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Abstract

imputed markers.

genotyping studies.

Background: Genome wide association studies (GWAS) are becoming the approach of choice to identify genetic
determinants of complex phenotypes and common diseases. The astonishing amount of generated data and the
use of distinct genotyping platforms with variable genomic coverage are still analytical challenges. Imputation
algorithms combine directly genotyped markers information with haplotypic structure for the population of
interest for the inference of a badly genotyped or missing marker and are considered a near zero cost approach to
allow the comparison and combination of data generated in different studies. Several reports stated that imputed
markers have an overall acceptable accuracy but no published report has performed a pair wise comparison of
imputed and empiric association statistics of a complete set of GWAS markers.

Results: In this report we identified a total of 73 imputed markers that yielded a nominally statistically significant
association at P < 10  for type 2 Diabetes Mellitus and compared them with results obtained based on empirical
allelic frequencies. Interestingly, despite their overall high correlation, association statistics based on imputed
frequencies were discordant in 35 of the 73 (47%) associated markers, considerably inflating the type | error rate of
imputed markers. We comprehensively tested several quality thresholds, the haplotypic structure underlying
imputed markers and the use of flanking markers as predictors of inaccurate association statistics derived from

Conclusions: Our results suggest that association statistics from imputed markers showing specific MAF (Minor
Allele Frequencies) range, located in weak linkage disequilibrium blocks or strongly deviating from local patterns of
association are prone to have inflated false positive association signals. The present study highlights the potential
of imputation procedures and proposes simple procedures for selecting the best imputed markers for follow-up

Background

Genome-wide association studies (GWAS) are a promis-
ing tool for the identification of genetic markers underly-
ing phenotypes of interest and recently allowed the
identification of markers associated with several human
complex phenotypes[1]. These studies have accomplished
their goals in improving our knowledge of genetic pat-
terns underlying diseases such as diabetes mellitus type I
[1] and II [2] and Cronh’s disease [3]. Although metho-
dologically appealing, these high-throughput experiments
are not free from biases and limitations. Indeed, it is
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highly acknowledged that GWAS are not only prone to
major drawbacks such as genotyping errors and sample
failures, but also to varying levels of genome coverage
across samples [4]. In practice, a further complication
arises from the barrier imposed by the comparison of
results among different GWAS. The commercially avail-
able GWA platforms make use of distinct sets of markers
with highly heterogeneous genomic coverage ranging
from hundreds of thousands to millions of typed markers
[5]. This diversity in panels of markers limits even further
the full potential of genome-wide association studies to
uncover variants putatively implicated in the susceptibil-
ity to diseases or other complex phenotypes of interest.
This heterogeneity transforms the comparison, as well as,
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the combination of data results generated from distinct
genome-wide panels into a challenging endeavor [6].

To overcome these issues, genotyping imputation
algorithms were developed. These methods use informa-
tion provided by high quality markers combined with
genome structure information for the population of
interest organized in the HapMap database. These pro-
cedures can potentially be a nearly zero-cost alternative
to increase both power and coverage in individual GWA
studies. The imputation procedures allow meta- and
pooled analyses of GWAS data generated by distinct
genotyping platforms, maximizing their overlap and,
consequently, the number of typed individuals. Despite
promising, the success of imputation algorithms are
relative since they could also amplify non-detected tech-
nical errors in genotyped markers, the available HapMap
information may not be well consolidated for the popu-
lation of interest or the applied imputation algorithm
may not be well suited for a specific dataset [7].

Here, we present a comprehensive comparative analy-
sis of the data generated by the multipoint imputation
algorithm and the data obtained by direct genotyping in
a type-II diabetes GWAS dataset. This imputation algo-
rithm uses a Markov chain to infer the allelic frequen-
cies of a marker by the information provided by a large
set of flanking markers. The analyzed dataset was gener-
ated and organized by the Welcome Trust Case Control
Consortium (WTCCC) and is a constituent of a large
epidemiological study focused in the determination of
genetic markers that could predispose an individual to
seven different diseases of interest [8]. In this scientific
effort, a group of approximately 3000 healthy individuals
was compared to groups composed by 2000 individuals
accessed by diseases of interest such as: diabetes type-II,
hypertension, coronary heart disease and bipolar disor-
der. These healthy individuals are part of two distinct
cohorts selected to avoid population stratification, a very
common source of bias in GWAS. Imputation algo-
rithms currently available can use very distinct statistical
approaches and, overall, their accuracy is satisfactory
[3]. Details on the most recent methods, as well as their
advantages and limitations, are reviewed and critically
discussed elsewhere [9]. Our focus, in this report, is to
describe how inferences based on imputed genotypes
might impact the discovery of genetic markers possibly
associated with complex phenotypes. The results pre-
sented here highlight the potential benefits and limita-
tions of the use of imputed data in GWAS association
studies for common phenotypes.

