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Abstract

Background: In genome-wide association studies, thousands of individuals are genotyped in hundreds of
thousands of single nucleotide polymorphisms (SNPs). Statistical power can be increased when haplotypes, rather
than three-valued genotypes, are used in analysis, so the problem of haplotype phase inference (phasing) is
particularly relevant. Several phasing algorithms have been developed for data from unrelated individuals, based on
different models, some of which have been extended to father-mother-child “trio” data.

Results: We introduce a technique for phasing trio datasets using a tree-based deterministic sampling scheme. We
have compared our method with publicly available algorithms PHASE v2.1, BEAGLE v3.0.2 and 2SNP v1.7 on
datasets of varying number of markers and trios. We have found that the computational complexity of PHASE
makes it prohibitive for routine use; on the other hand 2SNP, though the fastest method for small datasets, was
significantly inaccurate. We have shown that our method outperforms BEAGLE in terms of speed and accuracy for
small to intermediate dataset sizes in terms of number of trios for all marker sizes examined. Our method is
implemented in the “Tree-Based Deterministic Sampling” (TDS) package, available for download at http://www.ee.
columbia.edu/~anastas/tds

Conclusions: Using a Tree-Based Deterministic sampling technique, we present an intuitive and conceptually
simple phasing algorithm for trio data. The trade off between speed and accuracy achieved by our algorithm
makes it a strong candidate for routine use on trio datasets.

Background
Large genetic association studies involving thousands of
individuals are becoming increasingly available, provid-
ing opportunities for biological and medical discoveries
using sophisticated computational and statistical analysis
[1]. Typically, individuals are genotyped using high
throughput platforms so that each of hundreds of thou-
sands of single nucleotide polymorphisms (SNPs) is
assigned one of three values: homozygous major, homo-
zygous minor, and heterozygous.
Rather than examining SNPs independent of each

other, simultaneously considering the values of multiple
SNPs within haplotypes (combinations of alleles at mul-
tiple loci in individual chromosomes) can improve the
power of detecting associations with disease and is help-
ful in several applications, such as evolutionary genetics
[2-6]. Since there are numerous haplotype arrangements

for heterozygous SNPs that are consistent with the avail-
able three-level genotyped values, the problem of infer-
ring haplotype phase ("phasing”) becomes particularly
relevant. Such inference is based on modelling the
mechanisms and the biological processes generating
sequence variation. Associated computational and statis-
tical techniques can be used on population samples,
based on parsimony, the Hardy-Weinberg principle that
allele and genotype frequencies in a population remain
constant in equilibrium, Markov chain Monte Carlo,
hidden Markov models, Expectation Minimization (EM)
algorithm, etc. Most algorithms are designed to be gen-
erally used for unrelated individuals. Use of pedigree
information [7], if available, is useful. In particular, “trio”
data consisting of genotypes given in father-mother-
child triplets are obtained in genome-wide association
studies and some phasing algorithms are adapted to be
used in this type of data.
An algorithm (PHASE [8]) used in the HapMap project

[9] uses a Bayesian approach attempting to capture the
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tendency that haplotypes cluster together over regions of
the chromosome and that this clustering can change as
we move along the chromosome because of recombina-
tion. It uses a flexible model for the decay of linkage dise-
quilibrium (LD, the non-random association of alleles)
with distance. Although PHASE is considered the most
accurate method, its computational complexity makes it
prohibitively slow even for intermediate-sized datasets.
Thus, it may not be the method of choice for routine use
in large genome-wide association studies. On the other
extreme of the trade-off between complexity and accu-
racy, a computationally simple method (2SNP [10]) uses
maximum spanning trees to successively phase whole
genotypes starting from SNP pairs. Other well known
approaches include HAP [11], using imperfect phylogeny,
HAP2 using a Markov Chain Monte Carlo (MCMC)
scheme [12] and PL-EM [13], which uses an Expectation
Maximization (EM) algorithm. A Gibbs sampling
method, Haplotyper, is proposed in [14], which intro-
duces the partition-ligation (PL) method to support hap-
lotype inference on long genotype vectors, a procedure
adopted by some of the aforementioned methods so that
they can be extended to large datasets. An obvious pro-
blem of the Gibbs sampler and of most of the previous
frameworks is that when new data is introduced into the
original dataset, the previous data also has to be reused
in the estimation of the new data. Another drawback of
using Gibbs sampler and EM algorithm in the haplotype
inference problem is the lack of robustness of these two
algorithms when the parameter space exhibits multimod-
ality such as the one we encounter in the haplotype infer-
ence problem [15]. The performance of these methods
has been evaluated in simulated datasets of both trio as
well as unrelated individuals in a comparative review
[16], providing some “gold standard” datasets for future
algorithms to be compared upon. A more recent
approach (BEAGLE [17,18]) uses localized haplotype
clustering and fits the data using an EM-style update.
It is important for phasing methods that they scale well

