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Abstract

Background: The use of molecular genetic technologies for broodstock management and
selective breeding of aquaculture species is becoming increasingly more common with the
continued development of genome tools and reagents. Several laboratories have produced genetic
maps for rainbow trout to aid in the identification of loci affecting phenotypes of interest. These
maps have resulted in the identification of many quantitative/qualitative trait loci affecting
phenotypic variation in traits associated with albinism, disease resistance, temperature tolerance,
sex determination, embryonic development rate, spawning date, condition factor and growth.
Unfortunately, the elucidation of the precise allelic variation and/or genes underlying phenotypic
diversity has yet to be achieved in this species having low marker densities and lacking a whole
genome reference sequence. Experimental designs which integrate segregation analyses with
linkage disequilibrium (LD) approaches facilitate the discovery of genes affecting important traits.
To date the extent of LD has been characterized for humans and several agriculturally important

livestock species but not for rainbow trout.

Results: We observed that the level of LD between syntenic loci decayed rapidly at distances
greater than 2 cM which is similar to observations of LD in other agriculturally important species
including cattle, sheep, pigs and chickens. However, in some cases significant LD was also observed
up to 50 cM. Our estimate of effective population size based on genome wide estimates of LD for
the NCCCWA broodstock population was 145, indicating that this population will respond well to
high selection intensity. However, the range of effective population size based on individual
chromosomes was 75.51 - 203.35, possibly indicating that suites of genes on each chromosome are

disproportionately under selection pressures.

Conclusions: Our results indicate that large numbers of markers, more than are currently
available for this species, will be required to enable the use of genome-wide integrated mapping

approaches aimed at identifying genes of interest in rainbow trout.

Background tinued development of genome tools and reagents for
The use of molecular genetic technologies for broodstock  species of interest [1]. Rainbow trout are the most widely
management and selective breeding of aquaculture spe-  produced salmonid in the US, attracting significant inter-
cies is becoming increasingly more common with the con-  est due to their economic impacts as an aquaculture spe-
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cies and on sport fisheries, and as a model research
organism for studies related to carcinogenesis, toxicology,
comparative immunology, disease ecology, physiology
and nutrition [2]. To this end several international labora-
tories have produced genetic maps for this species to aid
in the identification of loci affecting phenotypes of inter-
est. These maps primarily include amplified fragment
length polymorphisms (AFLPs) and microsatellites [3-9]
and have resulted in the identification of many quantita-
tive/qualitative trait loci (QTL) affecting phenotypic vari-
ation in traits associated with albinism, disease resistance,
temperature tolerance, sex determination, embryonic
development rate, spawning date, condition factor and
growth [10-19]. In spite of these efforts, the elucidation of
the precise allelic variations and/or genes underlying phe-
notypic diversity has yet to be achieved in this species hav-
ing low marker densities and lacking a whole genome
reference sequence.

Experimental designs which integrate complex segrega-
tion analyses with linkage disequilibrium (LD)
approaches facilitate the discovery of genes affecting
important traits [20-22]. To this end, the extent of LD has
been characterized for humans and several agriculturally
important livestock species including cattle, sheep, chick-
ens, and pigs. Farnir et al. [20] genotyped 284 autosomal
microsatellite markers on 581 dutch black-and-white
dairy cattle to construct a whole genome LD map (exclud-
ing the sex chromosomes) spanning 2702 cM. Estima-
tions of LD between syntenic loci using Lewontin's
normalized D' [23] revealed large blocks of LD spanning
tens of centiMorgans including values of 50% for markers
<5 cM and decaying to 16% for distances of 50 cM. The
value of D' between non-syntenic loci was estimated to be
12%. Vallejo et al. [24] selected distantly related animals
to quantify the level of genetic diversity in United States
Holstein cattle. While only 23 Holstein bulls were geno-
typed with 54 microsatellite loci that spanned most of the
autosomal genome, extensive LD was detected in the
United States Holstein population in agreement with the
findings of Farnir et al. [20]. In 2002, McRae et al. [25]
observed similar results by genotyping 90 microsatellites
from 10 chromosomes on 276 progeny from Coopworth
sheep, estimating D' values of 34.3% for marker distances
<60 M, 12.4% for syntenic markers >60 cM, and 12.4%
for non-sytenic loci. In 2005 Heifetz et al. [26] reported
that significant LD was only observed for loci < 5 ¢M apart
in a commercial layer chicken population. In 2006
Harmegnies et al. [27] characterized LD in two commer-
cial pig populations of 33 and 44 unrelated individuals by
genotyping 29 and 5 microsatellite markers on two chro-
mosomes, respectively. Estimates of r2 (squared correla-
tion coefficient) revealed significant LD only for loci < 1
cM apart. More recently, Du et al. [28] and McKay et al.
[29] evaluated LD in pigs and cattle, respectively, by gen-
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otyping syntenic single nucleotide polymorphisms
(SNPs) and observing significant LD for marker pairs < 3
cM apart for pigs and 0.5 Mb for cattle. All of these results
indicate that large numbers of markers from high-density
maps are required to identify genes of interest using whole
genome association studies in these species.