Results

Characteristics of the examined datasets

The results discussed herein are based on data available
for approximately 2000 individuals accessed by type-II
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diabetes and 3000 healthy individuals (controls). We
limited our evaluation to 387,662 biallelic markers with
full information on both observed (genotyped) and
imputed genotype frequencies. This set of markers cov-
ers all chromosomes, but sex-linked markers, having no
major over-representation in any specific chromosome.
A detailed list of the examined markers and their
respective imputed and empiric frequencies is available
upon request. In this report, the term empiric denotes
markers whose allelic frequencies were determined by
direct genotyping.

SNP selection quality criteria

Association studies using empiric or imputed frequencies
are very sensitive to low quality markers. Accuracy of the
Impute algorithm is significantly reduced in alleles show-
ing small MAFs or low calling posterior probabilities [4].
Initially, we determined the association statistics under dif-
ferent models of inheritance in the complete set of mar-
kers (See methods for further discussion). We applied a
common combined filtering criteria composed of selecting
only markers with calling probabilities higher than 0.95
and MAF (minor allele frequency) higher than 1%. To
determine the efficacy of this procedure we used a disper-
sion plot (Figure 1) comparing the P-values (on a -logq
scale) assuming a multiplicative (log-additive) model of
inheritance applied to empiric and imputed frequencies of
markers in the complete and filtered dataset. The analysis
of Figure 1 suggests that this standard quality control pro-
cedure was effective in excluding a group of 66.000 (17%)
markers showing a significant difference in the magnitude
of the association sign between empiric and imputed mea-
sures, these elements could potentially influence subse-
quent GWAS analysis. The same comparison was carried
using the QQ plots graphical representation and, as
expected, the use of this common filtering criterion was
successful in reducing part of the spurious results (Addi-
tional file 1, Figure S1A). Both graphical representations
highlight the effectiveness of quality and MAF filters for
purging markers with low concordance between associa-
tion statistics based on imputed and directly genotyped
allelic frequencies. The term concordance used in this
report refers to the discovery of markers showing evidence
of association using a pre defined significance threshold, a
concordant marker would be considered associated by
their directly genotyped and imputed allelic frequencies.
Nevertheless, several markers surpassing this quality con-
trol showed considerable bias between association statis-
tics determined by the allelic frequencies.

Imputed versus empirically genotyped markers: inflation
of type-l error rates

Using the filtered dataset, the examined imputation
algorithm, as previously described for allele and
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Figure 1 Efficiency of filtering criteria. Scatterplot comparing the minus-log corrected empiric and imputed p.values of the markers present in
the complete dataset (A) and in the filtered one (B).
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genotype imputation, also presents a high overall accu-
racy when comparing the association statistics generated
using genotyped and imputed markers (Spearman’s rank
correlation coefficient, rs = 0.80). However, it is impor-
tant to note some points. Firstly, the wide dispersion of
dots around the upper left side of Figure 1 (panels A
and B) indicates that, despite the overall good agree-
ment, results that rely solely on imputed genotypes
might reject more often the null hypothesis when it is
in fact true. For example, at an o. = 10> we observed
that inferences based on truly genotyped markers
yielded evidence for 38 markers possibly associated with
type-1I diabetes, whereas this number would be 73 SNPs
had the same inference been based on imputed markers
solely. Approximately 47% of markers that would be
considered associated by imputed allelic frequencies
were discordant to the evidence derived from direct
genotyping. Table 1 shows that similar results are also
seen for different significance thresholds, suggesting that
imputed frequencies might be more prone to false-posi-
tive associations independent of a specific pre-defined
significance threshold.

To further analyse the nature of such type-I error
inflation, we describe markers for whom their imputed
association statistics were concordant or discordant in
relation to their empiric association statistics. On Table
2 the results of such comparison highlight that there is
a great concordance between association statistics deter-
mined by the allelic frequencies derived from imputed
and genotyped information. A total of 317.255 markers

were concordant, 317.217 were correctly considered not
associated by both empiric and imputed frequencies
and, a group composed by 38 markers was considered
associated by both measures. Nevertheless, a group of
35 markers showed significant discordance between
association statistics. The term discordance in this
manuscript refers to differences regarding a pre-defined
cut-off value observed in association statistics derived
from imputed and directly genotyped allelic frequencies.
Interestingly, in the diabetes dataset we found no situa-
tion in which an association would be claimed by
empirically genotyped markers, but not by inferences
relying upon imputed genotypes. The complete list of
markers, association P-values and an indication of their
concordance in terms of association statistics deter-
mined by imputed allelic frequencies can be obtained in
Additional file 2, Table S1.