with the number of SNPs as well as the number of indivi-
duals. It is also important in terms of computational time
that when new data is inserted in phased datasets, we do
not have to reuse the previous data in the estimation of
the new data. A deterministic sequential Monte Carlo
(DSMC) - based phasing algorithm [19] has recently
been proposed for unrelated individuals, allowing for
large datasets. It jointly infers haplotype pair solutions
and estimates haplotype frequencies based on Hardy-
Weinberg equilibrium. It also uses a partition ligation
method to allow processing of large SNP sets.
In this paper, we propose a related new TDS algo-

rithm for haplotype phasing of trio data, in which trios
are processed sequentially. All possible solutions for
each haplotype are examined. Our algorithm uses the

idea that within haplotype blocks there is limited haplo-
type diversity and thus attempts to phase each new trio
using haplotypes that have already been encountered in
the previously seen trios. The TDS framework allows us
to effectively perform this search in the space of all pos-
sible solution combinations. The procedure can be seen
as an efficient tree search procedure where in each step
only “the most probable” solution streams are kept.
Each of them contains one and only one solution for
each trio already encountered. We show that our algo-
rithm demonstrates an excellent tradeoff of speed and
accuracy, making it ideal for routine use.

Results
The structure of this section is as follows: First we
describe the datasets and figures of merit used to evalu-
ate the method. Then we present the results from com-
paring our method to PHASE v2.1, BEAGLE v3.0.2 and
2SNP v1.7.

Datasets
We used a set of simulated datasets produced with the
“COSI” software as provided in [16]. The haplotypes
were simulated using a coalescent model that incorpo-
rates variation in recombination rates and demographic
events and the parameters of the model were chosen to
match aspects of data from a sample of Caucasian Ameri-
cans [20,16]. Three classes of dataset were provided, with
each consisting of 20 sets of 30 trios spanning 1 Mb of
sequence with a density of 1 SNP per 5 kb [16].
We also used the “COSI” software to create our own

realistic simulated data sets to assess the performance of
our method on large datasets. We created 20 datasets,
each of them consisting of 4000 haplotypes with 20 Mb
of marker data using the “best-fit” parameters obtained
from fitting a coalescent model to the real data. Samples
were taken from a European population and each simu-
lated data set has a recombination rate sampled from a
distribution matching the deCODE map, with recombi-
nation clustered into hotspots. For each simulated data
set, we initially selected only those markers with minor
allele frequency greater than 0.05. Markers were then
randomly selected to obtain a density of about 1 SNP
per 3 kb. In each dataset two sample sizes were created:
100 and 1000 trios. In each trio, each parent was ran-
domly assigned a haplotype from the population so that
no two individuals had the same haplotype and one of
the haplotypes of each parent was selected to be trans-
mitted to the child.

Definitions of criteria
Transmission Error Rate: The proportion of non-missing
parental genotypes with ambiguous phase that were
incorrectly phased [18].
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Incorrect Trios (IT): The number of trios for which
phasing was not completely correct.
Computational Time: The average time to complete

phasing. Our algorithm was implemented in Java for
portability, memory efficiency and speed. For each
method we recorded the average computational time in
each dataset on a 3.66 GHz Xeon Intel PC with 8 GB of
RAM.
Memory: The memory required by the software to

complete haplotype inference.

Transmission Error Rate and Incorrect Trios
The performance of the methods on the simulated data
sets is shown in Tables 1 and 2. We decreased the
<nsamples> parameter in BEAGLE from the default
value, R = 4, to decrease computational time. Our pur-
pose was to make the results of BEAGLE and TDS as
comparable as possible by allowing both methods to run
for approximately the same time. PHASE shows super-
ior performance to all other methods in all datasets for
both figures of merit. 2SNP was consistently outper-
formed by all other methods, consistent with the result
mentioned in [17]. For most of the datasets, a lower
transmission error rate usually implied fewer incor-
rectly-phased individuals. TDS shows superior perfor-
mance to BEAGLE and 2SNP for all datasets, losing
only to PHASE.
We set 1% of the genotypes to missing values and we re-