The USDA/ARS National Center for Cool and Cold Water
Aquaculture (NCCCWA) has established a breeding pro-
gram for rainbow trout, the use of molecular genetic tech-
nologies in this program is expected to enhance
capabilities for selective breeding of important aquacul-
ture production traits. To this end we have worked within
international collaborations to develop genomic tools
and technologies for rainbow trout [5,8,9,30-46] while
initiating and characterizing our broodstock population
with respect to genetic and phenotypic variation relevant
to aquaculture production [47-57]. Our approaches
include genetic linkage and LD mapping for the identifi-
cation of QTL affecting traits of economic importance
which will permit the development of marker/gene
assisted selection strategies [58,59] and eventually
genomic selection [60]. Characterizing the extent of LD in
the NCCCWA rainbow trout broodstock population will
support the use of integrated mapping approaches and
facilitate the identification of genes affecting traits of
interest by determining the marker densities required to
conduct genome association scans. The NCCCWA brood-
stock population is closely related to commercial germ-
plasm [49], therefore our findings also have the potential
to impact industry selective breeding programs. In addi-
tion to LD we have evaluated effective population size
(Ne) in an effort to characterize the true breeding size of
our population. This estimate of Ne should be considered
when making decisions concerning selection pressure. To
this end, we characterized extent of LD by genotyping 96
unrelated individuals with 49 markers spanning four
chromosomes.

Results

Genotypes were obtained for a total of 49 microsatellites
on chromosomes OMY13 (n = 6), OMY14 (n = 20),
OMY17 (n = 8), and OMYSex (n = 15). Genotyping suc-
cess rate was 95.5% with 82 to 96 animals scored for each
marker. The number of alleles per marker, marker hetero-
zygosity, PIC, Allelic Diversity, and exact tests for depar-
ture from HWE proportions are reported in Table 1. The
number of alleles per marker averaged 10.6 and ranged
from 3 to 24. Marker heterozygosities ranged from 28.1%
to 94.8% with an average of 69.8%. Polymorphism Infor-
mation Content and Allelic Diversity ranged from 0.385
to 0.936 and 0.425 to 0.94, with averages of 0.745 and
0.773, respectively. A total of 19 loci had significant
departure from HWE at P < 0.05, consisting of 3 markers
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Table I: Exact test for Hardy-Weinberg equilibrium for microsatellite loci typed in 96 unrelated fish from the NCCCWA rainbow trout selective breeding program.