To further explore the relationship between associa-
tion statistics derived from imputed and from directly
genotyped allelic frequencies, we sorted and determined
the top ten markers that would be considered strongly

Table 1 The use of different genomic significance
thresholds and the number of SNP accepted as
significant in empiric and imputed frequencies

Sig. Threshold Empiric Imputed
10° 38 73
10° 16 43
107 13 33
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Table 2 Comparison of the number of markers that
would be considered associated by empiric and imputes
allelic frequencies

Number of markers

Imputed Empiric
pvalue < 107 pwvalue >107
pvalue < 107 38 35
pvalue > 107 0 317182

associated based on the evidence provided solely by
imputed frequencies (Table 3). This ranking analysis is
extremely useful for the determination of markers
strongly associated with a phenotype and avoids the
error caused by an inadequate selection of a significance
threshold. The analysis of the results organized in Table
3 highlight that association statistics for top-associated
SNPs derived from imputed frequencies are highly
inflated in comparison to their empiric counterparts. A
huge proportion of these imputed markers (9 out of 10)
would be considered not associated to the phenotype if
evidence provided by direct genotyped allelic frequencies
were to be used. It’s an interesting fact that all these
biased markers share similar frequencies in their minor
alleles, all very close to 0,5, this allelic condition was
further explored in this manuscript.

The same analytic procedure was carried in poly-
morphic markers presented in the WTCCC hyperten-
sion dataset. Initially, we determined the set of markers
from whom allelic frequencies were both directly geno-
typed and imputed using the haplotypic structure of
flanking markers. The association statistics were gener-
ated and compared, similarly to the diabetes database
approach, and similar results were also observed (Addi-
tional file 3, Table S2). Another important point is that,
despite a considerably high correlation coefficient
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between association statistics, several hugely biased
imputed markers could mislead follow up analyses. This
finding appears rather contradictory but one should
keep in mind that the correlation of minus log trans-
formed association statistics is mainly defined by the
immense number of markers showing good agreement
between measures [9].

Characteristics of the false-positive signals
Next, we sought to examine characteristics of false-posi-
tive associations that could be used as predictors of the
quality of association signal derived from imputated
markers. An analysis of the characteristics of false-posi-
tive signals is of paramount importance to guide investi-
gators in appropriately evaluating discovered signals
based on imputed markers. Here, discovery entails
results crossing a specific o threshold under a frequen-
tist perspective rather than a Bayesian approach. We
selected an o = 107 for illustrative purposes, an approx-
imation that should work relatively well in typical stu-
dies conducted currently in Caucasian populations (CEU
HapMap population, for example). Our empirical analy-
sis demonstrated that the magnitude of the odds ratio of
false-positive associations lies in the range of effects
typically found in the GWA setting: median 1.26 (min =
1.20, max = 1.61); odds ratios were coined to be >1 for
consistency. However, false-signals from imputed geno-
types suggest more commonly protective effects (n =
47) rather than susceptibility effects (n = 26) for the
minor allele variant.

It is accepted that some chromosomal regions, due to
a higher number of recombination events, have less con-
solidated frequency panels in markers underlying these
regions in human populations [4]. Allelic frequencies
not well defined, or varying between populations, could
significantly perturb inferences based on imputed

Table 3 Top associated markers based on imputed allelic frequencies

SNP CHR Position Empiric Imputed MAF(emp) MAF(imp) STATUS
rs2000816 11 84151075 0,2382 1,57E-30 0,50 049 Discordant
rs4143896 14 41379353 04551 1,06E-19 0,50 049 Discordant
rs4982270 14 34950569 0,0853 5,72E-17 0,50 049 Discordant
rs10152907 15 52679008 03110 2,30E-15 0,50 0,50 Discordant
rs12900200 15 99971327 0,0394 2,80E-15 049 049 Discordant
rs35143 16 63543734 0,8364 3,62E-15 0,50 049 Discordant
152572406 8 11129662 0,0291 6,78E-15 049 048 Discordant
rs2996005 1 217884996 0,0010 561E-14 048 048 Discordant
rs696891 5 60940318 0,4430 9,85E-14 0,50 049 Discordant
rs4506565 10 114746031 6,02E-13 1,38E-12 0,35 0,35 Concordant

