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Abstract
Background: The etiology of complex diseases is due to the combination of genetic and environmental factors, 
usually many of them, and each with a small effect. The identification of these small-effect contributing factors is still a 
demanding task. Clearly, there is a need for more powerful tests of genetic association, and especially for the 
identification of rare effects

Results: We introduce a new genetic association test based on symbolic dynamics and symbolic entropy. Using a 
freely available software, we have applied this entropy test, and a conventional test, to simulated and real datasets, to 
illustrate the method and estimate type I error and power. We have also compared this new entropy test to the Fisher 
exact test for assessment of association with low-frequency SNPs. The entropy test is generally more powerful than the 
conventional test, and can be significantly more powerful when the genotypic test is applied to low allele-frequency 
markers. We have also shown that both the Fisher and Entropy methods are optimal to test for association with low-
frequency SNPs (MAF around 1-5%), and both are conservative for very rare SNPs (MAF<1%)

Conclusions: We have developed a new, simple, consistent and powerful test to detect genetic association of biallelic/
SNP markers in case-control data, by using symbolic dynamics and symbolic entropy as a measure of gene 
dependence. We also provide a standard asymptotic distribution of this test statistic. Given that the test is based on 
entropy measures, it avoids smoothed nonparametric estimation. The entropy test is generally as good or even more 
powerful than the conventional and Fisher tests. Furthermore, the entropy test is more computationally efficient than 
the Fisher's Exact test, especially for large number of markers. Therefore, this entropy-based test has the advantage of 
being optimal for most SNPs, regardless of their allele frequency (Minor Allele Frequency (MAF) between 1-50%). This 
property is quite beneficial, since many researchers tend to discard low allele-frequency SNPs from their analysis. Now 
they can apply the same statistical test of association to all SNPs in a single analysis., which can be especially helpful to 
detect rare effects.

Background
The etiology of complex diseases is due to the combination
of genetic and environmental factors, usually many of
them, and each with a small effect. The identification of
these small-effect contributing factors is still a demanding
task, often requiring a large budget, thousands of individu-
als, and half-a-million or more genetic markers. Even so,
success is not guaranteed. In the last decade, genetic associ-
ation tests have become widely used, since they can detect
small genetic effects. The current availability of genome-

wide genotyping tools, combined with large collections of
affected and unaffected individuals, has allowed for associ-
ation analysis of the entire genome with the intention to
detect even those small genetic effects (i.e., Odds-Ratios
(OR) around 1.2) that influence common complex diseases.

We have seen recently a proliferation of genome-wide
association (GWA) analyses, some of which are identifying
even genes with only small or modest effect sizes ([1] for a
review). Nonetheless, the genetic factors found so far do
not explain the total heritability of these diseases. Perhaps,
the genetic architecture of these diseases is more complex
than previously thought, involving many more genes, each
with a small effect, and interacting among them and with
environmental factors in complex ways. There is also the
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possibility of a large background of rare mutations, each
possibly having a relatively large effect, but at a very low
frequency [2]. Clearly, there is a need for more powerful
tests of genetic association, and especially for the identifi-
cation of rare effects. This need will probably be exacer-
bated when low-cost whole genome sequencing becomes
available, uncovering a large amount of rare variants in
humans [3].

Although Information Theory was originally applied in
the context of communication and engineering problems
[4], entropy-based approaches have been also successfully
applied to gene mapping. Specifically, there are informa-
tion-theory-based tests implemented for population-based
association studies using genotypic tests in case-control
analysis and QTL analysis [5,6], gene-centric multimarker
[7] and haplotype-based association studies [8] or epistasis
analysis [9-12]. Moreover an entropy-based Transmission
Disequilibrium Test (TDT) has also been described to con-
duct genome-wide studies in family trios [13].

In spite of these achievements, there is a scarce amount of
simple and user-friendly computer programs to analyze and
prioritize genome wide signals using entropy-based algo-
rithms. Furthermore, a general entropy-based allelic test has
not been described, studied and implemented in software to
date. We have created a new genetic association test based
on entropy that provides a general tool to conduct whole
genome association studies. It is a new, simple, consistent
and powerful test to detect genetic association of biallelic/
SNP markers in case-control data, by using symbolic
dynamics and symbolic entropy as a measure of gene
dependence. Furthermore, we have implemented these
algorithms in a software freely available to the scientific
community. Using this computer program, named Gentro-
pia, we have applied this entropy test, and a conventional
test, to simulated and real datasets, to illustrate the method
and estimate type I error and power of the test.