Locus GenBank OMY Posit. Kos cM!  Number Alleles  PIC2 Hetero- Allelic Diversity 12 DF Pr > 2 Exact P3
Acc. or zygosity
reference
OMM3006 G73806 13 39.9 13 0.844 0.802 0.858 127.6 78 0.0003 0.0615
OMM5092 CA348764 13 399 5 0.705 0.708 0.746 20.7 10 0.0231 0.0152
OMY27DU [4] 13 44.6 5 0.575 0.594 0.618 5.7 10 0.8402 0.7166
OMMI670 BVv2i12]62 13 44.6 16 0.889 0.844 0.898 2424 120 <.0001 0.0072
CA341677 CA341677 13 44.6 6 0.544 0.604 0.590 99.5 I5 <.0001 0.2147
OMMI 687 BV212173 13 45.7 3 0.390 0417 0.501 72 3 0.0659 0.0325
Oneu8 U56708 14 22.2 6 0.596 0.583 0.654 5.8 15 0.9824 0.818l
OMMI312 G73552 14 49.2 16 0.882 0.885 0.891 125.5 120 0.3477 0.1418
OMYRGT2TUF AB087587 14 50.7 9 0.724 0.750 0.748 349 36 0.5218 0.6786
OMMI 596 BVv2i12112 14 53.9 13 0.857 0.844 0.871 98.9 78 0.0552 0.0068
OMMS5271 BV211986 14 583 I 0.806 0.802 0.827 53.6 55 0.5286 04101
OmyRGT4ITUF [4] 14 583 16 0.876 0.854 0.885 114.9 120 0.6136 0.3824
OgolUW AF007827 14 583 5 0.620 0.635 0.679 98.9 10 <.0001 0.1218
OMM3089 BV718454 14 62.5 4 0.612 0.760 0.679 6.1 6 0.4098 0.3408
OMM|447 BV079591 14 63.4 22 0.936 0.823 0.940 2376 231 0.3696 0.0017
OMM3I 5 AB162343 14 63.4 12 0.843 0.490 0.859 219.2 66 <.0001 <.0001
BHMS429 AF256719 14 64.3 12 0.890 0.885 0.898 50.5 66 0.9214 0.9010
OMYFGT5TUF [4] 14 64.3 10 0.569 0.604 0.620 40.8 45 0.6515 0.3260
BHMS185 AF256675 14 729 3 0.454 0.583 0.546 238 3 0.4239 0.2933
OMMI415 BV722101 14 75.0 Il 0.793 0.719 0.811 76.0 55 0.0317 0.0233
OMMI 356 BV005148 14 79.1 4 0.385 0.281 0.432 138.6 6 <.0001 <.0001
CR374305 CR374305 14 81.2 13 0.790 0.646 0.809 439.9 78 <.0001 <.0001
OMMI 467 BV079662 14 82.7 12 0.866 0.906 0.878 792 66 0.1271 0.1546
OMMI 643 BV212150 14 86.5 1 0.764 0.750 0.785 89.7 55 0.0022 0.0354
OMM5143 BVv211872 14 106.2 I 0.828 0.427 0.846 2714 55 <.0001 <.0001
OMM3044 BV722031 14 130.0 8 0.739 0.396 0.775 2424 28 <.0001 <.0001
OMMI712 BV212193 17 81.7 13 0.855 0.823 0.868 67.9 78 0.7859 0.5445
CA367675 CA367675 17 84.8 12 0.851 0917 0.864 51.7 66 0.9017 0.8540
OMM5043 CA349167 17 89.5 8 0.795 0.750 0.820 34.5 28 0.1836 0.1205
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Table I: Exact test for Hardy-Weinberg equilibrium for microsatellite loci typed in 96 unrelated fish from the NCCCWA rainbow trout selective breeding program. (Continued)