The column “Position” refers to the chromosomal position of the marker based on the reference genome (Hg18). The columns Empiric and Imputed organize the
observed p values for the association with the diabetes phenotype based on directly genotyped and imputed allelic frequencies, respectively. The columns MAF
(emp) and MAF(imp) refers to the minor allele frequency determined by allelic frequencies determined by direct genotyping (emp) and imputed (imp). The
column STATUS describes if there is a concordance between association statistics based on allelic frequencies determined by both measures using a pre defined

stringent significance threshold (10 -8).
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markers in an association study. We investigated a pos-
sible relationship between specific chromosomal regions
and false discovery events using imputed frequencies.
The minus log transformed empiric and imputed
P-values and the observed bias between associations sta-
tistics were plotted against their relative chromosomal
positions (Figure 2) (See methods for further informa-
tion). The term bias in this analysis refers to the alge-
braic difference between minus log transformed
P-values determined by directly genotyping and imputa-
tion. The analysis of Figure 2c suggests the existence of
genomic regions more prone to show major biases
towards the alternative hypothesis of association when
imputation methods were applied. Specifically, poly-
morphisms located at chromosomes 1, 3 and 15 showed
the largest bias in favor of imputed measures. The most
prominent biases are concentrated in imputed markers
considered strongly associated (p < 10'°) to diabetes in
contrast to their empiric frequencies, inflating consider-
ably the number of associated markers. The number of
these “low imputation quality” markers is limited
especially when compared to the immense number of
markers analyzed that could, consequently, pass unde-
tected by common diagnostic analysis.
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Key indicators of a poor imputation performance on
association statistics

Next, we carried out exploratory procedures to investi-
gate key indicators of a poor imputation performance
on association statistics. Specifically, we tested how the
use of different quality calling criteria and the minor
allele frequency (MAF) thresholds could predict the
observed bias between empiric and imputed frequencies.
This feature was explored by using more stringent cut-
offs for calling rates, Hardy-Weinberg disequilibrium
(HWD) and the use of SNPs showing a MAF >1%. The
number of markers excluded by these quality filters was
determined. The minus log transformed association
statistics of the remaining imputed or genotyped mar-
kers were compared by analyzing their degree of corre-
lation (Additional file 4, Table S3 and Additional file 5,
Table S4). Consistent with findings from recent investi-
gations studying the accuracy of imputation algorithms
over genotype determination, the use of polymorphisms
with a MAF below 1% accompanied or not by lower
calling rates decreases the overall agreement between
results based on imputed genotypes and those obtained
by truly genotyped markers. In our examined dataset,
HWD had no major impact on the performance of
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Figure 2 Summary plots. In Panel A: a graphical representation of the distribution of empiric association statistics throughout the human
genome. In Panel B: same as A using the association statistics derived from imputed frequencies. In panel C: The distribution of the observed
bias of association statistics of empiric and imputed frequencies.
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imputation since markers with strong Hardy-Weinberg
deviation were already trimmed from the dataset before
publication.

To determine if the bias between association statistics
could be predicted by common filtering criteria, we
used a graphical representation plotting the observed
bias between association statistics against calling prob-
abilities, MAF and Hardy-Weinberg equilibrium of each
marker in the dataset (Figure 3). The results of the
plotted figure suggest that the Hardy Weinberg devia-
tion, as expected, cannot be used as a predictive variable
since the most prominent bias were encountered in
markers that showed only a moderate deviation from
equilibrium. The same procedure was applied to the
empiric and imputed calling criteria, in both analysis the
analyzed features do not show any predictive value,
since the highly biased association values were concen-
trated in high quality empiric markers and randomly
distributed for imputed markers. These features were
useful for filtering highly biased markers in the creation
of the filtered dataset but different thresholds of calling
probabilities were not efficient predictors any further.
When the same plotting routine was used using MAF as
a predictor for bias (Figure 3), interesting results could
be observed. Most prominent bias was encountered in
markers with higher MAF (close to 0,5), suggesting that
in this allelic condition the imputation algorithm was
jeopardized by difficulties to determine the major and
minor allele. This interesting feature was further
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analyzed to determine if this specific allele condition
could be considered a useful predictor to identify these
markers. We selected a subset of markers that were
directly genotyped and imputed showing extreme MAF
conditions (MAF < 0,01 and MAF > 0,49) and compared
their transformed association measures with the use of
dispersion plots and histograms (Additional file 6,
Figure S2). The analysis of these figures show that the
vast majority of markers in these allelic conditions have
significant agreement for their association statistics but,
as determined before, a limited number of markers,
especially the ones showing MAF very close to 0,5, have
an increased odds of being biased. The barrier is prob-
ably imposed by allele misspecification and is a challen-
ging one, since a specific allele could be wrongly
imputed leading to a totally spurious association statis-
tic. A similar result was detected by an empirical evalua-
tion of the imputation algorithm IMPUTE regarding
accuracy of genotype determination [10].

