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Abstract

Background: Array-based detection of copy number variations (CNVs) is widely used for identifying disease-specific
genetic variations. However, the accuracy of CNV detection is not sufficient and results differ depending on the
detection programs used and their parameters. In this study, we evaluated five widely used CNV detection
programs, Birdsuite (mainly consisting of the Birdseye and Canary modules), Birdseye (part of Birdsuite), PennCNYV,
CGHseg, and DNAcopy from the viewpoint of performance on the Affymetrix platform using HapMap data and
other experimental data. Furthermore, we identified CNVs of 180 healthy Japanese individuals using parameters
that showed the best performance in the HapMap data and investigated their characteristics.

Results: The results indicate that Hidden Markov model-based programs PennCNV and Birdseye (part of Birdsuite),
or Birdsuite show better detection performance than other programs when the high reproducibility rates of the
same individuals and the low Mendelian inconsistencies are considered. Furthermore, when rates of overlap with
other experimental results were taken into account, Birdsuite showed the best performance from the view point of
sensitivity but was expected to include many false negatives and some false positives. The results of 180 healthy
Japanese demonstrate that the ratio containing repeat sequences, not only segmental repeats but also long
interspersed nuclear element (LINE) sequences both in the start and end regions of the CNVs, is higher in CNVs
that are commonly detected among multiple individuals than that in randomly selected regions, and the
conservation score based on primates is lower in these regions than in randomly selected regions. Similar
tendencies were observed in HapMap data and other experimental data.

Conclusions: Our results suggest that not only segmental repeats but also interspersed repeats, especially LINE
sequences, are deeply involved in CNVs, particularly in common CNV formations.

The detected CNVs are stored in the CNV repository database newly constructed by the “Japanese integrated
database project” for sharing data among researchers. http://gwas.lifesciencedb jp/cgi-bin/cnvdb/cnv_top.cgi.

Background

Copy number variations (CNVs), duplications, and dele-
tions of chromosomal segments longer than 1 kb are
major structural variations in various organisms such as
yeast, Drosophila, and humans and are believed to have
evolutionary importance [1] and be related to various
diseases such as mental retardation [2], neurological dis-
orders [3,4], and cancers [5]. Although chromosomal
abnormalities including CNVs were originally investi-
gated using cytogenetic karyotype analyses such as chro-
mosome banding analysis and fluorescence in situ
hybridization (FISH), recent technologies such as pair-
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end sequencing [6-8], whole genome sequencing using
massively parallel sequencers [9], and array-based
approaches such as array comparative genomic hybridi-
zation (CGH) [10] and single nucleotide polymorphism
(SNP) genotyping microarrays [11]) enabled us to obtain
refined CNV structures with relatively high throughput.
Particularly, SNP genotyping microarrays are becoming
widely used for CNV identification since CNVs can
be detected using the same microarrays used in the
SNP-based case control study. The SNP microarray
approaches, however, tend to lead to too many false
negatives and positives and require sophisticated CNV
detection methods/algorithms.

Many methods/algorithms have been proposed for
detecting CNVs for array CGH and SNP array and are
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divided into several models such as smoothing methods,
clustering methods, maximum likelihood procedures
including Hidden Markov models (HMMs) and expecta-
tion-maximization (EM) algorithms. The simplest
smoothing method is for smoothing log,ratio (ratio is
defined as the intensity of target of probe divided by
that of reference probe) profiles using a moving average
and detecting duplicated or deleted regions over the
specified thresholds [12]. For more sophisticated
smoothing methods, a quantile smoothing method
based on L1 norm (the sum of absolute values) penalty
minimization [13] and a wavelet de-noising method [14]
have been proposed. For a clustering method, the clus-
ter along with chromosomes (CLAC) method was devel-
oped, in which hierarchical clustering trees along each
chromosome arm (or chromosome) are calculated and
the ‘interesting’ clusters considering the false discovery
rate (FDR) are selected [15]. Smoothing and clustering
methods are effective in simulation data, but they do
not achieve good enough CNV detection performance
compared with other methods in array CGH experimen-
tal data [16]. To date, various maximum likelihood-
related approaches have been proposed. Jong et al.
introduced genetic local search algorithms (memetic
algorithms) for maximizing the likelihood by considering
the penalty function of breakpoints [17]. Picard et al.
developed an adaptive method for estimating the penalty
constant to avoid selecting too large a segmentation
number for over fitting given data. In this method, the
probe intensity profile (log,ratio) is supposed to be a
Gaussian distribution, and the number of segments is
estimated by maximizing the likelihood [18]. A circular
binary segmentation (CBS) method was proposed by
Venkatraman and Olshen [19], in which the average
probe intensity is assumed to also have a Gaussian dis-
tribution. The likelihood ratio statistic for testing the
null hypothesis, in which there is no change, and the
alternative hypothesis, in which there is exactly one
change at an unknown location, are introduced in this
method. The test is done using a permutation test. If
the null hypothesis is rejected, the hypothetical change-
points are adopted. The change-points are searched
recursively using overlapping windows [19].