Results
To illustrate the method we used data from the SNP
Resource at the NINDS Human Genetics Resource Center
DNA and Cell Line Repository http://ccr.coriell.org/ninds/.
The original genotyping was performed in the laboratory of
Drs. Singleton and Hardy (NIA, LNG), Bethesda, MD USA
[14]. We have used data on 270 patients with Parkinson's
disease and 271 normal control individuals who were geno-
typed for 396,591 SNPs in all 22 autosomal chromosomes
using the Illumina Infinium I and Infinium II assays. Cases
were all unrelated white individuals with idiopathic Parkin-
son's disease and age of onset between 55-84 years (except
for 3 young-onset individuals). The control sample was
composed of neurologically normal, unrelated, white indi-
viduals. To explore the properties of the entropy test, and
compare it to an equivalent conventional chi-square test, we
simulated and analyzed datasets with specific properties. To

simulate the specific effect size of a genetic variant, we
wrote an algorithm that fixes the odds-ratio (OR) attributed
to the SNP, and either fixes or sets randomly the minor
allele frequency (MAF) in controls. Subsequently it esti-
mates the MAF in cases necessary to generate the desired
OR. Then, specific genotypes are generated for cases and
controls according to the estimated allele frequencies in
each group, and assuming Hardy-Weinberg equilibrium.
Most datasets include 500 cases and 500 controls, and SNP
marker genotypes were simulated under different genetic
models (OR equal to 1 (no effect), 1.25, 1.5 and 2), and dif-
ferent marker allele frequencies (MAF equal to 0.05, 0.2,
and 0.4). Type I error of the statistical tests was evaluated in
a dataset where 10,000 SNPs were simulated under the null
hypothesis, with allele frequencies chosen randomly
between 0 and 0.5, but each SNP had a similar MAF in the
case and control groups. For the power analysis, each data-
set contains 100 SNPs with specific OR and MAF. Finally,
to evaluate low allele-frequency markers in more detail, we
simulated datasets of 5000 cases and 5000 controls, and
1000 SNPs with a variety of effect sizes (OR equal to 1, 1.5
and 1.8) and allele frequencies (MAF = 0.01, 0.03 and
0.06).

The entropy allelic and genotypic tests can be compared
to association tests used commonly in the field of Human
Genetics. For a biallelic SNP marker, a test of association
between the SNP and a disease can be computed by com-
paring the allelic or the genotypic frequencies in cases and
controls. The conventional allelic test is a chi-square test
statistic with 1 degree of freedom, while the conventional
genotypic test is a chi-square test with 2 degrees of free-
dom.

Null simulations
A simulated dataset, consisting of 500 cases and 500 con-
trols, was analyzed with both conventional chi-square and
entropy-based association tests. A total of 10,000 SNPs,
with different allele frequencies (0 < MAF < 0.5), were
simulated under the null hypothesis, that is, to have no
effect on the trait. This analysis can reflect whether the new
entropy-based association tests conform to the theoretical
distribution. We counted the number of test-statistics that
had values above the critical values of the expected distri-
bution, to estimate the type I error for each test.

The conventional chi-square and the entropy-based tests,
in both its genotypic and allelic versions, yield approxi-
mately the expected number of false positives (see Table 1),
suggesting they all conform to the expected theoretical dis-
tributions (χ2 with 1 or 2 degrees of freedom). The entropy-
based test statistic was always equal or larger in value than
the conventional chi-square test. On average, the entropy-
based genotypic method increased the test-statistic in 0.047
chi-square units (a 1.7 percent), while the entropy allelic
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test exhibited an average increase of 0.003 chi-square units
(a 0.1 percent).

Power analysis
To estimate the power of both conventional and entropy-
based tests, we carried out an analysis of simulated dataset
of 500 cases and 500 controls. Sets of 100 SNPs were simu-
lated under different alternative hypothesis, with different
effect sizes (odds-ratios of 1.25, 1.5, and 2) and minor allele
frequencies (0.05, 0.2 and 0.4). The entropy-based test sta-
tistic was always equal or larger in value than the conven-
tional chi-square test, and therefore its power was also
always equal or larger (see Tables 2 and 3). This increase in
power is small, and it is more pronounced for the genotypic
than for the allelic test. The gain in power with the geno-
typic entropy test tends to become apparent for larger chi-
square values, or especially in markers with low allele fre-
quency. For the allelic test, the entropy test is also sensibly
more powerful for the OR = 2 and MAF = 0.05 simulation.