The use of inconclusive or incomplete haplotypic infor-
mation has long been considered a major source of
errors in imputed frequencies, especially in chromoso-
mal regions or populations with limited haplotypic
knowledge. To test this hypothesis, we used r* SNP-by-
SNP disequilibrium measure available in HapMap
release (HapMap Public Release #22, 2007). Initially, we
determined markers of our filtered dataset that were
also evaluated in the HapMap database. This group is
composed of 317,255 polymorphisms and it will be used
in our further analysis. For each marker, a haplotypic
block was determined using the complete set of markers
showing a linkage disequilibrium measure to the specific
marker (See methods for further details). Each haploty-
pic block is composed by a limited set of marker-to-
marker r* statistics. In each block, four different descrip-
tive statistics were evaluated: mean, median, maximum
value and variance of the values of the r* statistic. We
plotted separately the four statistics against the observed
bias between association statistics of the complete set of
markers (Figure 4). The analysis of the plotting orga-
nized in Figure 4 outlined that the use of the max value
r* or the variance within a haplotypic block cannot be
considered good predictors since the bias is randomly
distributed throughout the variable values range. Other-
wise, when the same procedure was applied to the mean
and median values, significant insights could be obtained
from the analysis. More prominent biases are concen-
trated in SNPs with relatively lower values, especially in
the case of the median. Polymorphisms with lower
mean or medians for r* measures have increased odds
of showing higher deviation when the empiric and
imputed association P-values are compared. Imputed
markers showing these specific haplotypic conditions
should be analyzed carefully before their use.
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complete set of haplotypic blocks and their use as predictive
variables for the observed bias between empiric and imputed
frequencies.

Sliding window of association statistics

Finally, we explored the hypothesis that if a particular
marker is truly associated with the investigated pheno-
type one would expect that close markers (in LD with
the tested marker) would also present a higher chance
of also being associated. In this scenario, a considerable
proportion of markers flanking an associated SNP
should also present significant levels of association for
the phenotype under investigation. Imputed SNPs
located in the same chromosomal region are inferred
with similar accuracy since the same haplotypic struc-
ture information was used by the imputation algorithm.
In the same hand, it is expected that a totally isolated
associated marker within a well-known LD block will
likely represent a false positive association. To evaluate
the validity of this hypothesis, we developed an algo-
rithm implementing a sliding window procedure that
determines and collects minus log corrected association
statistics of consecutive imputed markers using three
different window sizes (1, 2 and 3 flanking markers) (see
methods for further discussion). We determined differ-
ent sliding windows size centered in the 73 imputed
markers considered associated for diabetes II, these slid-
ing windows were separated in two groups of sliding
windows based if their central marker was concordant
or discordant to empirically measured association statis-
tics and three different summary statistics (mean, var-
iance and total sum of corrected association statistics)
were collected.

Using box plot graphical representations we evaluated
the discriminative values of the different summary sta-
tistics of flanking markers as a predictor of imputation
accuracy for association statistics. Interestingly, the use
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of the total sum of association values was very robust to
efficiently separate true-positive and false-positive asso-
ciation statistics of imputed markers, independent of the
size of the sliding window (Figure 5a-c). Using the mean
value of the flanking association statistics was only use-
ful in sliding windows of size three. Sliding windows
centered in discordant markers (false-positive), as
expected, showed consistently lower association statistics
than sliding windows centered in true-positive markers.
These results were especially impressive when using the
total sum of corrected association statistics. The com-
plete set of carried comparison can be inspected
in Additional file 7, figure S3 and their application to
WTCCC’s hypertension results in Additional file 8,
figure S4.

In a complementary way, we used a graphical repre-
sentation to highlight this feature plotting the cor-
rected association of statistics of sliding windows
centered in true-positive and false-positive imputed
markers considered associated in human chromosome
10 (Figure 6). In the upper left panel, a small region
was highlighted showing three totally isolated imputed
markers that could be considered associated to the
phenotype of interest, but not by their empiric-derived
statistic disfavoring the true/false positive ratio. When
the same procedure was carried in imputed markers
that were concordant to their empiric measures (upper
right panel), it is noteworthy that a considerable pro-
portion of markers weakly associated to the phenotype
is also clustered in the same small chromosomal
region. This result suggests that a preliminary analysis
of surrounding markers could be used to flag and
identify imputed markers that do not reflect the true
empiric frequencies and could erroneously be consid-
ered associated.