evaluated the performance of the algorithms in these data-
sets and the results are shown in Tables 3 and 4. We again
see that TDS shows superior performance compared to
BEAGLE with <nsamples> parameter equal to 1 on all
datasets. When we set in BEAGLE <nsamples > = 4, BEA-
GLE shows superior performance on the ST3 dataset and
marginally on ST1 dataset.
We demonstrated the accuracy of our method with

increasing dataset size by varying the number of trios and
markers and evaluated the performance by means of the
Transmission Error Rate as shown in Table 5. We used
marker sizes of 200, 400, 1000 and 6000 markers for 100
and 1000 trios. Due to the excessive computational time

of PHASE, we excluded it from these comparisons.
Furthermore, we avoided using the number of Incorrect
Trios as means of comparison, because as the genotype
vectors grow longer, eventually all methods will find it
hard to correctly infer the entire haplotype and the num-
ber of Incorrect Trios will be the total number of trios.
For datasets of the size of 1000 trios we noted that, in
order to be able to take advantage of the information
offered as a whole, we had to allow a very large number
of streams in our algorithm (Methods section) that
would result in excessive computational time. However,
we found that we could have minor losses by partitioning
the dataset in slices of 100 trios where we had established
significant gain compared to BEAGLE. From Table 5 we
see that TDS shows superior performance for datasets of
up to 100 trios for all marker sizes. For datasets of the
size of 1000 trios, BEAGLE showed superior performance
to all methods.

Timing Results
The computational times for datasets ST1, ST2 and ST3
are displayed in Table 6. In Table 7 we present the aver-
age running time on the same datasets, but with ran-
domly inserting 1% missing SNPs in each one of them.
Based on these times 2SNP is the fastest algorithm fol-
lowed by TDS. Both algorithms were faster than the
fastest BEAGLE runs done with <nsamples> parameter
equal to 1. PHASE was the slowest algorithm with com-
putational times 3 orders of magnitude more than the
remaining three algorithms.

Table 1 Average Transmission Error Rate For Phasing
Trios

Average Transmission Error Rate
(%)

ST1 ST2 ST3

PHASE 0.0013 0.0013 0.0145

BEAGLE

R = 1 0.0235 0.0318 0.0426

R = 4 0.0150 0.0148 0.0344

TDS 0.0039 0.0065 0.0320

2SNP 0.4377 0.4868 0.4861

Table 2 Average number of Incorrect Trios per dataset

Incorrect Trios

ST1 ST2 ST3

PHASE 0.3 0.4 2.45

BEAGLE

R = 1 3.75 5.8 6.4

R = 4 1.95 2.9 5.45

TDS 0.95 1.6 5.4

2SNP 25.9 28.6 28

Table 3 Average Transmission Error Rate For Phasing
Trios with 1% Missing Rate

Average Transmission Error Rate
(%)

ST1 ST2 ST3

PHASE 0.0031 0.0023 0.0161

BEAGLE

R = 1 0.0213 0.0248 0.0354

R = 4 0.0093 0.0133 0.0278

TDS 0.0094 0.0116 0.0348

2SNP 0.3038 0.3486 0.3169
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In Table 8 we demonstrate that for large datasets TDS
scaled almost linearly with the number of markers and,
as described in the previous subsection, with the num-
ber of trios. For datasets of up to 100 trios, our method
is faster than BEAGLE; however for datasets of 1000
trios, BEAGLE is the fastest of all methods for marker
sizes up to 400 markers.

Memory Requirements
All methods could complete the experiments within the
preallocated 1.5 Gb of RAM.

Discussion
An important feature of our algorithm is the partition of
the whole genotype sequence in smaller blocks that
exhibit limited haplotype diversity. We currently identify
these haplotype blocks based on the genotype sequences
(see Haplotype Block Partitioning section). However, we
can have significant gain in the accuracy of our algo-
rithm if we improve the accuracy in the estimation of
the boundaries of the haplotype blocks. To achieve that,
either the haplotype blocks should be already known
from outside sources, or a set of phased haplotypes
from the region at interest should be already available.
In real applications, it is very often the case that studies
are performed in populations that are already studied in
the HapMap project. This means that for these popula-
tions we have accurately phased samples, which can be
used as a basis for accurate definition of the haplotype
blocks. Our methodology offers a unique framework