Because the gain in power is correlated with the size of
the chi-square statistic, we computed a "proportional power
gain", that is, the difference between the entropy and the
conventional chi-squares, divided by the conventional chi-
square. This proportional gain allows us to compare the
gain across the different simulated scenarios. As can be
seen in Table 4, the average increase in power is only small,
ranging between 0.1 and 9.7%, except for the genotypic test
on low allele frequency SNPs, for which the power gain
range is much larger (5.2-9.7%). In general, the gain in
power increases when the OR increases and when MAF
decreases.

Results show that the entropy test is similar or more pow-
erful than the conventional chi-square test. The gain in
power is small, and in some cases not different from the
false-positive increase under the null hypotheses. Nonethe-
less, the entropy tests are an improvement over genotypic
tests, for reasons discussed in the Discussion, and may
become useful when power is limited, and especially, for
the analysis of low allele-frequency SNPs.

Low-allele frequency markers
To study in more detail the performance of the genotypic
conventional and entropy tests in low-allele frequency
markers, we simulated datasets of 5000 cases and 5000
controls, so there would be enough power to detect these
rare effects. Each dataset included 1000 SNPs simulated
under an specific effect size (OR equal to 1, 1.5 and 1.8)
and allele frequency (MAF equal to 0.01, 0.03 and 0.06).

The analysis of the null-effect markers (OR = 1), reveals
that both tests conform approximately well to the hypothet-
ical null distribution for allele frequencies of 0.06 and 0.03.
However, both tests are too conservative for very rare
alleles, with minor allele frequencies around 1% (Table 5).

Table 6 confirms that both tests behave similarly when
the study has enough statistical power, that is, for allele fre-
quencies above 5%, and even for markers with lower fre-
quency and large effect (MAF = 3% and OR = 1.8). In
contrast, it is evident that the genotypic entropy test is more
powerful than the genotypic conventional test for markers
with rare (MAF = 0.01), or low allele-frequency (MAF =
0.03).

It is important to note here that the Fisher exact test is
often used as a test of association for rare SNPs. For this
reason, we have also compared the Fisher and Entropy
tests, in their allelic and genotypic versions. For low fre-
quency SNPs (MAF = 0.03) the results suggest that all four
tests conform to their theoretical distribution (Tables 7 and
8). We find that Fisher and Entropy are quite similar for the
allelic test, with the Entropy test being slightly more power-
ful (but also slightly more liberal) than Fisher. We conclude
that both tests are essentially equivalent for the allelic test.
However, both allelic tests are more powerful than any of
the genotypic tests (Table 7).

Tables 8 and 9 describe the Genotypic test, for MAFs of
0.03 and 0.01. When comparing Fisher versus Entropy
genotypic tests with low frequency SNPs (MAF = 0.03),
power is also very similar, slightly better for Fisher than
Entropy (Table 8).

Table 1: Type I Error for Conventional and Entropy tests. 

Expected  Conventional Allelic                        ALi Conventional 
      Genotypic

                      GEi

0.0500 0.0475 0.0478     0.048 0.0514

0.0100 0.0109 0.0111     0.009 0.0104

0.0010 0.0012 0.0013     0.001 0.0010

AL = Entropy allelic test. GE = Entropy Gentotypic test.
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Nonetheless, for very rare alleles (MAF<0.01), both tests
are extremely conservative, more so the Entropy test, which
consequently shows lower power for association than the
Fisher test. In summary, it seems that both tests, Fisher and
Entropy, are optimal to test for association with low-fre-

quency SNPs (MAF around 1-5%), and both are conserva-
tive for very rare SNPs (MAF<1%).

These results alltogether suggest that symbolic entropy
based tests are valid for testing for association, and do not
create a significant bias under the null hypothesis. More-
over, the entropy tests are more stable than the conventional

Table 2: Power (%) for conventional (CA) and entropy (AL) allelic tests for different Minor Allele Frequencies (MAF) and 
Odds-ratios (OR).