Discussion

Genome wide association studies are a promising tool
for the determination of genetic signatures that could,
when associated with environmental factors, predispose
an individual to a phenotype of interest. Quality control
of data in a GWAS study has been implicated as an
important source of bias and loss of power in both link-
age analyses and population-based association studies
[6]. Imputation algorithms use allelic frequencies of
typed markers and the haplotypic structure information
to infer the expected allelic frequencies of a low quality
or missing marker. These algorithms are considered a
near zero cost alternative to allow the combination of
results generated by different platforms with distinct
genome coverage. The combination of directly geno-
typed and imputed allelic frequencies allowed the identi-
fication of SNPs that were strongly associated to
diseases of interest such as hypertension and diabetes
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[1,8]. Genome wide association studies, like any other
large scale experiments, are prone to false negative asso-
ciations due to the impressive amount of hypothesis
tests being performed and a small percentage of low
quality SNPs can cause important statistical problems
([11]). These statistical limitations demand that any
marker considered associated with a particular disease,
specially imputed ones, should be directly genotyped
using different genotyping platforms. This conservative
procedure is now considered mandatory for the publica-
tion of such results. Nevertheless, even the follow-up of
a small fraction of positive results from a GWAS
involves significant costs.

The association of imputation procedures with low
density chips can offer a convenient way to enhance the
cost efficiency ratio and statistical power of a GWAS,
since more individuals/markers can be typed by the same
cost [12]. Several reports have compared the overall
accuracy and statistical power of different imputation
methods and highlighted the high genotype prediction
accuracy of existing methods especially in genomic

regions showing high LD (Linkage Disequilibrium)
between markers[9]. Since imputation methods accuracy
is closely related to the quality of the empiric frequencies
used as an input, we initially determined the complete set
of markers that were both directly genotyped and
imputed by the multipoint imputation algorithm in
WTCCC ([8]) diabetes II GWAS. This resulted in a set of
387,668 markers that were further evaluated. Using this
set of markers, we tested a series of different quality cri-
teria thresholds for MAF (minor allele frequencies), call-
ing probabilities and Hardy Weinberg equilibrium
deviation and analyzed the overall correlation between
minus log transformed P-values of empiric and imputed
allelic frequencies under a log-additive model of inheri-
tance. We used a combined quality criteria of markers
showing MAF > 0.01 and calling probability higher than
0,95 and filtered markers showing a considerably higher
accuracy between association statistics using imputed
and empiric frequencies (Figure 1). Using a minimum
association threshold of 10 ~°, we identified a total of 73
imputed markers clamming association and among



Almeida et al. BMC Genetics 2011, 12:10
http://www.biomedcentral.com/1471-2156/12/10

Page 9 of 12

o
o 4
‘n‘; ]
=
©
2w
2 .
o
o
T w4
o i
» LR o -3 : .
*ut » R *‘Ql_q. "'-
o B 3 AT
o o 4 n*MlSeﬂ.- 2 ‘."".“:
' ' —
1500000 2000000 2500000 3000000 3500000
Postion

12

10

-log10(p.value)
6

10

-log(p.value)
6

-
. .
.

R e e B
BRI i e TRC IR e 1 S
‘ ‘ 114550000 I
Postion

113500000 115500000

Chr 10

6.0e+07

Figure 6 Local patterns of association as predictor of accurate imputation. On the lower graphic, a graphical representation highlights
markers that could be considered associated to the phenotype under study using a significance threshold of 10 . On the higher left and right
panel, a highlighted representation of regions with concordant (right) and discordant (left) associations.

1.2e+08 1.4e+08

Position

those, only 38 (52%) would be considered associated
based on their empiric (directly genotyped) association
statistics (i.e., nearly a half of imputed markers would be
erroneously considered associated to the phenotype
under study). The same pattern was observed when dif-
ferent and more stringent significance thresholds were
used (10 ® and 10 7). This result suggests that imputation
methods are prone to inflate the number of markers con-
sidered associated in any of the evaluated thresholds in
this report. These results are not a contradiction to the
overall high accuracy for predicting genotype status pre-
viously described. These few highly deviated markers
would be considered associated even when using highly
stringent significance thresholds (< 10 7 or lower) which
could considerably jeopardize follow-up studies based
only on association statistics of imputed markers. Since
imputed markers are indispensable for merging the infor-
mation generated by different platforms or studies

(meta-analysis), it’s important to identify these badly
imputed and hugely biased markers.