that can easily incorporate prior knowledge in the form
of haplotypes or trio genotypes from the same popula-
tion as that from which the target samples were drawn.
In the case of haplotypes (such as those available from
the HapMap), they are introduced in the form of a prior
for the counts in the TDS algorithm. In the case of
unphased trio genotypes, the trios can be phased along
with the target samples, with the result discarded at the
end. The presence of the extra information will improve
the phasing accuracy on the target samples.
A related problem to haplotype inference is imputa-

tion of missing SNPs. Several algorithms have been spe-
cifically developed to address this problem [21]. Some of
the aforementioned algorithms have been extended and
configured to complex imputation scenarios involving
the use of prior information (in the form of known
phased samples or extra genotype samples) for perform-
ing imputation in markers not typed in the original
samples.
In datasets with missing SNPs such as the ones used

in Tables 3, 4 and 7 the imputation of the missing
values is done internally in most phasing algorithms so
that phasing can be performed. Many haplotype infer-
ence algorithms are used to that extent and on a regular
basis on this simple and common imputation scenario.
Therefore, to provide a complete description of our
algorithm from the user perspective, and at the same
time show the potential applicability of our framework
to the missing SNP imputation problem, we have evalu-
ated the allelic-imputation error rate[18], defined as the

Table 4 Average number of Incorrect Trios per dataset
with 1% Missing Rate

Incorrect Trios

ST1 ST2 ST3

PHASE 0.6 0.475 2.653

BEAGLE

R = 1 3.6054 5.25 6.4661

R = 4 1.7464 3.1321 4.8893

TDS 1.7521 2.7018 5.7768

2SNP 26.05 28.55 28.2

Table 5 Average Transmission error rate for 100 and
1000 Trios as a function of the number of markers

Markers

200 400 1000 6000

TDS 100 0.00063 0.00075 0.0015 0.0023

1000 0.00042 0.0008 0.0015 0.0023

Beagle 100 0.0013 0.0013 0.0021 0.0024

1000 0.00011 0.00033 0.0005 0.0007

2SNP 100 0.1094 0.2855 0.3916 0.4315

1000 0.1733 0.2524 0.3836 0.4117

Table 6 Timing Results

Time(s)

ST1 ST2 ST3

PHASE 8452 4932 5464

BEAGLE

R = 1 2.59 2.73 2.95

R = 4 2.80 3.18 3.27

TDS 1.99 2.48 2.61

2SNP 0.63 0.6 0.59

Table 7 Timing Results with 1% Missing Rate

Time(s)

ST1 ST2 ST3

PHASE 8613 5220 5831

BEAGLE

R = 1 2.6744 2.9873 3.2409

R = 4 2.9233 3.2858 3.4429

TDS 2.0643 2.5815 2.7484

2SNP 0.67 0.63 0.6
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proportion of mistakenly inferred alleles among all miss-
ing alleles. We have used two kinds of datasets. First, we
have evaluated the allelic-imputation error rate on the
simulated datasets used in Tables 3, 4 and 7 and the
results are shown in Table 9. We have also created 20
real datasets from the CEU HapMap [22] population
(HapMap 3 release 2). Each dataset consists of 44 trios.
The datasets were created by randomly choosing 20 1
MB regions across the genome. In each region we initi-
ally selected only those markers with minor allele fre-
quency greater than 0.05 and then randomly selected
markers to obtain a density of approximately a marker
per 5 kb. In each dataset we set 1% of the genotypes to
missing values and evaluated the performance in terms
of the allelic imputation error rate and running time.
The results are shown in Table 10. TDS is the second
fastest algorithm after 2SNP for all datasets with PHASE
showing superior performance to all algorithms in terms
of the allelic imputation error rate and TDS showing
performance close to BEAGLE.

Conclusions
We have introduced a new algorithm for inferring hap-
lotype phase in nuclear families using a Tree-Based
Deterministic sampling scheme. PHASE, which is the
most accurate algorithm for haplotype inference in trio
families, is prohibitively slow for routine use, and 2SNP,
which is the fastest algorithm for datasets up to 100
trios, is inaccurate. We have demonstrated that TDS is

faster and more accurate than BEAGLE in almost all
scenarios considered in small and intermediate dataset
sizes in terms of trios and for all marker sizes. From a
user’s perspective, our implementation is friendlier since
it is parameter - free, as all parameters are optimized
inside the algorithm. This makes it ideal for routine
tasks even for non specialized users. Furthermore, our
TDS implementation provides a comprehensive, solid
and straightforward framework to build upon for more
complex phasing and imputation scenarios.