MAF 0.05 0.2 0.4

OR = 1.25 α CA ALi CA ALi CA ALi

0.001 1 1 12 12 20 20

10-4 0 0 2 3 2 3

10-5 0 0 1 1 1 1

10-6 0 0 1 1 1 1

10-7 0 0 0 0 1 1

OR = 1.5

0.001 12 12 71 71 88 88

10-4 6 6 40 40 72 72

10-5 2 3 20 20 51 51

10-6 0 0 10 10 30 30

10-7 0 0 5 5 17 19

OR = 2

0.001 77 79 100 100 100 100

10-4 48 49 100 100 100 100

10-5 25 26 96 96 100 100

10-6 19 19 90 91 100 100

10-7 10 11 82 82 98 98
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and Fisher exact tests regardless the allelic frequency. In
addition, entropy tests are less expensive in computational
terms than Fisher exact test.

Parkinson disease
To illustrate the analysis method in a real dataset, we have
analyzed a sample of 270 Parkinson disease patients and
271 controls, genotyped for 396,591 SNPs across the
genome. This dataset includes SNPs with a wide variety of

Table 3: Power (%) for conventional (CG) and entropy (GE) genotypic tests for different Minor Allele Frequencies (MAF) and 
Odds-ratios (OR).

MAF 0.05 0.2 0.4

OR = 1.25 α CG GEi CG GEi CG GEi

0.001 0 1 8 9 10 10

10-4 0 0 2 2 3 3

10-5 0 0 2 2 1 1

10-6 0 0 0 0 1 1

10-7 0 0 0 0 0 0

OR = 1.5

0.001 8 9 51 51 81 81

10-4 5 6 28 28 59 59

10-5 0 2 11 11 35 37

10-6 0 0 7 8 21 22

10-7 0 0 3 4 7 9

OR = 2

0.001 61 67 100 100 100 100

10-4 32 37 98 98 100 100

10-5 20 21 93 93 100 100

10-6 12 14 84 84 99 100

10-7 4 8 63 66 97 97
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characteristics, such as different allelic and genotypic fre-
quencies.

As we saw in the simulated datasets, the entropy tests are
generally more powerful than the conventional tests. For
these real data, we find some SNPs for which the entropy
chi-square is lower than the conventional chi-square. How-
ever, these markers have low call rates in cases (lower than
45%), suggesting the presence of genotyping errors, and
therefore would generally be excluded from association
analysis. For the genotypic test, chi-square values (2 df)
range between 0 and 41.95 for the conventional test, and 0-
44.95 for the entropy test. On average, the entropy chi-
square is 1.9% larger than the conventional test. If we con-
sider the top-100 chi-square values for each test, there is
92% concordance in the SNPs that appear in these two
rankings (irrespective of order within the ranking). The 8
SNPs chosen only by the conventional test still appear in
the top 112 SNPs for the entropy test, revealing that the
entropy test agrees well with the conventional test. None-
theless, the 8 SNPs chosen only by the entropy test appear
in ranks 105-359 in the conventional test. These SNPs far
down the ranking of the conventional test have a common
characteristic, they have a low frequency for the rare geno-

type (0-2 individuals only). As we saw for the null simula-
tions, for low allele/genotype frequencies, the genotypic
entropy test statistic is larger than the conventional chi-
square, suggesting that the entropy test can help detect
genetic effects in low allele/genotype frequency SNPs. For
the allelic test, chi-square values (1 df) range between 0-
30.35 for the conventional test, and 0-32.29 for the entropy
test. Both tests agree well in chi-square size, with only a
0.1% difference on average. Both tests also agree on 96%
of the SNPs in their top-100 ranking, and the 4 SNPs in dis-
agreement, are ranked no lower than 106th in the other
ranking. These tests are nearly identical, with the entropy
test slightly more powerful.

Discussion
Several entropy-based tests have been recently developed
for population-based and family-based genetic association
studies to perform gene mapping of complex diseases.
However, to our best knowledge a simple and computation-
ally feasible allelic entropy-based test useful for GWA stud-
ies is not available yet. Allelic and genotypic methods
represent the gold-standard statistical test to start the prior-
itisation of markers during GWAS. The development of

Table 4: Allelic and genotypic entropy-tests gain power (%) for different Minor Allele Frequencies (MAF) and Odds-ratios 
(OR).