In this report, we comprehensively tested several geno-
typing and imputation quality criteria, haplotypic informa-
tion and chromosomal location as predictors of the quality
of association statistics derived from imputed markers. As
demonstrated in other reports dealing with the accuracy
of genotypic determination, when the MAF of imputed
markers are close to 50% [10] imputation accuracy greatly
diminishes. We further analyzed a subset of markers that
were selected based on their extreme minor allele frequen-
cies (MAF > = 0, 49) to determine the validity of the evi-
dence provided by this allelic condition for the
identification of biased imputed markers. Indeed this alle-
lic condition greatly predisposes imputed markers to have
biased association statistics, but it can not be considered a
good predictor since the majority of markers in this allelic
condition show good agreement with directly genotyped
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ones in terms of association statistics. Imputed markers
showing these specific allelic frequencies should be anno-
tated and their use in follow-up studies should be done
carefully. The other analyzed quality criteria, such as call-
ing probabilities and Hardy-Weinberg Equilibrium devia-
tion showed an even more limited use as predictors of
false-positive associations derived from imputed allelic fre-
quencies, since the bias between empiric and imputed
association statistics was randomly distributed or clustered
in markers showing high calling probabilities or very close
to HW equilibrium.

A commonly accepted source of bias is the use of not
well consolidated haplotypic information as an input for
imputation algorithms. This could lead to imputed allelic
frequencies not coherent to the population under study
and, consequently strongly biased association tests. To
explore this hypothesis we determined haplotypic blocks
centered in each marker of the WTCCC dataset that
were also present in the HapMap database. The compari-
son between the observed biases and four different
summary statistics, representing haplotypic block consis-
tency, showed a modest success when variance and maxi-
mum values were tested as predictors. Interestingly, the
comparison between mean and median values of linkage
disequilibrium as predictors showed that imputed
markers located in regions showing weaker linkage dise-
quilibrium structure are prone to higher bias. Their
imputation and subsequent analysis under different
genetic models of inheritance should be carefully done
especially if the imputed marker is to be considered
strongly associated to the phenotype under study. A simi-
lar result was suggested by Bakker P. LW et al, when con-
structing a guide to the use of imputed information in
meta-analysis of genome wide association studies[6].

The imputation algorithm overall accuracy for associa-
tion statistics was compared and comprehensively evalu-
ated under a diverse panel of different genetic conditions
[13,3]. Here, it was showed that when allelic frequencies
were imputed in markers located in low LD (linkage dise-
quilibrium) regions, the accuracy of association statistics
strongly diminishes. This restriction is probably imposed
by the limited haplotypic information in these regions and
to a not well consolidated haplotypic map. Based on the
well known strong dependence between available haploty-
pic information quality and the accurate imputation of
markers located in a specific haplotypic block, we devel-
oped an algorithm implementing a sliding window proce-
dure focused in the analysis of association statistics of
flanking markers as predictors for imputation quality of
derived association statistics. Since the same haplotypic
information is used for imputation of nearby markers it is
expected that an imputed marker considered associated
should be flanked by markers showing at least moderate
association to the phenotype under study. Interestingly,
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imputed markers showing high concordance to empiric
ones (for the derived association statistic) presented signif-
icantly higher total sum of association statistics as com-
pared to false-positive markers. Indeed, the same
procedure was applied to the complete set of imputed
markers considered associated (107°) in the WTCCC
hypertension dataset with similar results (Additional file 8,
Figure S4). The complex nature of WTCCC databases
impose a barrier for the interpretation of results in this
manuscript and could be considered a major source of the
bias especially in imputed markers. This barrier originates
from the fact that control and cases were not ideally
matched in terms of their ancestry and it is expected that
some association statistics derived from directly genotyped
markers and especially from imputed markers are, indeed,
susceptible to an increased odds of both type-I and type-II
errors. Nevertheless, our results are concordant with the
idea that additional information can be gathered from
nearby markers in order to prioritize potentially associated
markers for follow-up studies.

Conclusions

Imputation algorithms are a convenient and low cost
solution to increase the coverage and power of a per-
formed GWAS, allowing comparison of already gener-
ated results and bridging the gap of distinct sets of
markers in different GWAS platforms. Despite their,
already evaluated, overall high accuracy for genotypic
prediction, we describe that even after traditional filter-
ing criteria, a considerable amount of markers may still
present important problems when one is to evaluate the
association statistics derived from these markers. We
serially tested a group of features known as predictors
for a low accurate genotype imputation. Mostly, these
features were not able to robustly identify those markers
from whom association statistics are significantly biased.
One solution that seems to be robust is the use of infor-
mation provided by flanking markers with the use of our
sliding window procedure. It is expected that concor-
dant imputed markers, showing agreement with associa-
tion statistics derived from directly genotyped allelic
frequencies, are located in haplotypic blocks composed
by other markers showing, at least, a moderate associa-
tion with the phenotype under study. Our results high-
light the immense potential of imputation procedures,
but are a reminder that indiscriminate use of imputed
markers could alter the cost-effectiveness balance of fol-
low-up genotyping efforts.