Methods
Brief Description
We first give an intuitive description of our algorithm
highlighting its major concepts without going into
detailed mathematical formalization. Suppose that we
denote the major allele in a particular SNP locus in a
haplotype as “0” and the minor allele as “1”. Similarly in
a genotype we denote by 0 that the individual is homo-
zygous to the major allele at that SNP and with “1” that
the individual is homozygous to the minor allele. We
denote by “2” the heterozygous case. For example, the
haplotype pair “10110” and “00100” would produce the
genotype “20120”.
In nuclear families, each parent transmits a chromo-

some to a child. In most cases we can detect which par-
ent transmitted which SNP to the offspring based on
the genotypes of the parents and the offspring. The only
case where we cannot infer that information is when
both parents and the offspring are all heterozygous to
that SNP (i.e., at that SNP all three genotypes are “2”).
In that case, either parent can have transmitted the
major or the minor allele, so we have two possibilities
for the origin of each allele. This means that if a geno-
type of a trio has L ambiguous SNPs, then this trio
would have 2L possible solutions (see solutions for the
trios in Figure 1).
Our algorithm processes nuclear families sequentially

(Figure 1). In each family, multiple solutions are pro-
duced when we encounter a triple heterozygote SNP as
explained earlier. Our algorithm examines all these dif-
ferent possible solutions.

Table 8 Average Timing Results in seconds for 100 and
1000 Trios as a function of the number of markers

Markers

200 400 1000 6000

TDS 100 2.8 5 14.4 113.6

1000 31.8 63.3 156.2 1257.4

Beagle 100 3.7 5.6 15.2 118.4

1000 12.7 31.6 291.8 1952.4

2SNP 100 3 8.9 28.7 180.7

1000 33.4 116.2 399.8 3008.2

Table 9 Average Allelic Imputation Error Rate For
Simulated datasets

Average Allelic Imputation Error Rate
(%)

ST1 ST2 ST3

PHASE 0.0063 0.0145 0.0133

BEAGLE

R = 1 0.0124 0.0255 0.0249

R = 4 0.0101 0.0224 0.0223

TDS 0.0124 0.0271 0.0266

2SNP 0.0741 0.0855 0.0983

Table 10 Average Allelic Imputation Error Rate and
Timing Results for HapMap datasets

Allelic Imputation Error Rate Time(s)

PHASE 0.0051 5360

BEAGLE

R = 1 0.0129 3.156

R = 4 0.0112 3.339

TDS 0.0134 2.53

2SNP 0.0831 0.685
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Suppose we had n trios and each one of them had
{Kl, ..., Kn} possible solutions. If we evaluate simulta-
neously all solutions for all haplotypes, which would
obviously be the optimal way, we would end up with a

total of K i
i

n

=
∏

1
possible solutions each one of them

having one and only one solution for each trio. To be
consistent with the remaining sections we will call
“solution” only the final solution and we will call these
potential solutions as solution streams. Clearly this
number of solution streams would be infeasible for all

non trivial applications. Instead, in our algorithm we
process trios sequentially and after processing each
trio we keep only a pre-specified K number of solution
streams that would be the most probable ones (Figure
1-2b and 1-3b keeping only K = 2 streams in the end
of these steps). Each one of these streams would have
one and only one solution for each trio we have
encountered (Figure 1).
To further explain this procedure, suppose that after

processing a trio we have K streams. When the next trio
is processed, which has, say, Kext possible solutions, we

Figure 1 Example of TDS. We process three trios sequentially. In each trio the first two genotypes are the genotypes of the parents and the
third genotype is the genotype of the child. The possible solutions of each trio are given exactly next to it and numbered 1, 2. In each of the
possible solutions for each trio the first two genotypes are the transmitted and the untransmitted haplotype from the first parent and similarly
the remaining two for the second parent. At each step we are willing to keep only K = 2 streams which would be called “surviving streams”. 1)
The first trio has two possible solutions. 2) a) The second trio has two possible solutions. We have four possible combinations of a solution from
the first trio to a solution from the second. The indices below the solutions show from which solutions from each trio this stream was created.
For example stream s1-2 as illustrated, was created from the first solution in the first trio and from the second in the second. In each stream we
associate a weight as described in method section. b) We keep only the K = 2 streams with the highest weights (surviving streams) so at this
point we consider them as the most probable and keep them. 3) The third trio has 2 possible solutions. a) Each one of them is appended in the
end of each of the two solutions that we have kept. The definition of the streams is similar as before with stream s2-1-1 coming from appending
solution 1 of the third trio to stream s2-1. b) Again we keep only two of the streams the ones with the highest weights s2-1-1 and s2-1-2.
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append each of these solutions to each of the previous K
streams resulting in a total of K × Kext streams (Figure
1-2a and 1-3a). From these streams we keep only the K
most probable ones (Figures 1-2b and 1-3b). So we
always end up with K streams after processing each trio.
The idea for weighting the different streams is based