OMM3126 BV683039 17 90.3 18 0.904 0.833 0911 144.1 153 0.6841 0.1027
OMMI437 BV722116 17 91.3 15 0.897 0.865 0.904 105.6 105 0.4648 0.1512
OMMI357 BV005149 17 105.4 17 0.867 0.833 0.877 207.1 136 <.0001 0.0305
OMM5227 BX301679 17 107.8 7 0.697 0.510 0.738 91.2 21 <.0001 <.0001
CA041953 CA041953 17 136.3 3 0.420 0.458 0.476 2.0 3 0.5711 0.4895
OMMI1026 AF346683 sex 0.0 15 0.880 0.896 0.890 123.9 105 0.1007 0.5136
OMMI461 BV079604 sex 17.7 5 0.637 0.625 0.683 5.1 10 0.8870 0.7533
OMYRGT28TUF AB087599 sex 21.1 15 0.830 0.760 0.846 172.6 105 <.0001 0.1674
OMMI1000 AF346664 sex 21.1 3 0.385 0417 0.425 0.5 3 0.9170 0.9396
OMM503 | CA349143 sex 29.7 9 0.722 0.865 0.753 59.8 36 0.0076 0.0005
OMM5032 CA349143 sex 29.7 I 0.842 0.844 0.857 94.7 55 0.0007 0.0895
BX076085 BX076085 sex 35.6 12 0.868 0.646 0.879 156.8 66 <.0001 <.0001
OMMI372 BV005159 sex 36.0 6 0.560 0.323 0.604 98.1 I5 <.0001 <.0001
OMMI212 BV722077 sex 44.3 I 0.794 0.781 0.813 61.9 55 0.2421 0.2160
OMMI1443 BV079588 sex 44.3 13 0.873 0.896 0.884 94.5 78 0.0984 0.0511
OMM3109 BV718471 sex 46.2 13 0.754 0.677 0.771 101.8 78 0.0363 0.0754
OMMI1456 BV079600 sex 46.9 7 0.691 0.729 0.736 14.6 21 0.8447 0.7070
OMMI 118 AF375026 sex 47.7 24 0.921 0.948 0.925 314.2 276 0.0564 0.1749
OMMI1405 BV722096 sex 51.3 I 0.817 0.594 0.835 141.1 55 <.0001 <.0001
OMMI665 BV212292 sex 58.5 17 0.881 0.656 0.890 325.0 136 <.0001 <.0001
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IMicrosatellite loci position in the NCCCWA rainbow trout genetic map [9].
2Polymorphic information content (PIC).
3Exact P-value estimated using 10,000 permutations with SAS Proc Allele [70].
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from OMY13, 9 from OMY14, 2 from OMY17, and 5 from
OMYSex.

LD for syntenic loci was estimated for each individual
chromosome and the four chromosomes combined (Fig-
ure 1), the genome-wide estimate for extent of significant
LD (12> 0.25) was about 2 cM. The non-linear modeling
of LD decline using the Sved (1971) equation indicates
that the extent of significant LD decays sharply with phys-
ical distance. It also indicates that significant LD effects
(i.e., 2> 0.25) are not expected beyond 5 cM.

The LD for non-syntenic loci was estimated for each chro-
mosome pairing and all pairings of non-syntenic loci, the
proportion of pairings having (r2 > 0.25) is shown in Fig-
ure 2. Clearly, the proportion of significant LD (12> 0.25)
among non-syntenic loci was quite low

Effective population sizes were estimated for each chro-
mosome and the four chromosomes as shown in Table 2.
The estimated average effective population size was N, =
145 with an average N,/N ratio of 0.45.

Discussion

The extent of LD in the NCCCWA selective breeding pro-
gram was evaluated by genotyping 49 microsatellites from
four chromosomes on a total of 96 unrelated individuals
from the 2005 (n = 43) and 2006 (n = 53) brood classes.
As a result of an evolutionarily recent autopolyploid
genome duplication event [61], many microsatellite
markers for rainbow trout amplify two loci which can be
scored independently and placed on genetic maps [4].
Although medium density genetic maps based on micros-
atellites including duplicated markers have been con-
structed [6,9], they are problematic for use in population
genetic analysis such as whole genome association studies
as alleles from the two loci often have overlapping and/or
identical allele sizes. Thus the number of loci available for
use in whole genome association studies is much less than
what is available for segregation analyses. Only evaluating
single locus markers resulted in observation of a 6 cM
region of OMY13 with 6 loci, a 108 cM region of OMY14
with 20 loci, a 55 cM region of OMY17 with 8 loci, and a
58 cM region of OMYSex with 15 loci. Overall, 227 ¢cM of
the 2927 cM genome was represented in this study. Of
interest is the 55 cM region of OMY14 spanning the
region from 75-130 cM where 6/7 loci depart from HWE.
It is possible that these loci are under selection in the
NCCCWA broodstock population which includes selec-
tive pressure for disease resistance and growth.

The level of LD between syntenic loci decayed rapidly at
distances greater than 2 ¢M which is similar to observa-
tions of LD in other agriculturally important species
including cattle [20], sheep [25], pigs [27,28] and chick-
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ens [26]. However, significant LD was also observed up to
40 cM as reported by Farnir et al. [20] and McRae et al. [25]
(Figure 1). The average proportion of significant LD (12>
0.25) between non-syntenic loci was under .005, however
OMY13 and OMY17, which have a common ancestor
chromosome resulting from the salmonid whole genome
duplication event, showed a significantly higher propor-
tion of significant LD.