Allelic Power Genotypic Power

OR MAF Gain (Mean%) Gain (Mean%)

1.25 0.4 0.1 0.3

1.5 0.4 0.2 0.8

2 0.4 0.6 2

1.25 0.2 0.1 0.8

1.5 0.2 0.4 1.2

2 0.2 1.1 2.2

1.25 0.05 0.3 9.7

1.5 0.05 0.7 5.3

2 0.05 1.7 5.2
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new and more powerful association tests can aid in the
identification of small or rare effects, which may be wide-
spread in the etiology of complex diseases, as shown in the
recent GWAS [1]. To cover this need, we have developed a
new likelihood ratio test of genetic association for biallelic
markers such as SNP markers that is based on symbolic
analysis and the relevant concept of entropy. Other authors,
[8,5] and [6] among others, have used the concept of
entropy for case/control association studies. In [8], the
authors develop a statistic, namely TPE, that asymptotically
follows a χ2 distribution. In order to obtain the asymptotic
distribution of TPE, they require entropy to be continuously
differentiable with respect to the frequencies of the haplo-
types, which represent a problem when the frequency of an
haplotype is zero either in cases or in controls. In such a
case then the haplotypes need to be grouped with others
haplotypes which yield a decrease in statistical power.
Moreover the TPE statistic also requires the estimation of an
inverse matrix. Since this is not always possible, this
inverse matrix has to be approximated by its generalized
inverse, possibly introducing a bias in the statistic. Also, the
computation of TPE is more expensive in computational run-
ning times than our entropy-based test GEi [6]. provides a
measure for linkage disequilibrium (LD) between a marker
and the trait locus, that is based on the comparison of the

entropy and conditional entropy in a marker in extreme
samples of population. Nevertheless, the authors do not
give the distribution of the constructed measure, and hence
it is not possible to assign a statistical significance to the
procedure. Finally, [5], in the context of clusters of genetic
markers, uses multidimensional scaling in conjunction with
the Mutual Information (MI) between two discrete random
variables. They use the fact that under the null of no associ-
ation, MI can be approximated by means of a second order
Taylor series expansion to a Gamma distribution. These
entropy-based methods provide a tool to test for allelic and
genotypic association between a marker and a qualitative
phenotype. In these papers, the empirical size and power of
the tests has not been computed nor compared in power
with conventional tests.

The entropy test has several advantages over conven-
tional tests: (1) It has been proved that the test is consistent.
This is a valuable property since the test will asymptotically
reject any systematic deviations between the distributions
of cases and controls. (2) Importantly, the test does not
require prior knowledge of parameters, and therefore can
not be biased by potential decisions of the user. These prop-
erties, together with the fact that the test is simple, intuitive
and fast in computational terms, make this test a theoreti-

Table 5: Type I error for genotypic test with low minor allele frequencies (MAF). 

Expected CG GEi

MAF = 0.01

0.05 0.022 0.019

0.01 0.000 0.000

MAF = 0.03

0.05 0.044 0.052

0.01 0.008 0.013

MAF = 0.06

0.05 0.057 0.062

0.01 0.013 0.013

CG = Conventional genotypic test. GE = Entropy genotypic test.
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cally appealing and powerful technique to deal with the
detection of genetic association.

We have shown, both in simulated and real data, that the
entropy and conventional tests, both in their genotypic and
allelic versions, fit well their expected null distributions, or
are even conservative for the detection of rare alleles (MAF
≤ 0.01). More so, the entropy genotypic test is more power-

ful than the conventional test, especially for those low-fre-
quency SNPs. This is an important property, because there
is a current need for tools to detect rare genetic effects.

The Fisher exact test is often used as a test of association
for rare SNPs, although it is hard to program because of the
complexity of its formula, and it is also computationally
intensive. To make sure that the Entropy test is efficient

Table 6: Genotypic-Test Power (%) for different low minor allele frequencies (MAF) SNPs and Odds-ratios (OR). 