on the concept that within a haplotype block we expect
to have limited diversity and find only a subset of all the
possible haplotypes. This means that most haplotypes
should be encountered more than once. In terms of our
procedure we would like to phase each new trio based
on haplotypes that we have already encountered in that
stream. Since the weight we assign to each node should
capture this feature, it is a function of the weight that
this node had prior to attaching one of the possible
solutions of the current trio and of a factor that repre-
sents how the currently appended solution includes hap-
lotypes that have already been seen (see Eq. (4) in
Methods section).

Definitions and Model Selection
Let us assume that we have N subjects genotyped in L
SNPs. Suppose that gt are the genotypes of the tth trio, i.
e., gt = {gt,f, gt,m, gt,c} where gt,f, gt,m, gt,c are the genotypes
of the father the mother and the child of trio t respec-
tively. Suppose also that Gt = {g1, ..., gt} is a set of geno-
types of trios up to and including trio t. In each trio we
consider the haplotypes of the parents denoted as ht =
{ht,1, ht,2, ht,3, ht,4}, where {ht,1, ht,2} are the two haplo-
types of the first parent and {ht,3, ht,4} are the two haplo-
types of the second parent and similarly define Ht =
{h1, ..., ht} Let us also define as θ = {θ1, ..., θM } a set of
population haplotype frequencies for all the M haplo-
types that appear in the population and Z = {z1, ..., zy}
as the set of haplotypes compatible with at least a geno-
type of any trio.
Let us consider the following dynamic model

• Initial state model pθ(h0)
• State transition model pθ(ht|ht-1) for t ≥ 1
• Measurement model pθ(gt|ht) for t ≥ 1

where pθ(•) are probability density functions depend-
ing on some unknown parameters θ.
In the next subsection, for the convenience of the

reader, we present the form that the system update
equations would have should the system parameters
were known. Then we move forward and make the con-
nection to the real scenario were the system parameters
are not known.

TDS ESTIMATOR with known system parameters θ
We assume that by the time we have processed geno-
type gt-1 we have a set of solution streams and their
associated weights {( | ), ,..., }( ) ( )H w k Kt

k
t
k

− − =1 1 1 properly
weighted with respect to the posterior distribution
pθ (Ht-1|Gt-1). When we process the individual t we
would like to make an online inference of the haplo-
types Ht based on the genotypes Gt. From Bayes’ theo-
rem we have

p H G

p g H G p H G

p g H G p h H

t t

t t t t t

t t t t t



 

 

( | )

( | , ) ( | )

( | , ) ( |

∝
∝

− −

−

1 1

1 −− −

− −×
1 1

1 1

, )

( | )

G

p H G
t

t t

(1)

Given the set of solution streams and the associated weights
we approximate the distribution pθ(Ht-1|Gt-1) as follows:

p H G
W

w I H Ht t
t

t
k

t t
k

k

K
^ ( ) ( )( | ) ( ) − −

−
− − −

=

= −∑1 1
1

1 1 1

1

1

where W wt t
k

k

K

− −
=

= ∑1 1
1

( ) ,

and I(•) is the indicator function such that I(x - y) = 1
for x = y and I(x - y) = 0 otherwise.
From the previous relationships, if we knew the sys-

tem parameters θ, and assuming that there are Kext pos-
sible haplotypes compatible with the genotype of the tth

trio, we would be able to approximate the distribution
of pθ(Ht|Gt) as

p H G
W

w I H H h

t t
t
ext

t
k i

t t
k

t
i

i

Kext

k

K

^

( , ) ( ) ( )

( | )

( [ , ])

 =

× − −
==
∑

1

1

11
∑∑

where [H ht
k

t
i

−1
( ) ( ), ] represents the vector obtained by

appending the element ht
i( ) to the vector Ht

k
−1
( )

and W wt
ext

t
k i

i k
= ∑ ( , )