We acknowledge that the LD range reported here may be
up-biased because evidences for structure and admixture
have been shown in the NCCCWA Broodstock popula-
tion [62] and we used unrelated individuals from 2005
and 2006 brood years that are being improved for disease
resistance and production traits, respectively, in the
NCCCWA selective breeding program.

As the NCCCWA selective breeding program continues
throughout successive generations, we expect that the
effective population size will continue to decrease. Our
estimate of N, = 145 (Table 2) based on genome wide LD
indicates that this population will respond well to high
selection intensity as it has for a single generation of
breeding for resistance to the causative agent of bacterial
cold-water disease [50]. Using this estimate we can
observe the effects of selection and identify correlations
with the effects of inbreeding, usually first observed in
reproductive success. However, the range of effective pop-
ulation size based on individual chromosomes was 75.51
- 203.35, possibly indicating that suites of genes on each
chromosome are disproportionately under selection pres-
sure. This also establishes the need to develop whole
genome applications for these species for studies of LD.
Although F-statistics have been used to estimate popula-
tion genetic parameters [49], characterization of LD will
also provide valuable information about population sub-
structure and should be a factor in developing strategies
aimed at the identification of associations between mark-
ers and QTL.

We chose to evaluate the extent of LD by genotyping rep-
resentatives of each year class a single generation after the
population was founded by mixing germplasm from mul-
tiple sources. Our resulting characterization of LD not
only provides information about population structure,
but serves to document the degree of genetic diversity
used to initiate the broodstock program. We expect our
estimates of Ne to be higher than populations with lim-
ited genetic diversity and no introduction of new germ-
plasm in recent past generations.

The estimated N,/N ratio of 0.45 in this study is between
the ranges of estimates reported in this species in previous
studies [63-65]. Other studies in salmonids consistently
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Decline of linkage disequilibrium (r2) with distance (recombination rate in Morgans) for chromosomes 13, 14,
17 and Sex. The estimates of r2 for pairs of markers were adjusted for experimental sample size //n, were n is the chromo-
some sample size (n = 192). The predicted LD value plot (filled non-linear curve) was estimated fitting the equation LD; = 1/
(1+kbd;)+e; performing non-linear modeling with JMP® Genomics 3.1 (SAS Institute Inc., Carey, NC, 2007). Here, LDjis the
observed Lb for marker pair i in chromosome j, d; is the distance in Morgans for marker pair i in chromosome j, b;is the esti-
mate of effective population size for chromosome j, and the constant k = 2 for sex chromosome and k = 4 for autosomes.
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Figure 2

Proportion of markers pairs with significant extent of LD (r2 > 0.25). All marker pairs were evaluated in addition to

pairwise combinations of all non-syntenic loci.

reported that the variance in reproductive success is the
key factor to reduce N,/N in salmon populations [64,66].

Characterizing the extent and distribution of LD helps to
determine the required marker density for LD mapping
and genomic selection as they both require markers to be
in LD with QTL. Our observation of significant syntenic
LD at distances over 2 cM has implications for designing
genome wide association studies in this population and
on this species. The sex averaged map is roughly 3000 <M
long; therefore 1500 markers are required to identify loci
of interest. The male map having 2500 <M would require
1125 markers; the female map having 4300 cM would
require 2150 markers. Currently about 1800 microsatel-
lite markers are available for genome analyses in trout.
However, we must take into consideration that: 1)
roughly 33% are duplicated; 2) on average 70% are
informative based on estimates of heterozygosity; and 3)
these markers are not necessarily spaced at regular inter-
vals throughout the genome.

Conclusions
To effectively conduct whole genome association studies
the number of available markers for rainbow trout must

be increased. Whereas genotyping microsatellites can be
very expensive and time consuming process, it is likely
that a marker system that enables high-throughput geno-
typing protocols such as single nucleotide polymor-
phisms will be the basis for LD mapping and genomic
selection studies in the near future.