An HMM is a statistical model in which it is assumed
that the system follows a Markov process [20-22]. In
most HMM models for CNV detection methods, the
probe intensity values or logR ratio (LRR, 10g»(Ropserved/
Rexpected)s Rexpected i8 calculated from linear interpolation
of canonical genotype clusters, R is a sum of probe
intensities) and B allele frequency (BAF, normalized
measure of relative signal intensity ratio of the B and A
alleles in the SNP array) or genotypes are assumed to be
independent, and the copy number states of the probes
are set to be hidden states with certain transition
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probabilities. By maximizing the likelihood of observed
data (probe intensity, LRR and BAF, or genotypes), the
copy number state of each probe is obtained.

Many studies have compared the performance of these
methods or programs based mainly on simulation data,
arrayCGH data [16] and Illumina SNP arrays [23]. How-
ever, Affymetrix SNP-array-based CNV detection
requires much more robust algorithms than those using
[llumina SNP arrays and array CGH due to the charac-
teristics of the Affymetrix SNP arrays.

We assessed the following widely used methods/pro-
grams, the circular binary segmentation (CBS) method
(implemented in DNAcopy [19], R package), Picard’s
adaptive method (CGHseg [18], R package), HMMs
(Birdsuite 1.4 [20] and PennCNYV [21]) on the basis of
whether they accurately detect CNVs on Affymetrix
data (Affymetrix 6.0). The first two methods/programs
are known to be effective in detecting CNVs of array-
CGH experiments, but their performances in microar-
rays are yet unknown. QuantiSNP [22], which uses an
objective Bayes HMM, showed the best detection per-
formance with the simulation and Illumina SNP array
data in a previous study [23]. We also tested Quan-
tiSNP, but the parameter tunings for Affymetrix data
were too difficult for us to achieve sufficient perfor-
mance. Therefore, the results are not shown in the fol-
lowing results. The assessments are done using HapMap
data and other experimental results. After that, CNVs of
180 healthy Japanese individuals were detected using the
parameters that showed the best performance in the
HapMap data. The characteristics of start and end
regions of CNVs are also discussed. These results are
registered in the CNV control database, which has been
developed as part of the Japanese integrated database
project.

Methods

CNV detection methods

We conducted comparative analyses on the CNV detec-
tion performance of five programs: DNAcopy [19] (R
package) as a circular binary segmentation (CBS)
method, CGHseg [18] (“tiling array” of R) as a Picard’s
adaptive method, Birdseye (part of Birdsuite) [20] and
PennCNV [21] as HMMs, and Birdsuite (mainly consist-
ing of Birdseye and the EM-based Canary).

There are two main subjects for CNV detection: esti-
mation of the copy numbers and detection of accurate
CNV boundaries from probe intensity data. In this
study, duplications (gains) or deletions (losses) were
assessed, but copy numbers were not assessed because
there were not enough validation data to confirm them.
In the programs for array CGH, the log,ratios of nor-
malized intensities of target probes against control
probes were used as input data, while programs for the
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SNP arrays, not only the log,ratios or LRR but also
allele frequencies or genotypes were also used in most
cases. Since DNAcopy and CGHseg were developed for
array CGH, only log,ratios were used as input data.
During log,ratio calculation, quantile-normalization was
done for probe intensities and the average values of
HapMap data (270 individuals) were used as reference
probe intensity data.

Birdsuite consists of four programs (modules), “Can-
ary”, “Birdseed”, “Birdseye”, and “Fawkes,” and deter-
mines CNVs using multiple individual data. In Canary,
common CNVs are detected with EM algorithms using
registered known common copy number data, while
Birdseye detects novel CNVs by using the HMM with
the Viterbi algorithm based on probe intensities and
genotypes determined using the Birdseed program.
Fawkes combines results of Canary, Birdseye, and Bird-
seed and assigns a comprehensive SNP genotype. Since
we do not access the genotypes of CNVs, we used only
Canary and Birdseye to obtain the following results.

In PennCNYV, probe intensity data is converted into
LRR and BAF, copy numbers are set as hidden states,
and the emission probability of LRR and BAF are mod-
eled. The hidden state for maximizing the likelihood of
observed data (LRR and BAF) is obtained using the
Viterbi algorithm.

Data sets
To compare the detection performance of these algo-
rithms, we used Affymetrix Genome-wide Human SNP
Array 6.0 (Affy 6.0) data of the HapMap data. The Hap-
Map data were collected from 45 Japanese in Tokyo,
Japan, 45 Han Chinese in Beijing, China, 90 Yoruba indi-
viduals (30 trios) in Ibadan, Nigeria, and 90 individuals
from the US state of Utah with northern and western
European ancestry (collected in 1980 by the Centre
d’Etude du Polymorphisme Humain) whose CNVs were
previously measured in other experiments and/or algo-
rithms [6-8,11,20,21,24-29]. Furthermore, five sets of five
Affy 6.0 microarrays of the same individuals (NA04626,
NAO01416, NA06061, NA10851, NA15510) were also
used to investigate the reproducibility of the detection
algorithm. These Affy 6.0 data were typed in Affymetrix
and downloaded from the Affymetrix web site [30].
Furthermore, novel Affy 6.0 data of 180 healthy
Japanese individuals, whose typing was carried out in
our previous study [31], were used for detecting Japa-
nese CNVs. (Hereinafter we call these data “original
data.”) As described in the previous paper [31], the
study was approved by the research ethics committee of
Central Research Laboratory, Hitachi Ltd. (permission
number 128-2) and the Faculty of Medicine, The Uni-
versity of Tokyo (permission number 2583) and the
informed consent was obtained from all participants.
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Database construction