MAF 0.01 0.03 0.06

α CG GEi CG GEi CG GEi

OR = 1.5

0.05 65.6 81.4 100 100 100 100

0.01 49.9 64.3 99.3 99.3 100 100

10-3 24.3 33.5 95.1 95.3 100 100

10-4 9.6 14.4 87.4 87.5 100 100

10-5 3.0 5.2 74.6 75.1 100 100

10-6 0.9 1.2 55.9 57.4 98.9 99.0

10-7 0.3 0.4 39.5 40.9 95.8 95.8

OR = 1.8

0.05 87.4 99.1 100 100 100 100

0.01 85.1 96.8 100 100 100 100

10-3 77.2 88.6 100 100 100 100

10-4 64.2 74.8 100 100 100 100

10-5 44.7 55.4 100 100 100 100

10-6 28 34.8 99.7 99.8 100 100

10-7 14.4 20.5 98.9 98.9 100 100

CG = Conventional genotypic test. GE = Entropy genotypic test.
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also for rare SNPs, we have compared the Fisher and
Entropy tests, in their allelic and genotypic versions. We
have shown that the Entropy test is as powerful as the
Fisher exact test for the analysis of low frequency SNPs
(MAF between 1-5%). Therefore, this entropy-based test
has the advantage of being optimal for most SNPs, only los-
ing power respect to the Fisher test for very rare alleles
(MAF<1%). This property is quite beneficial, since many
researchers tend to discard low allele-frequency SNPs from
their analysis. Now they can apply the same statistical test
of association to all SNPs in a single analysis.

These entropy tests are easy to compute with the formulas
provided in this paper, which can be incorporated into any
genetic analysis tool. We are making freely available a sim-
ple software (Gentropia) to carry out these entropy-based
genetic analyses. A linux version of the software can be
downloaded from the following Website: http://www.neo-
codex.com/en/Gentropia.zip. The analysis is quite fast. For
example, an association analysis of 1,000 SNPs on 10,000
individuals takes only 4 seconds on a 2.4 Ghz CPU; A
genome-wide association analysis of 400,000 SNPs on 550
individuals takes 84 seconds, which is quite satisfactory

Conclusions
In summary, this is an application of symbolic analysis and
entropy to carry out a genome-wide association analysis.
We have implemented this simple and fast method in a
freely available software http://www.neocodex.com/en/
Gentropia.zip. This entropy-based method to detect genetic
association is more powerful than conventional tests, and
can be especially useful in the detection of rare effects due
to low-frequency genotypes. The method can be improved
to include other tests of association (dominance, recessive,
etc.), and covariates. Moreover, the method can be extended
for the detection of epistasis.

Methods
Entropy Model
First we give some definitions and introduce the basic nota-
tion.

Let P be the population to be studied. Denote by C the set
of cases with a particular disease in P and by Cc the comple-
mentary, that is, the set of controls. Let Nca and Nco be the
cardinality of the sets C and Cc respectively and let N = Nca
+ Nco be the total amount of individuals in the population.

Table 7: Fisher versus entropy allelic tests for different Odds-ratios (OR). 

Allelic MAF 0.03

Type I error Power Power

OR = 1 OR = 1.5 OR = 1.8

alpha Fisher Entropy Fisher Entropy Fisher Entropy

0.05 0.052 0.057 100.0 100.0 100.0 100.0

0.01 0.011 0.013 99.8 99.8 100.0 100.0

1.E-03 0.001 0.001 97.7 98.1 100.0 100.0

1.E-04 0.000 0.000 91.4 92.2 100.0 100.0

1.E-05 0.000 0.000 81.5 83.0 100.0 100.0

1.E-06 0.000 0.000 66.3 67.3 99.9 99.9

1.E-07 0.000 0.000 49.3 50.5 99.5 99.6

MAF = Minor allele frequency.

http://www.neocodex.com/en/Gentropia.zip
http://www.neocodex.com/en/Gentropia.zip
http://www.neocodex.com/en/Gentropia.zip
http://www.neocodex.com/en/Gentropia.zip
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Each SNPi in each individual e 8 P can take only one of the
three possible values, AAi, Aai or aai. Let Si = {AAi, Aai,
aai}. Moreover, each individual e 8 P belongs to either C or
Cc, therefore we can say that a SNPi takes the value (Xi, ca)
if e 8 C or (Xi, co) if e 8 Cc, for Xi 8 Si. We will call an ele-
ment in Si × {ca,co} a symbol. Therefore we can define the
following map

defined by fi(e) = (Xi, t) for Xi 8 Si and t 8 {ca,co}, that is,
the map fi associates to each individual e 8 P the value of its
SNPi and whether e is a control or a case. We will call fi a
symbolization map. In this case we will say that individual e
is of (Xi, t) -type. In other words, each individual is labelled
with its genotype, differentiating whether the individual is a
control or a case.