Methods

Germplasm

The NCCCWA rainbow trout selective breeding program
was initiated in 2002 through 2004 with the acquisition
of fish from Troutlodge, Inc. (Sumner, WA), the Donald-
son strain from the University of Washington (Seattle,
WA), the House Creek strain from the College of Southern
Idaho (Twin Falls, ID), and the Shasta strain from the
Ennis National Fish Hatchery, (Ennis, MT) [49]. To date,
selective breeding for increased aquaculture production
efficiency has been conducted by evaluating and selecting
for growth traits on even years and resistance to challenge
by the bacterial pathogen Flavobacterium psychrophilum on
odd years [47,50]. To identify individuals that could best
represent the genetic variation contained within this
broodstock population, we identified 96 unrelated indi-
viduals (no siblings or half-siblings) from the 2005 and
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Table 2: Effective population size (N,) estimated from linkage disequilibrium! by fitting nonlinear regression model?in a rainbow trout

broodstock population3.

Confidence interval

Chromosome Number of Average Genome . Standard error -95% +95% R
marker pairs intermarker coverage (cM) N, N, /N4
distance (cM)

13 421 I.16 5.80 178.56 75.38 65.77 448.56 0.56

14 8817 5.67 107.80 7551 5.62 65.24 87.14 0.24

17 1499 7.80 54.60 122.08 19.16 89.45 162.23 0.38

sex 5813 4.18 58.50 203.35 16.94 170.92 240.54 0.64
Total 16550.00 18.81 226.70 579.50 117.10 391.38 938.47 1.82
Mean 4137.50 4.70 56.68 144.88 29.27 97.85 234.62 0.45

SD 57.40 31.30 50.01 155.77 0.18

IPairwise Linkage disequilibrium (LD) was estimated using the ALLELE procedure of the software package SAS®, version 9.3.1 (SAS Institute 2007).
2The nonlinear regression model was fitted using ]MP® Genomics 3.1 (SAS Institute Inc., Carey, NC, 2007),

1

Where y; = (T2 - y

n

) is LD measure adjusted for chromosome sample size n, for marker pair i at recombination rate ¢; (in Morgans). The

constant k had values of k = 2 for sex chromosome and k = 4 for autosomes. The ¢'s were estimates of recombination rate from two-point linkage

analysis [9]. First, the ¢ residuals were estimated by non-linear fitting of the above model with JMP® Genomics 3.1 (SAS Institute Inc., Carey, NC,

2007). Then, the parameters o and 3 were estimated iteratively by least squares; in this model Ne = ﬁA /k.
3Unrelated individuals (n = 96) representing the 2005/2006 brood classes were genotyped with 49 microsatellite markers.

4Number of potential breeders (N = 320).

2006 brood year classes (n = 43 and 53, respectively) to
represent the 144 and 177 fish that were actually used to
produce select matings. The 2005 year class, part of our
odd year selection for disease resistance, is the first gener-
ation after the 2003 founder population. The 2006 year
class, part of our even year selection for growth, is the sec-
ond generation after the founder population in 2002.
However, a significant contribution of new germplasm
was also introduced in 2004. Fin clips from anesthetized
fish were collected for DNA extraction as outlined in a
protocol approved by the NCCCWA IACUC, number 025-
1-26-05. The extraction protocols followed the phenol-
chloroform method described in Sambrook and Russell
[67]. DNA samples were quantified by spectrophotometer
(Beckman DU 640, Beckman Instruments, St. Louis, MO,
USA) and diluted to a concentration of 12.5 ng/ul for
PCR.

Genotyping

Microsatellite markers from four chromosomes (n = 49)
were selected from the NCCCWA genetic map [9] for gen-
otyping the DNA panel of 96 fish representing NCCCWA
broodstock (Table 1). This included markers mapped to
the sex chromosome (OMYSex), chromosome 14 having
the largest linkage group in ctM (OMY14), and paralogous