A CNV control database has been constructed as part of
the integrated database project by the Ministry of Edu-
cation, Culture, Sports, Science and Technology
(MEXT) using mySQL. In the database, the start-end
information of copy number segments, copy number
regions which are clustered copy number segment infor-
mation, and their frequencies were accumulated. Other
information such as genes, exons, introns, and the
CNVs of database of genomic variants (DGV [32]) data
were also accumulated to enable users to easily interpret
the meaning of detected CNV regions. The start and
end positions of the CNVs were also stored on a distrib-
uted annotation system (DAS) with the GMOD
Gbrowse-based [33] browser for calling up our data on
other DAS servers, such as Ensemble, or vice versa; the
data on another DAS are called up on our DAS to view
various data simultaneously for interpretation.

Results and discussion

Evaluation of CNV detection algorithms using trios data
To evaluate the CNV detection performance of each
method, the concordance of CNV detections was inves-
tigated using five sets of microarrays for the same indi-
viduals (five microarrays per individualxfive individuals).
Table 1 summarizes the average stability rates of CNVs
at the segment level to measure CNV reproducibility
using different DNA from the same individual. (Analyses
were done by copy number segments if there are no
explanations.) Copy number segments with overlap >
80% were regarded as concordant segments. Even if the
overlap threshold was changed (20-80%), this tendency
was almost the same. In this stability rate, duplications
and deletions were discriminated, but copy number dif-
ferences within duplications or deletions were not dis-
tinguished. The CNV detection thresholds (parameters)

Table 1 Average stability rate of CNVs using same
individual’s data

Programs Average of concordance rate
PennCNV 89.4%

Birdsuite:Birdseye/Canary 91.1/94.6%

DNAcopy 82.0%

CGHseg 79.6%

Stability rate is the concordance rate of CNVs detected using different DNA
samples from the same person. Segment overlap > 80% is regarded as
concordant.

All versus all comparisons (5 microarray analysisx5 microarray analysis) were
done.

PennCNV: Threshold of number of probes > 20.

Birdseye (part of Birdsuite): Threshold of number of probes > 20 and Lod
score > 5.

DNAcopy: Threshold of number of probes > 30 and absolute avg. intensity of
a segment > 0.35.

CGHseg: Threshold of number of probes > 40 and absolute avg. intensity of a
segment > 0.35.
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in each method were determined to maximize the stabi-
lity rate. These thresholds show the best performance
(minimum value) also in the Mendelian inconsistency
ratio of trio data (Table 2). Furthermore, when other
array data for the same individuals are used as reference
samples instead of the average of HapMap data and
these thresholds are applied, neither DNAcopy nor
CGHseg show false positives (that is, CNVs are not
detected).

The stability rate does not directly predict perfor-
mance but indicates the stability of detection perfor-
mance. Table 1 shows that PennCNV and Birdseye (part
of Birdsuite) have the same level of detection stability,
about 10% higher than those of DNA copy and CGHseg,
while Canary (part of Birdsuite) achieves higher stability
than others due to the utilization of pre-defined copy
number regions.

Table 2 shows the rate of Mendelian inconsistencies
of HapMap trio (90 individuals) data. The rate is calcu-
lated as the average number of an offspring’s CNVs that
are not detected in both parents divided by the number
of each offspring’s CNVs. Although a rate of Mendelian
inconsistencies close to 0 does not directly mean high
CNV detection performance, the rate of Mendelian
inconsistencies much larger than 0 implies low CNV
detection performance considering heritability because
the frequency of copy number change is assumed to be
in the range of 10 to 10™* per gamete [24,34]. The
rates of Mendelian inconsistencies of Canary (part of
Birdsuite), and Birdseye (part of Birdsuite) in Table 2
are the lowest and second lowest, respectively; however,
there may be influences of the parameters which are
tuned using HapMap data [20] considering the low sta-
bility rate of Birdseye in Table 1 (that is, the square-root
of the stability rate << 1-Mendelian inconsistency in
Birdseye). For Canary, since only predefined regions are
the targets of CNV detection, low Mendelian inconsis-
tencies of Canary are reasonable. The low Mendelian
inconsistency is a necessary but not sufficient condition
for high accuracy for CNV detections. Mendelian incon-
sistencies of all methods, except Canary and Birdseye,
are not sufficiently low, and DNAcopy shows the high-
est Mendelian inconsistencies, although the stability rate
in Table 1 is the same level as CGHseg. The cause is
not clear, but there might be CNV patterns that are

Table 2 The rate of Mendelian inconsistencies in
offsprings’ CNVs of HapMap trio data

Programs Overlap > 0% > 50% > 80%
PennCNV 0.190 0.192 0.197
Birdsuite:Birdseye/Canary  0.028/0.015 0.030/0.015  0.030/0.015
DNAcopy 0.531 0.579 0.583
CGHseg 0417 0462 0493
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difficult to detect with circular binary-segmentation-
based detection for DNAcopy.

