acetone. Samples were dried in a Polatron E3000
critical point dryer, mounted onto stubs, and coated with
gold. Micrographs were taken on a Hitachi S-430 electron
microscope. For retinal sections, head cases were dissected
from whole flies and fixed in 2% glutaraldehyde, 2% para-
formaldehyde in 0.1 M PBS (0.1 M NaCl, 0.1 M
Na2HPO4/NaH2PO4 [pH 6.8]) overnight at 4°C. Follow-
ing dehydration in an acetone series, the head cases were
embedded in Durcupan resin and 2.5 μm sections cut
with a Lieca: Jung RM2065 microtome. Sections were
stained with Toluidine blue and photographed on a Leica
DMR microscope using a Leica DC500 digital camera.

CNS Histochemistry
The central nervous systems were dissected from adult
flies in 0.1 M PBS with 0.05% Triton X-100. For X-Gal
staining they were then fixed in 1% gluteraldehyde for 5
min. Preparations were washed in PBT (0.1 M PBS, 0.1%
Triton X-100) and pre-warmed in 2 mls of X-Gal staining
solution (3 mM K4 [Fe(CN)6], 3 mM K3 [Fe(CN)6], 1 mM
MgCl2, 150 mM NaCl, 10 mM Na2HPO4/NaH2PO4 [pH
7.2], 0.3% Triton X-100) in a watch glass for 5 min at
37°C. To this was added 1 ml of staining solution, satu-
rated with dissolved X-Gal (5-bromo-4-chloro-3-indolyl
β-D-galactopyranoside) and pre-warmed to 37°C, and the
preparations were incubated for several hours until stain-
ing of the GFs was complete.

Electrophysiology
Recordings from the GFS of adult flies were made essen-
tially as described in [20]; a method based on those

described by [66] and [67]. Flies were cooled on ice until
they were immobile and secured in wax, ventral side
down, with the wings held outwards in the wax. The GFs
were stimulated using a Grass S48 stimulator to deliver a
40 V pulse for 0.03 ms through tungsten electrodes
pushed through the eyes and into the brain. A tungsten
earth wire was placed into the abdomen. Glass microelec-
trodes (resistance 40-60 MΩ), filled with 3 M KCl, were
driven through the cuticle into the TTM and DLM muscles
to record responses. These were amplified using Getting
5A amplifiers (Getting Instruments, USA) and the data
digitized using an analogue-digital Digidata 1320 and
Axoscope 9.0 software (Axon Instruments, USA). A single
pulse was delivered for response latency measurements
and trains of 10 stimuli, either 4 ms (250 Hz) or 10 ms
(100 Hz) apart, were given with a 5 s interval between
each train for following frequency recordings. We rou-
tinely recorded from both TTM and a DLM in each prepa-
ration to ensure that correct stimulation of the GF was
achieved. However, only data from the TTM are presented
in this report.

Genetic mapping
Mutations were mapped using the "classic"second chro-
mosome "deficiency kit" (DK2) of 110 stocks from the
Bloomington Drosophila Stock Center containing mostly
deletions that were defined cytologically. Once deficien-
cies were identified that failed to complement the isolated
lethal mutations, smaller deficiencies in the regions were
tested for complementation including molecularly
defined deficiencies recently made available from Exelixis
and the DrosDel project [39,68]. Standard complementa-
tion tests were then performed with known lethal muta-
tions in the chromosomal regions uncovered by the
deficiencies. SG13 failed to complement Df(2R)kr10 but
complemented Df(2R)gsb and Df(2R)kr14 indicating that
SG13 lies at 60F5. SG46 failed to complement Df(2L)79b
which covers 22A2 to 22E1. Testing smaller deletions
within this region revealed that SG46 failed to comple-
ment the molecularly defined deletions Df(2L)Exel17008
(22B8;22D1) and Df(2L)Exel17011 (22E1;22F3). How-
ever when crossed together the two deletions failed to
complement each other and both fail to complement alle-
les of Dpp which lies at 22F1-2. Therefore they both delete
at least the region 22E1 to 22F3 and Df(2L)Exel17008 is
incorrectly annotated. SG58 failed to complement
Df(2R)KnSA4 and Df(2R)XTE-58 indicating it resided
between 51D1 and 51D6 on chromosome 2. Using the
available lethal mutations we determined SG58 to be an
allele of Drosophila atypical Protein Kinase C (aPKC) as it
failed to complement aPKC06403 and aPKCEY22496, both
known null alleles [52]. EG28 failed to complement
Df(3R)p13 which extends from 84F1 to 85A8. Within this
region EG28 failed to complement Df(3R)exel6417 but
complemented Df(3R)dsx29 making its location to be
Page 12 of 14
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within 84F7-84F12. All available lethal mutations were
found to be not allelic to EG28. EG37 failed to comple-
ment Df(2L)TE35BC-24 and Df(2L)A48 and testing
known lethal alleles uncovered by both these deficiencies
revealed the mutation to be in the Su(H) locus. EG37 is
lethal when trans-heterozygous with the Su(H)1 allele.
EG162 failed to complement Df(2R)X1 and Df(2R)stan1
indicating that is resides between 46D and 47A. However,
it did complement Df(2R)stan2 indicating that it lies at
46D-E. We have been unable to map this mutation further
at present.
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