Denote by

and

that is, the cardinality of the subsets of P formed by all
the individuals of (Xi, ca) -type and (Xi, co) -type respec-

tively. Therefore  is the number of individuals of
Xi-type.

Also, under the conditions above, one could easily com-
pute the relative frequency of a symbol (Xi, t) 8 Si × {ca,
co} by:

and

f P S ca coi i: → × ,{ }

n e P f e X caX i ii
= ∈ | = , ,#{ ( ) ( )} (1)

m e P f e X coX i ii
= ∈ | = , ,#{ ( ) ( )} (2)

n mX Xi i
+

p
e P e X i ca

NX i
= ∈ | , −# { ( ) }is of type (3)

q
e P e X i co

NX i
= ∈ | , − .# { ( ) }is of type (4)

Table 8: Fisher versus entropy genotypic tests tests for different Odds-ratios (OR). 

Genotypic MAF 0.03

Type I error Power Power

OR = 1 OR = 1.5 OR = 1.8

alpha Fisher Entropy Fisher Entropy Fisher Entropy

0.05 0.046 0.051 100.0 100.0 100.0 100.0

0.01 0.010 0.013 99.4 99.3 100.0 100.0

1.E-03 0.001 0.000 95.8 95.3 100.0 100.0

1.E-04 0.000 0.000 88.5 87.5 100.0 100.0

1.E-05 0.000 0.000 77.7 75.1 100.0 100.0

1.E-06 0.000 0.000 61.1 57.4 99.8 99.8

1.E-07 0.000 0.000 45.1 40.9 99.2 98.9

MAF = Minor allele frequency.
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Hence the total frequency of a symbol Xi is

.
Now under this setting we can define the symbolic

entropy of a SNPi. This entropy is defined as the Shannon's
entropy of the 3 distinct symbols as follows:

Symbolic entropy, h(Si), is the information contained in
comparing the 3 symbols (i.e., the 3 possible values of the
genotype) in Si among all the individuals in P.

Similarly we have the symbolic entropy for cases, con-
trols and case-control entropy by

and

respectively.

Construction of the entropy test
In this section we construct a test to detect gene effects in
the set C of cases with all the machinery defined in Section
1. In order to construct the test, which is the aim of this
paper, we consider the following null hypothesis:

that is,

against any other alternative.

s p qX X Xi i i
= +

h S s si

X S

X X

i i

i i
( ) ln( )= − .

∈
∑ (5)

h S ca p pi

X S

X X

i i

i i
( ) ln( ), = − ,

∈
∑ (6)

h S co q qi

X S

X X

i i

i i
( ) ln( ), = − ,

∈
∑ (7)

h C C
Nca
N

Nca
N

Nco
N

Nco
N

c( ) ln ln, = − ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

,

(8)

H SNP C Ci
c

0 : ,distributes equally in than in

(9)

H q
Nco
Nca

p iX Xi i0 1 2 3: = = , ,for (10)

Table 9: Fisher versus entropy genotypic tests tests for different Odds-ratios (OR). 

Genotypic MAF 0.01

Type I error Power Power

OR = 1 OR = 1.5 OR = 1.8

alpha Fisher Entropy Fisher Entropy Fisher Entropy

0.05 0.036 0.022 86.0 81.4 99.9 99.1

0.01 0.030 0.000 71.7 64.3 98.0 96.8

1.E-03 0.000 0.000 41.8 33.5 91.9 88.6

1.E-04 0.000 0.000 20.1 14.4 80.1 74.9

1.E-05 0.000 0.000 8.5 5.2 64.0 55.5

1.E-06 0.000 0.000 2.3 1.2 43.8 34.8

1.E-07 0.000 0.000 0.7 0.4 25.1 20.5

MAF = Minor allele frequency.
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Now for a symbol (Xi, t) 8 Si × {ca, co} and an individual

e 8 P we define the random variable  as follows:

that is, we have that  = 1 if and only if e is of

(Xi, t) -type,  = 0 otherwise. Therefore, given that
an individual e is a case, t = ca, (respectively e is a control t
= co), the variable  indicates whether individual e
has genotype Xi (taking value 1) or not (taking value zero).