regions of chromosomes 13 and 17 (OMY13, OMY17) as
defined by duplicated loci resulting from an evolutionar-
ily recent genome duplication event [4,9,61]. Only single
locus markers were utilized. Markers were either geno-
typed using the tailed protocol [68] or by direct fluores-
cent labeling (with FAM, HEX, or NED) of the forward
primer according to manufacturer protocols [[69] USA].
Primer pairs were obtained from commercial sources (for-
ward primers labeled with FAM or HEX from Alpha DNA,
Montreal, Quebec, Canada, or NED from ABI, Foster City,
CA, USA). PCR reactions consisted of 12 ul reaction vol-
umes containing 12.5 ng DNA, 1.5-2.5 mM MgCl,, 1.0
UM of each primer, 200 uM of dNTPs, 1x manufacturer's
reaction buffer and 0.5 units Tag DNA polymerase. Ther-
mal cycling consisted of an initial denaturation at 95°C
for 15 min followed by 30 cycles of 95°C for 1 min,
annealing temperature for 45 s, 72°C extension for 45 s
and a final extension at 72°C for 10 min. PCR products
were visualized on agarose gels after staining with ethid-
ium bromide. Markers were grouped in combinations of
two or three markers based on differences in fluorescent
dye color and amplicon size. Three pl of each PCR product
was added to 20 pl of water, 1 ul of the diluted sample was
added to 12.5 pl of loading mixture made up with 12 pl
of HiDi formamide and 0.5 of Genscan 400 ROX internal

Page 8 of 12

(page number not for citation purposes)



BMC Genetics 2009, 10:83

size standard. Samples were denatured at 95°C for 5 min
and kept on ice until loading on an automated DNA
sequencer ABI 3730 DNA Analyzer (ABI, Foster City, CA,
USA). Output files were analyzed using GeneMapper ver-
sion 3.7 (ABI, Foster City, CA, USA), formatted using
Microsoft Excel and stored in Microsoft Access database.

Analysis

The initial dataset for analysis included marker genotype
data for 49 microsatellite loci typed on 96 unrelated indi-
viduals. These marker genotype data were analyzed to esti-
mate frequency of alleles per marker using the ALLELE
procedure of software package SAS®, version 9.3.1 [70].
Within each marker, alleles with frequency < 0.01 were
merged to minimize the up biasing effect of rare alleles on
LD estimates. Then, the marker alleles initially recorded in
size of fragments were recoded into a consecutive-num-
bered allele system using the computer program RECODE
[71]. This dataset with recoded marker genotypes were
divided into files including marker loci corresponding to
each of the four linkage groups analyzed in this study.
Subsequently, these recoded marker genotype data were
used in haplotype reconstruction and linkage disequilib-
rium analysis.

Haplotype reconstruction

For each linkage group, the most likely haplotype config-
uration for each individual was estimated using the soft-
ware package PHASE, version 2.1, following procedures
described by [72] and [73]. Briefly, this is a statistical
method for inferring haplotypes from unphased genotype
data for a sample of "unrelated" individuals from a popu-
lation; population haplotype frequencies are assumed
under Hardy-Weinberg equilibrium (HWE) but PHASE
has proven robust to deviations from HWE, the effect of
population structure and moderate amounts of recombi-
nation. The estimated haplotype data was formatted for
subsequent analysis with the ALLELE procedure of the
software package SAS®, version 9.3.1 [70]. The haplotype
data was formatted into SAS ALLELE procedure format
(option TALL for data input format) using a Java script
(Haplo_2SAS.jar) written by Christopher Schmitt. This
script is available for academic use upon request to RLV.
This formatted dataset was used in linkage disequilibrium
analysis.

Hardy-Weinberg equilibrium

The HWE analysis for each of the 49 loci typed in 96 unre-
lated individuals was performed using the ALLELE proce-
dure of the software package SAS®, version 9.3.1 [70] using
the option TALL for data input format. The input data
were the most likely haplotypes reconstructed for each
individual using the computer program PHASE and refor-
matted into SAS format as outlined above. The exact test
for HWE for each microsatellite loci (exact P-value) was
estimated using 10,000 permutations.

http://www.biomedcentral.com/1471-2156/10/83

Linkage disequilibrium between syntenic loci

The LD analysis was performed between marker pairs
within each linkage group using the ALLELE procedure of
software package SAS®, version 9.3.1 [70]. We used the
option TALL for data input format, and the HAPLO =
GIVEN option which indicates that the haplotypes have
been observed, and thus the observed haplotype frequen-
cies were used in the LD test statistic and measures.

The linkage (or gametic) disequilibrium coefficient D,,
between two alleles from marker loci M and N, respec-
tively, was estimated using this expression [74],

Duv =Puw — Puby

Where p,, is probability that an individual receives the
haplotype M, N, for marker loci M and N, p,, is the proba-
bility of the u allele, and p, is the probability of the v allele.