Methods

Determination of association statistics of a marker

The WTCCC consortium provided a complete panel of
imputed and directly genotyped allelic frequencies of indi-
viduals accessed by diseases of interest and control
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individuals. The hypertension and diabetes datasets were
downloaded and organized locally http://www.wtccc.org.
uk/. Initially, we determined the complete set of markers
that were both genotyped and imputed in each dataset. A
Perl script was developed to generate a meta-population
for each marker respecting the observed and imputed alle-
lic frequencies for selected cases and controls. This script
can be obtained by author request. Data were exported
and analyzed by the specialized R package SnpAssoc [14],
which determined for each SNP its association statistic
under dominant, recessive, codominant and log-addictive
models of genetic inheritance. This procedure was con-
ducted, independently, by two co-authors (MAAA and
TVP) and results were concordant. The complete set of
association statistics was collected and organized locally
and is available upon request.

Analysis of specific chromosomal regions within studied
markers

Markers typed in a specific chromosome were selected
and sorted by their chromosomal position. The associa-
tion statistics of a marker under a log-additive model of
inheritance were collected and using a minus-log trans-
formation plotted (Y-axis) with their position in the
sorted vector. Markers in different specific chromosomes
were plotted in grey and black, respectively. The bias was
determined as the algebraic difference between minus log
transformed association statistics derived from direct
genotyping and imputation ((-log;o (P-value- empiric) -
(log1o (P-value - imputed)). All the analyses were con-
ducted on the R statistical environment; the complete set
of developed programs can be obtained upon request.

Determination of haplotypic blocks

HapMap haplotypic information was downloaded and
organized locally (HapMap Public Release #22, 2007).
A haplotypic block was defined as the complete set of r*
marker-marker measures associated to a specific marker
independently of the use of a pre defined minimum
threshold for the r* measure. Once defined, these sets are
informative for the determination of specific chromoso-
mal regions under strong linkage disequilibrium. Each
haplotypic block was characterized by their summary sta-
tistics and further explored for the identification of local
patterns of strong association and the possible correla-
tion between weak linkage disequilibrium regions and
the accuracy of imputation derived association statistics.

Sliding window algorithm

The complete set of minus log transformed P-values of
imputed and directly genotyped markers under a log-
addictive model of inheritance was collected and
ordered based on chromosomal position. Imputed mar-
kers that were considered associated using a pre-defined
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threshold (107°) were determined and classified into
concordant and discordant markers in terms of their
agreement within the association statistics. A locally
developed Perl algorithm constructed sliding windows of
different sizes (in this report 1,2 and 3) centered in the
imputed markers (concordant or not) and collected the
set of minus-log transformed association statistics of the
flanking markers. A set of summary statistics, such as
mean, median and variance of each sliding window was
collected and referenced to the central marker. The
complete set of raw results, summary statistics and mar-
kers comprised in each window can be obtained upon
request.

Additional material

Additional file 1: QQ plots of entire and filtered datasets. A. QQ plot
of the entire dataset; B. QQ plot of dataset after standard filtering criteria.

Additional file 2: Complete set of imputed associated markers. All
markers that would be considered associated based on imputed allelic
frequencies using a significance treshold of 10°. A markers determined
as concordant (STATUS column) could be considered associated by
imputed and empiric allelic frequencies.

Additional file 3: Comparison of the number of considered
associated markers by empiric and imputes allelic frequencies in
hypertension database. Determination of markers showing
concordance and discordance of association statistics based on imputed
and empiric allelic frequencies based on information provided by
hypertension database of WTCCC.

Additional file 4: The effects of the use of different minimum
thresholds for calling probabilities. We serially tested a series of
different minimum thresholds for empiric and imputed frequencies and
analysed the effect of such filtering in the remaining dataset by
determining the correlation of association statistics and the outlier
percentage

Additional file 5: The effects of the use of different minimum
thresholds for MAF (Minor allele frequencies). We serially tested a
series of different minimum thresholds for minor allele frequencies and
analysed the effect of such filtering in the remaining dataset by
determining the correlation of association statistics and the outlier
percentage.

Additional file 6: Dispersion plots and histogram of markers
showing extreme MAF conditions. Dispersion plots and histogram of
markers showing extreme MAF (Minor Allele Frequency) conditions MAF
< =001 or MAF > =049

Additional file 7: Complete set of comparisons of different size
sliding windows. Each box-plot represents the tendency observed in
association statistics of markers within different size sliding windows.

Additional file 8: Sliding window algorithm applied in hypertension
dataset. Fach box-plot represents the tendency observed in association
statistics of markers within different size sliding windows applied in
hypertension dataset.
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