The similarity of CNVs detected using each program
is measured as the sensitivity between programs in
Table 3. Although PennCNV and Birdseye (part of Bird-
suite) use a HMM, similarity between them is not so
large in all (deletions + duplications) CNV data. The dif-
ference between them might be partly caused by para-
meter settings. Overall, deletions are higher than all
(deletions + duplications) CNVs. DNAcopy shows a
comparatively high similarity compared with all other
programs considering the small number of CNVs
detected by DNAcopy. The dependence of the similarity
on CNV length was not clearly observed. In Figure 1
(a), the distributions of CNV length using each pro-
gram/method are depicted, as discussed later.

Affymetrix data is known to be noisy for determining
genotypes under some experimental conditions. When
detecting CNVs, data noise is expected to be proble-
matic. Supplemental Figures 1S-a (HapMap) and 2S-a
(180 healthy Japanese individuals) [Additional file 1:
Supplemental Figures 1S and 2S] show the relationship
between the standard deviation of log,ratio in each
array and CNV counts per individual, while supplemen-
tal Figures 1S-b (HapMap) and 2S-b (180 healthy Japa-
nese individuals) [Additional file 1: Supplemental figures
1S and 2S] show the relationships between the call rate
(the percentage of SNPs whose genotypes are deter-
mined in the genotype calling process) and CNV counts
per individual detected using each program. Figures 1S-
a and 2S-a indicate that the CNV counts per individual
drastically increase when the standard deviation of the
log,ratio of the array is high. Figures 1S-b and 2S-b
indicate that Affymetrix arrays with low recall showed
higher CNV counts. Since these tendencies were
observed in all programs, arrays with large standard
deviations or with low recall should be removed. In the
analysis of original data in Section ‘CNVs of original
data of healthy Japanese’, individuals with high CNV
counts (15 individuals whose CNV number are
PennCNV > 250, Birdseye (part of Birdsuite) > 400,
Canary (part of Birdsuite) > 500, DNAcopy > 100, or
CGHseg > 100) were removed.

Evaluation of CNV detection algorithms by comparing
other experimental results

The CNVs of these HapMap individuals have also been
investigated using various experimental approaches
[6-8,11,24-29], and a comparison of these previous stu-
dies is summarized in Table 4. In Table 4, the HapMap
individuals used in both this study and in each experi-
ment are used to calculate sensitivity. The correspond-
ing specificity is summarized in supplemental Table 1S
[Additional file 2: Supplemental Table 1S]. There are no
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Table 3 Similarity of CNVs detected between programs using HapMap data

Programs PennCNV Birdseye (part of Birdsuite) Birdsuite DNAcopy CGHseg
PennCNV - 55.1/62.2% 62.5/75.2 49.2/63.5 (51.5/65.3)
[12417/6895] (56.4/61.9) (63.1/76.7)

23.2/26.8

(23.8/26.9)
Birdseye (part of Birdsuite) 62.2/69.8 - 57.5/684 40.7/524
[14794/10102] (82.8/83.5) (69.8/82.6) (49.1/61.6)
Birdsuite 68.0/74.3 68.8/73.9 47.0/544
[56476/44150] (90.3/93.3) (84.5/89.4) (57.5/63.3)
DNAcopy 37.7/408 296/31.8 - 61.1/68.6
[6748/4849] (50.7/53.8) (38.0/40.4) (62.1/68.6)

13.8/15.0

(16.4/17.7)
CGHseg 13.8/174 10.1/12.3 32.1/356 -
[3648/2401] (17.1/20.9) (11.6/13.9) (274/32.0)

4.2/52

(4.6/5.6)

Similarity: percentage of CNVs detected using the program in row, which is also detected using the program in column. That is, each program in row is regard as
golden standard.