The ALLELE procedure calculates the maximum likeli-

hood estimates, D, , of the LD coefficient between a pair

of alleles at different markers. This procedure calculates an
overall chi-square statistic to test that all of the D,,'s

between two markers are zero as follows,

Which has (k-1) and (I-1) degrees of freedom for markers
with k and [ alleles, respectively. A Monte Carlo estimate
of the exact P-value for testing the hypothesis was calcu-
lated by conditioning on the haplotype counts. The signif-
icance level is obtained by permuting the alleles at one
locus to form 2 n new two-locus haplotypes. We used
10,000 permutations to estimate the exact P-values.

We used the squared correlation coefficient (2) as the LD
measure for each pair of alleles M, and N, located at loci
M and N, respectively [75],

r? = 7D2
p1p29192

Where D = p,,p,,- P12P2; 18 the LD coefficient, which can
be directly estimated using the observed haplotype fre-
quencies ,, when using the option HAPLO = GIVEN
with the ALLELE procedure of SAS®, version 9.3.1 [70].
Since these measures are designed for biallelic markers,
the measures are calculated for each allele at locus M with

each allele at locus N, where all other alleles at each locus
are combined to represent one allele. Thus for each allele
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M, in turn, p, is used as the frequency of allele M,, and
p, represents the frequency of "not M,"; similarly for
each N, in turn, ¢, represents the frequency of allele N,,

and g, the frequency of "not N,."

Linkage disequilibrium decay with distance

The decline of linkage disequilibrium with distance
(recombination rate in Morgans) was estimated by fitting
the following equation [76],

1
L= = 4.
Y07 (kb )

Where y; = (r* - 1) is the observed LD for marker pair i

in chromosome j, the constant k = 2 for sex chromosome
and k = 4 for autosomes, d;; is the recombination rate from
two-point linkage analysis for marker pair i in chromo-
some j, b; is the estimate of effective population size for
chromosome j, and ¢;; is a random residual. The estimates
of 72 for pairs of markers were adjusted for experimental
sample size 1/, where n is the chromosome sample size

(n = 192). We performed the non-linear modeling with
JMP® Genomics 3.1 (SAS Institute Inc., Carey, NC, 2007).

Linkage disequilibrium between nonsyntenic loci
We estimated LD adjusted for experimental sample size
(2 - 1) between pairs of non-syntenic loci using the

ALLELE procedure of software package SAS®, version 9.3.1
[70]. As input data, we used marker genotype data with
alleles recoded into a consecutive-numered system (non-
phased marker genotype data). In the analysis, we used
the option HAPLO = EST which indicates that the maxi-
mum likelihood estimates of the haplotype frequencies
are used to calculate the LD test statistic as well as the LD
measures. For LD estimation among non-syntenic loci, we
used the ALLELE procedure options ALLELEMIN =
GENOMIN = HAPLOMIN = 0.01. This last statement
ensures that only alleles, genotypes, and haplotypes with
frequency > 0.01 are used in the LD analysis.

Effective population size

The analysis was based on the known relationship
between LD as measured by r2 (squared correlation of
allele frequencies at a pair of loci) and effective popula-
tion size N,

2y _ 1 1
E)= (i o) I

http://www.biomedcentral.com/1471-2156/10/83

Where ¢ is the recombination rate between the microsat-
ellite loci and n is the experimental sample size. The con-
stant o = 1 in the absence of mutation [76] and a = 2 if
mutation is taken into account [77-79]. The constant k
was set to k = 2 for sex chromosome and k = 4 for auto-
somes.

Given the formulae described in the linkage disequilib-
rium section, and knowing 12 and ¢, we estimated N, for
each chromosome by fitting this nonlinear regression
model,

1

7 (aj+Bijeij)

Where y; = (r? — ) is the observed LD (adjusted for

chromosome sample size n) for marker pair i in chromo-
some j, ¢; is the recombination rate from two-point link-

age analysis for marker pair i in chromosome j. The
parameter f; is the estimator of effective population size

for chromosome j where N, = 8 j/k . The parameters a,

and B; were estimated iteratively using non-linear mode-

ling with JMP® Genomics 3.1 (SAS Institute Inc., Carey,
NC, 2007).
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