,
with

w w p g h i p h i Ht
k i

t
k

t t t t
k( , ) ( ) ( )( | ) ( | ).∝ = =− −1 1 

TDS Estimator with unknown system parameters θ
However, the system parameters are not known. Sup-
pose now that their posterior distribution given Ht and
Gt only depends on a set of sufficient statistics Tt =
Tt (Ht|Gt) = Tt (Tt-1, ht, gt).
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Similarly to (1) we have:
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∫
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1 1
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1
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( | , )
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  

 



Z p T Z d

p H G Z

p h H Z p T

t

t t

t t tt Z d−∫ 1, ) 

(2)

Conditional on the haplotype of the tth trio the geno-
type of that trio is unique and is independent of all the
previous observations Gt-1 and haplotypes Ht-1 that we
have seen. So the term pθ(gt|Ht,Gt-1) and consequently
the integral ∫ p(gt|ht,θ)p(θ|ht, Ht-1, Gt-1, Z)dθ are zero if
the genotype is not compatible with haplotype ht and 1
otherwise.
The recursion now lies only in computing the integral

in (2).
In order to calculate the integral in the previous equa-

tion we will define the prior distribution for the para-
meters θ and we will show how to update their
posterior distribution.

Prior and Posterior Distribution for θ
Assuming random mating in the population it is clear
that the number of each unique haplotype in H is
drawn from a multinomial distribution based on the
haplotype frequency θ [23]. Using the same reasoning as
[19] it leads us to the use of the Dirichlet distribution as
the prior distribution for θ so that

  ~ ( , , )D M1 

With mean

E i
i

j

M{ }




=

=
∑ j

1

Next we will show that the posterior distribution for θ
is also Dirichlet and we will calculate its parameters. As
we have also noted before, the emission probabilities pθ
(gt|ht) do not depend on the parameters θ, and they are

zero if the genotype vector of the trio is not compatible
with the haplotype and 1 otherwise.

p G H Z

p g h h h h h G H
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where we denote rm(t) m = 1,...,M as the parameters
of the distribution of θ after the tth trio and I(zm - ht,i)
with i = 1,...,4 is the indicator function which equals 1
when zm - ht,i is a vector of zeros, and 0 otherwise.

TDS-Estimator
We have that p(θ|Tt-1) = D(θ; p1(t-1), ..., pM(t-1)) and
also that

p h h h h h H Zt t t t t t

h h h ht t t t

( ( , , , ) | , , ), , , ,

, , , ,

=
=

−1 2 3 4 1

1 2 3 4



   

and therefore we can calculate the integral in (2) as
follows:

p h h h h h Z
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t t t t t

t
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 
 ,, , , ,

, , , ,

}

( ) ( ) ( ) (
1 2 3 4

1 2 3 4
1 1 1

  

   
h h h

h h h h

t t t

t t t t
t t t t

=
− − − −11

1
1

4

)

( ( ))m

m

M

t −
=

∑
where  h z t i mt i m

t t h z
,
( ) { ( ) : },− = − =1 1

Having calculated the integral, we can go back to the
recursion and assuming that we have approximated p
(Ht-1|Gt-1), we can approximate p(Ht|Gt) as
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The weight update formula is given by

w w
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Haplotype Block Partitioning
Again, we use the idea that haplotypes exhibit block
structures so that within each block the haplotype
blocks exhibit limited diversity compared to the whole
haplotype vectors. To define these blocks we use a
Dynamic Programming (DP) algorithm similar to the
one used in [19] so that we partition G into subsets of
genotype segments. Our criterion for the DP algorithm
partition would be that the sum of the entropies of the
genotypes of the individual blocks would be minimum.
Let us define C(j) as the minimum total block entropy

up to the jth SNP, where total block entropy is the sum
of the entropies of all the blocks. If Gi:j is the set of gen-
otypes that contains genotype segments from SNP i to
SNP j, the entropy E(i,j) of that segment can be com-
puted from the number of occurrences of each unique
genotype segment in Gi:j .
More specifically if there are n distinct genotypes in Gi:

j, {g1, g2, ..., gn} each one of them with counts {a1, a2, ...,

an} then E i j p pkk

n
k( , ) ln( )= − =∑ 1
, where pk

ak
a1l

n=
=∑ 1

.