*Sensitivity with 80%overlap/5%overlap of CNV segments.
(): represents deletion-only data.
[I: represents total number of CNVs/total number of CNV deletions.
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tendencies of longer CNVs being commonly detected in
other experiments (data not shown). The overlap among
these experiments’ CNVs is low, as shown in supple-
mental Table 2S [Additional file 2: Supplemental Table
2S]. The inconsistent results of various experiments also
make it difficult to validate CNV detection methods.
These experimental data probably include many false
negatives and some false positives. The sensitivities
become slightly higher when the detection thresholds
are changed. However, considering the CNVs’ reprodu-
cibility (stability) for the same individual, these thresh-
olds seem plausible. In most cases, the sensitivity and
specificity are high in “deletion-only data”. This is partly
because some of the experimental results do not distin-
guish “insertion” and “duplication”. When the results of
Birdseye (part of Birdsuite) and Birdsuite are compared,
the sensitivities are increased but the specificities are
largely decreased; because of that, the specificity of Can-
ary (part of Birdsuite) is low. Since these other experi-
ments are expected to include false negatives, low
specificity may not directly mean low accuracy of the
program. Given that the CNV detection’s stability of the
same individuals is high and the Mendelian inconsis-
tency ratio is comparatively low in PennCNV, Birdseye
(part of Birdsuite), and Birdsuite (mainly consisting of
Birdseye and Canary), they are expected to show higher
sensitivity and specificity than those of other programs.
It should be noted that the sensitivities of Birdseye (part
of Birdsuite), Birdsuite, and PennCNYV in Table 4 are
higher than those of DNAcopy and CGHseg in Conrad
[28] and Park’s [29] results, which are expected to be
more reliable than earlier data such as Redon [11] and
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Korbel [6] when their estimated false discovery rate
(Conrad et al. 15% [28]) and Mendelian inconsistencies
(Park et al. 2.6% [29]) are considered, although the sen-
sitivities of all programs are quite low in some experi-
ments. Table 1S, however, implies that there are no
striking differences among specificities of these CNV
detection programs. This indicates that detection pro-
grams are expected to have many false negatives and a
smaller number of false positives.

The distributions of CNV length are summarized in
Figure 1. As shown in Figure 1 (a), the difference of dis-
tributions of CNV length between each program is not
so large and especially the distribution of CNV length
between Birdseye (part of Birdsuite) and PennCNV,
which both use HMM, is similar. When Figures 1 (a)
and (b) are compared, the lengths of the newly detected
CNVs are longer than other experimental results and
the total number of detected CNVs are less than others,
which are partly caused of used thresholds for detecting
CNVs. Shorter CNVs are also detected using these pro-
grams before applying thresholds. The distributions of
CNV lengths are quite different depending on the CNV
experimental method, even if the same individual is
used, as shown in Figure 1 (b). Although a gain or loss
< 1 kb is not regarded as a CNV but as a deletion or
insertion in the DGV criteria [32], all gain and loss data
were used as CNVs in this study. When sequencing
techniques were used, small gain and loss could be
detected, as shown in this figure. On the other hand,
when SNP array or array CGH was used, only long
CNVs could be detected due to the sparseness of the
probe density on a genome.

Table 4 Sensitivity of each detection program when other experimental result is regarded as golden standard

Programs Korbel [6] Kidd [7] (PE Kidd [7] Tuzun [8] Conrad [25] Shaikh Redon  Perry Conrad  Park [29] (array-
(PE sequencing) -validation (PE ** [26] ** [11] [27] [28] CGH and
sequencing) sequencing) (Mendelian  (lllumine (Tiling (array  (Tiling massively parallel

consistency) Data) array) CGH) array) sequencing)

PennCNV  2.2* 05 12 52 237 370 12 18.1 26.2 270
(2.1 (0.7) (1.5) (7.8) [37.1] (1.1) (22.3) (24.5) (33.0)

Birdseye 24 06 14 7.7 300 40.7 0.8 134 235 279

(part of (24) (1.0) 2.1 (13.9) [44.4] 0.9) (14.0) (24.1) (36.9)

Birdsuite)

Birdsuite 5.5 20 55 172 46.1 519 22 256 354 429
6.1) 4.3) (8.8) (24.8) [704] (3.2 (30.0) (35.9) (56.2)

DNAcopy 1.7 04 1.1 52 204 444 0.7 9.9 153 19.1
(1.6) 0.9 (1.9 (9.0 [48.1] (1.2) (11.8) (17.9) (28.7)

CGHseg 05 0.1 03 15 182 296 04 7.0 77 96
(0.3) (0.3) (0.6) (2.7) [29.6] 0.7) (6.4) (9.3) (12.6)

*Sensitivity of all data, () represents deletion-only data.

Sensitivity: Common data between “other experimental results” and “each CNV detection program’s results” divided by “other experimental results”.
Commonly utilized individuals between this study and other experiment are used for calculating sensitivity and specificity.

CNV segments with overlap > 80% are regarded as commonly detected segments.

Kidd-validation: Kidd results that are also detected using other experimental methods in the paper’.

**Conrad and Shaikh data include only deletion data.
[1 represents ratios with overlapping ratio > 30% and CNV length > 10 kb.
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The results of the section ‘Evaluation of CNV detec-
tion algorithms using trios data’ and ‘Evaluation of CNV
detection algorithms by comparing other experimental
results’ indicate that Hidden Markov based programs
PennCNV and Birdseye (part of Birdsuite), or Birdsuite
(mainly consisting of Birdseye and EM-based Canary)
are superior to others when the high CNV reproducible
(stability) rates of the same individuals and the low
Mendelian inconsistencies are taken into account. For
measuring sensitivities with other experimental results,
Birdsuite is the best. However, overlapping rates with
other experimental results suggest that there remain
many false negatives and some false positives, although
other experimental results are also expected to contain
many false positives and negatives.