Then  is a Bernoulli variable with probability of

"success" either  if t = ca or  if t = co, where "suc-
cess" means that e is of (Xi, t) -type. Then we are interested
in to know how many e's are of (Xi, t) -type for all symbol
(Xi, t) 8 Si × {ca, co}. In order to answer the question we
construct the following variable

The variable  can take the values {0,1,2,..., N}.

Therefore, it follows that the variable  is the Binomial
random variable

Then the joint probability density function of the 6 vari-
ables

is:

where a1 + a2+ a3+ a4+ a5+ a6 =N. Consequently the joint
distribution of the 6 variables

 is a multinomial distri-
bution.

The likelihood function
 of the distribution (15)

is:

where . Also, since

it follows that the logarithm of this likelihood function
remains as

In order to obtain the maximum likelihood estimators

 and  of  and  respectively for all i = 1,2,3,,

we solve the following equations

to get that

Then, under the null H0, we have that  and

thus,

Therefore the likelihood ratio statistic is (see for example
[15]):

and thus, under the null H0 we get that λi(Y) remains as:

Z X t ei( ),

Z
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X e
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i i
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= ,

,
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On the other hand, GEi = -2ln(λi(Y)) asymptotically fol-
lows a Chi-squared distribution with 2 degrees of freedom
(see for instance [15]). Hence, we obtain that the estimator

 of GEi is:

Therefore we have proved the following theorem.
Theorem 1. Let SNPi be a single nucleotide polymor-

phism. For a particular disease denote by N the number of
individuals in the population, Nca the number of cases and
by Nco the number of controls. Denote by h(C,Cc) the case-
control entropy and by h(Si), h(Si, ca) and h(Si, co) the sym-
bolic entropy in the population, in cases and in controls
respectively, as defined in (5, 6 and 7). If the SNPi distrib-
utes equally in cases than in controls, then

is asymptotically  distributed.

Let α be a real number with 0 ≤ α ≤ 1. Let  be such
that

Then the decision rule in the application of the GEi test at
a 100(1-α)% confidence level is:

Furthermore, an entropy allelic test can be developed in a
similar manner. More concretely, let now define the set Ai =
{Ai, ai} formed by the two possible alleles that form the
SNPi.

Let

Denote by  and  the total
allele frequency. Then we can easily define the allele entro-
pies of a SNPi by

Now, with this notation and following all the steps of the
proof of Theorem 1, we get the following result.

Theorem 2. Let Ai = {Ai, ai} be the alleles forming a sin-
gle nucleotide polymorphism SNPi . For a particular disease
denote by N the number of individuals in the population,
Nca the number of cases and by Nco the number of controls.
Denote by h(C,Cc) the case-control entropy and by h(Ai),
h(Ai, ca) and h(Ai, co) the allele entropy in the population,
in cases and in controls respectively. If the allele Ai distrib-
utes equally in cases than in controls, then

is asymptotically  distributed.

Consistency of the entropy test
Next we prove that the GEi test is consistent for a wide vari-
ety of alternatives to the null. This is a valuable property
since the test will reject asymptotically that the SNPi distrib-
utes equally between cases and controls whenever this
assumption is not true. The proof of the following theorem
can be found in Appendix section. Since the proof is similar
for both statistics we only prove it for GEi.
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Theorem 3. Let SNPi be a single nucleotide polymor-
phism. If the SNPi does not distribute equally in cases than
in controls, then

for all real number 0 <C < ∞.
Since Theorem 3 implies GEi T +∞ with probability

approaching 1 always SNPi does not distribute equally in
cases than in controls, then upper-tailed critical values are
appropriated.

Appendix: Proof of consistency

Proof of Theorem 3 First notice that the estimators ,

 and , of h(Si, ca), h(Si, co) and h(Si)

respectively, are consistent because ,

 and  Denote by Hi =

h(C, Cc) + h(Si) - h(Si, ca) - h(Si, co) and notice that Hi can
be written as

Hence, since -ln(x) > 1 - x for all x ≠ 1 we get that

always

for some Xi 8 Si.
On the other hand, H0 is equivalent to

Therefore under the alternative, H1, condition (29) is
always satisfied and hence Hi > 0.

Let 0 <C < ∞ be a real number and take N large enough
such that

Then it follows that

Therefore, by (31) and (32) we get that

as desired.
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