The DP algorithm then can be formulated as the follow-

ing recursive structure:

C j C i E i j
i j

( ) min{ ( ) ( , )}= − +
≤ ≤1

1

for j - i <W, where W is the maximum allowed haplo-
type block length.
When the DP algorithm was applied to the ST1,ST2

and ST3 datasets with the maximum allowed block size
being 12, we obtained an average of 6 markers per block
with the smallest block being a single marker and the lar-
gest equal to W. On average, we had 22 distinct haplo-
types per block with their number ranging from 1 to 30.
Our algorithm is based on genotypes as opposed to

haplotypes that were used in [19]. In the method

proposed in [19], each genotype segment was first
phased separately and the entropy of each block was cal-
culated from the number of occurrences of each unique
haplotype in that segment. The same DP algorithm was
then applied to the segments and the minimum total
block entropy partition was calculated. In order to avoid
this time consuming procedure (it can result in compu-
tational times even bigger than PHASE) we create the
blocks based on the genotypes that can be done
instantly. Clearly the bigger the dataset the more accu-
rate our genotype approximation results will be. How-
ever, even for small datasets this approach has been
shown to improve our results compared to the standard
equal block partitioning as shown in Tables 11 and 12.

Partition-Ligation
In the partition phase the dataset is divided into small seg-
ments of consecutive loci using the haplotype block parti-
tioning method described above. Once the blocks are
phased, they are ligated together using the following method
(an extension of the original method described in [14]).
The result of phasing for each block is a set of haplotype

solutions, paired with their associated weights. Two neigh-
bouring blocks are ligated by creating merged solutions
from all combinations of the block solutions, each asso-
ciated with the product of the individual weights, called
the ligation weight. The TDS algorithm is then repeated in
the same manner as it was for the individual blocks. How-
ever, the weights of the solutions are scaled by the asso-
ciated ligation weight for that solution. In this way, no
information content is lost in the process of ligating.
Furthermore, the order in which the individual blocks

are ligated is not predetermined. We first ligate the
blocks that would produce in each step the minimum

Table 11 Average Transmission Error Rate for Equal
Block Partitioning TDS (Equal TDS)

Average Transmission Error Rate
(%)

ST1 ST2 ST3

TDS 0.0039 0.0065 0.0320

Equal TDS 0.0113 0.0085 0.0360

Table 12 Average number of Incorrect Trios per dataset
for Equal Block Partitioning TDS (Equal TDS)

Incorrect Trio

ST1 ST2 ST3

TDS 0.95 1.6 5.4

Equal TDS 1.6 1.7 5.6
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entropy ligation. This procedure allows us to ligate first
the most homogenous blocks so that we have more cer-
tainty in the solutions that we produce while moving in
the ligation procedure.

Summary of the proposed algorithm
In the partition phase the dataset is divided into small
segments of consecutive loci using the haplotype block
partitioning.
Routine 1:

• Enumerate the set of all possible haplotype vectors,
Z, based on the given dataset G.
• Initialization: Find all possible haplotype assign-
ments for each trio and rearrange the trios in
ascending order according to the number of distinct
haplotype solutions each one of them has. Use the
first n trios to enumerate all the possible streams,
where n is the largest number such that the total
number of streams enumerated from the n subjects
does not exceed K, and compute their weights
• Update: For i = n+1, n+2 ...

∘ Find the Kext possible haplotypes compatible
with the genotype of the ith trio.
∘ For k = 1,2,..., Kext

■ Enumerate all possible stream extensions
H H hi

k j
i
k

j
( , ) ( )[ , ]= −1 with hj = {hj,1, hj,2, hj,3,

hj,4}
■ ∀j compute the weights wi

k j( , ) according to
(3)

∘ Select and preserve K distinct sample streams
{Hi

k( ) , k = 1,...,K} with the highest importance
weights { wi

k( ) , k = 1,...,K} from the set
{H wi

k j
i
k j( , ) ( , ), , k = 1,...,K, j = 1,..., Kext}

∘ ∀k, update the sufficient statistics
T T T h gi

k
i i i

k
i

( ) ( )( , , )= −1

TDS ALGORITHM

• Partition the genotype dataset G into S subsets
using the procedure described in the “Haplotype-
Block partitioning subsection”.
• For s = 1,...,S apply Routine 1 so that all segments
are phased and for each one keep all the solutions
contained in the top K streams.
• Until all blocks are ligated

∘ Find the blocks that if ligated would produce
the minimum entropy
∘ Ligate the blocks, following the procedure
described in the Partition-Ligation section
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