CNVs of original data of healthy Japanese

Overlap between DGV, HapMap, and original data

CNVs of the original 180 healthy Japanese individuals are
detected by these five programs using parameters that
achieved the best performance in HapMap data in Sec-
tion ‘Evaluation of CNV detection algorithms using trios
data’. The similarity of CNVs detected using each pro-
gram is summarized as the sensitivity in supplemental
Table 3S [Additional file 2: Supplemental Table 3S].
Table 5 lists the overlap ratios (specificity) of HapMap
data and original data with Conrad’s data (JPT+CHB 90
individuals) [28] and Park’s data (30 Asian individuals)
[29] and summarizes the influence of commonality
among individuals. Unlike Table 4, the overlap ratio (spe-
cificity) of Table 5 was calculated not by individual level,
but by whole level (pooled CNVs). Compared to the
CNVs detected in the HapMap data, the overlap ratios of
the original data with Conrad’s data and Park’s data are
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low in all programs except Birdsuite. In every case, Bird-
suite, especially the Birdseye module, shows high overlap
ratio. When regions commonly detected using at least
two programs are selected, the overlap ratio increases
except for the results from the Birdseye (part of Bird-
suite), as shown in Table 5. Therefore, it is expected that
commonly detected CNVs using two programs are reli-
able CNV regions. When the number of commonly
detected individuals increases, the overlap ratio also
increases as shown in Table 5, suggesting that the repeat-
edly detected regions are plausible common CNVs.

The numbers of commonly detected CNVs with Hap-
Map data and original data of healthy Japanese are sum-
marized in supplemental Table 4S [Additional file 2:
Supplemental Table 4S]. Since the overlap between ori-
ginal data and HapMap data should be JPT/CHB > CEU
> YRI, considering the genetic distance of ethnics, the
tendency JPT/CHB > CEU > YRI in any program is rea-
sonable in Table 4S.

Characteristics of CNV regions

As interpretations of origin of copy number variations,
two mechanisms have been proposed [35]. One is the
non-allelic homologous recombination (NAHR, ectopic
HR) mediated mechanism and the other is a microho-
mology-based mechanism. NAHR requires long repeated
sequences (up to 300 bp in human [36]) in the start and
end regions of CNVs, while microhomology requires
only 5-15 bp homology sequences. NAHR is expected to
occur by unequal crossing-over and break-induced repli-
cation (BIR). Single-strand annealing (SSA) is also a
deletion mechanism [35]. In SSA, the complementary
single-stranded sequences of the 5’-end of a double-
strand break are annealed, and the regions between the
two complementary sequences are deleted.

Table 5 Overlap ratio of original data and HapMap data with Park and Conrad’s data

Programs Average of Average of
overlap ratio  overlap ratio of
of HapMap original data

with Conrad’s
data [28] and

with Conrad'’s
data [28] and

Average of overlap ratio Average of overlap ratio Average of overlap ratio
of original data of
commonly detected
regions at least two
programs, with Conrad’s

of original data of
commonly detected
regions in more than
two individuals, with

of original data of
commonly detected
regions in more than
nine individuals with

Park’s data Park’s data [29] data [28] and Park’s Conrad'’s data [28] and Conrad’s data [28] and
[29] data [29] Park’s data [29] Park’s data [29]
PennCNV [8986/5619] 52.2/53.206*° 35.8/39.7% 42.5/45.2% 57.8/58.6% 61.8/62.3%
44.6/50.8%°° 32.1/39.0% 42.7/48.2% 58.6/63.9% 62.9/68.0%
Birdseye (part of Birdsuite) 68.7/69.6% 71.0/71.6% 62.1/63.1% 75.6/758% 79.4/79.5%
[6959/5063] 62.9/65.6% 81./83.2% 71.4/74.6% 86.7/88.5% 91.6/92.9%
Birdsuite [31852/25794] 66.3/66.6% 65.0/65.3% 65.2/65.9% 67.9/67 9% 70.6/70.6%
53.4/56.5% 63.8/66.8% 73.9/77.1% 67.1/70.1% 69.7/72/7%
DNAcopy [10243/4436] 63.2/64.2% 24.2/27 8% 33.8/36.6% 66.4/66.8% 72.5/72.5%
49.6/54.1% 20.0/25.6% 33.4/38.6% 61.9/66.4% 67.6/71.1%
CGHseg [4043/1966] 54.7/56.6% 31.1/38.8% 38.1/41.6% 68.0/69.6% 74.5/75.5%
38.9/454% 219/31.7% 33.7/404% 56.3/63.3% 60.8/65.5%

*ratio of 80% < CNV overlap segments/ratio of 5% < CNV overlap segments.
$:Comparison with Conrad’s data, $$ Comparison with Park’s data.

[I: represents total number of CNVs/total number of CNV deletions in original data.
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The ratios of the CNV start and end regions where
segmental repeats are included, are listed in Table 6.
The segmental repeats annotated by UCSC [37] were
used. Segmental repeats are sequences that have
sequence similarity with another genomic location
(> 1kb and > 90% sequence similarity). Although the
threshold of repeat length is not imposed in Table 6,
the tendencies are not changed even if the threshold is
set at 300 bp. The + 1kbp in Table 6 indicates the
regions = 1kbp of the CNV start and end region, that is,
-1k bp to +1k bp of the start region and -1kbp to +1kbp
for the end region are used. These comparatively long
start and end regions are used because the probes in an
array are sparse and both experimental and computa-
tional errors are expected in the start and end regions
of detected CNVs. Even when the regions are narrowed
to £ 500 bp, the tendency of the results is not changed,
as shown in Table 6. Commonl represents the CNV
regions detected using at least two programs, while
Common?2 represents the CNV regions detected in at
least five individuals by using PennCNV and at least one
other program. The enrichment of segmental repeats in
CNV regions was reported in previous studies [11,38].
Table 6 shows that the ratios of CNVs including seg-
mental repeats in both start and end regions are higher
than those of randomly selected regions. The differences
between Commonl and Common2 are not large.
Table 6 also lists the ratios of CNVs including inter-
spersed repeats such as long and short interspersed
nuclear elements (LINE and SINE, respectively) and
long terminal repeat (LTR) in the start and end regions
of CNVs. The repeats identified in UCSC [37] using
Repeat Masker 3.2.7 were used. The CNV ratios, includ-
ing repeats in both the start and end regions in Com-
monl and Common?2, are significantly higher than those
of randomly selected regions in any interspersed repeat
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kind except “only SINE”. The ratios of Commonl and
Common2 are higher than those of randomly selected
regions also in “LTR”, but the difference is small.
Furthermore, the ratios of Common2 are higher than
those of Commonl in most cases of any interspersed
repeat kind except “only SINE”.

In all detection programs, with an increasing number
of commonly detected individuals, the CNV ratios con-
taining interspersed repeats or segmental repeats also
increased as shown in supplemental Table 5S [Addi-
tional file 2: Supplemental Table 5S]. (It should be
noted that there are no obvious relationships between
these ratios and the stability rate or the Mendelian
inconsistency ratio of each program.) When the ratios
of CNVs including “segmental repeats or interspersed
repeats” in start and end regions of CNVs are calculated,
the results are higher than “segmental repeats” only or
“interspersed repeats (ALL)” only as shown in Table 6.
About 40% of segmental repeats detected around CNVs
include interspersed repeats. Of these segmental repeats,
LINE and LTR are about 50% and 15%, respectively.
Since LINE, SINE, and LTR account for about 52%,
14%, 23% of all interspersed repeats in the human gen-
ome (hgl18), respectively, there are no LINE biases in
the segmental repeats around CNVs. The enrichment of
interspersed repeats and segmental repeats is also
observed in previous experimental data as shown in sup-
plemental Table 6S [Additional file 2: Supplemental
Table 6S]with a few exceptions.

These results indicate that not only segmental repeats
but also interspersed repeat regions, especially “LINEs”,
have an important role in the formation of CNVs, at least
in frequently observed copy number variations, although
there is a possibility that interspersed repeats promote
segmental repeats. Although both SINE and LINE ele-
ments have been reported to contribute structural

Table 6 The segmental repeats and interspersed repeats-included percentage of start and end regions of CNV

Programs Segmental repeats  ALL*  Only SINE  Only LINE  Only LTR  Segmental repeat + interspersed repeats (ALL¥)
Random* 2.8 17.3% 0.0 78 1.6 19.6
+ 500bp

Random 29 21.7 04 10.6 19 241
+ Tkbp

CNVCommon 340 248 0.0 124 23 539
+ 500bp

CNVCommonl 34.6 395 13 219 56 62.7
+ 1kbp

CNVCommon?2 322 29.1 0.0 11.6 25 53.7
+ 500bp

CNVCommon?2 33.1 438 0.0 258 50 65.3
+ Tkbp

ALL* means all interspersed repeats of repeatmasker 3.2.7.

CNVcommon1: 315 CNV regions detected by at least two programs and more than once.
CNVcommon2: 121 CNV regions detected by PennCNV more than four times (that is, at least five individuals) and at least one other program. Random*: 1000

randomly extracted regions whose lengths are close to extracted CNV lengths.
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Table 7 Average conservation score of start and end of
CNV regions

Regions Average Average
conservation score  conservation score
in start regions in end regions

Random + 500bp 62.7 67.8

Random + 800bp 60.9 77.0

Random + Tkbp 69.1 76.0

CNVCommon1 + 500bp 382 51.1

CNVCommon1 + 800bp  42.5 556

CNVCommon1 + 1kbp 479 62.3

CNVCommon2 + 500bp 329 476

CNVCommon2 + 800bp 35.7 50.8

CNVCommon2 + 1kbp 394 57.0

CNVcommon1: 315 CNV regions detected by at least two programs and more
than once.

CNVcommon2: 121 CNV regions detected by PennCNV more than four times
and at least one other program.

Scored sum value of phastCons44wayPrimates (UCSC) is used as Conservation
score.
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variations [39], our results and those of others [11] do
not support a contribution of SINE to formation of
CNVs.

When the CNV ratios including simple repeats and
mobile elements (provided in UCSC) in both the start
and end regions are compared, there are no differences
among Commonl, Common2, and random values. The
recombination rate of these regions (+ 500 bp) calculated
using the Marshfield average does not show statistically
meaningful differences among random values ( = 1.17)
and CNV commonl ( = 1.14) and common2 ( = 1.18).

The expected length, 5-15 bp, of microhomology is
too short to use array-based CNV detection methods. In
many CNV start and end regions, microhomologous
sequences were found but there were almost no statisti-
cal significances (for example, 4bases"5bp is at most
1024) when the start and end positions of CNVs were
ambiguous due to sparseness of probe positions. Conrad
et al. [40] have investigated breakpoints of CNV
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deletions by massive parallel sequencer and found 70%
of them have microhomology. Sequencing of these
regions is necessary to confirm their importance.

Table 7 compares the conservation scores from pri-
mates (UCSC phastCons44wayPrimates [37]). This table
indicates that the start and end regions of CNVs are
lower than random values, and CNV Common2 shows
smaller conservation scores than those of CNV Com-
monl. In all detection methods, as the number of com-
monly detected individuals increased, the average
conservation score of the CNV start and end regions
decreased (data not shown). When the number of CpG
islands is counted in the CNV start and end regions, it
is slightly smaller than those in random regions (P =
0.034). This seems reasonable because CpG islands are
sparse in repeat regions.

The above-mentioned tendencies in the start and end
regions of CNVs were also observed in our CNV results
of HapMap data, and differences between CNV duplica-
tions and deletions were not observed. It should be
noted that although the overlapping ratio between our
CNV results of HapMap data and other experimental
data are low, most of them have the similar tendency
that both segmental repeats and interspersed repeats
(especially LINE) are enriched in CNV start and end
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regions, and conservation scores based on primates are
lower in these regions than in randomly selected
regions.

CNV database construction

In the Japanese Integrated Database Project of MEXT,
our organization (Univ. of Tokyo, Univ. of Tokai, and
Hitachi, Ltd.) has constructed and maintained a public
repository for the genome-wide association study
(GWAS) database for continuous and intensive manage-
ment of GWAS data and to facilitate data-sharing
among researchers [41]. A CNV control database has
been constructed as a part of the GWAS database.

Since the start and end positions are slightly different
between individuals, this makes it difficult to understand
common CNV structures. Accordingly, CNVs with start
and end positions located within 20 probes are regarded
as the same CNV regions by clustering CNVs of all indivi-
duals. Screenshots of the CNV control database are shown
in Figures 2 and 3. As shown in Figure 2, interfaces for the
overview of CNVs on whole genomes and for region infor-
mation are provided. Results both with and without clus-
tering can be depicted, as shown in Figure 3. The above-
mentioned original data are stored in this database.

In this system, bulk CNV data are freely available, but
a simple application is required for accessing CNV data
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at the individual level. To use raw data for CNVs,
researchers must submit an application describing the
research purpose in detail to the database access com-
mittee. Access is determined at the data sharing review
board. The details of the data sharing policy are sum-
marized in http://gwas.lifesciencedb.jp/gwasdb/db_poli-
cy_en.html.

The CNV control database is accessible at http://gwas.
lifesciencedb.jp/cgi-bin/cnvdb/cnv_top.cgi.

Conclusions

In this study, we evaluated five widely used CNV detection
programs, Birdsuite, Birdseye (part of Birdsuite),
PennCNV, CGHseg, and DNAcopy from the viewpoint of
performance on the Affymetrix platform using HapMap
data and other experimental data. Our results indicate that
hidden Markov based programs PennCNV and Birdseye
(part of Birdsuite), or Birdsuite are superior to others
when the high CNV detection stability (reproducibility)
rates of the same individuals and the low Mendelian
inconsistencies are considered. For measuring the sensitiv-
ity of other experimental results, Birdsuite shows the best
performance. However, the low overlapping rates with
other experimental results imply that there remain many
false negatives and some false positives, although other
experimental results also contain many false positives and
negatives.

The analysis of start and end regions of CNVs in the data
for healthy Japanese and the HapMap data showed that
both segmental repeats and interspersed repeats are
enriched in CNV start and end regions, suggesting that not
only segmental repeats but also interspersed repeats, espe-
cially LINE, are deeply involved in CNV formation, particu-
larly in common CNV formations, although the previous
studies mainly focused on segmental repeats [9,11]. There
are CNVs without segmental repeats or interspersed
repeats. They might contain microhomologies or other
characteristics, the resolution of SNP array seems too
coarse to analyze microhomologies. Other sequence level
technologies will be required for further detailed analysis.

Additional material

Additional file 1: Supplementary Figures. Figure 1S (a) Relationship
between standard deviation of probe intensity logsratio of each
microarray and number of CNV segments per individual in HapMap data.
(b) Relationship between call rate (the percentage of probes with
genotypes determined in the genotype calling process) and number of
CNV segments per individual in HapMap data. Figure 2S (a) Relationship
between standard deviation of probe intensity logsratio of each
microarray and number of CNV segments per individual in original data.
(b) Relationship between call rate and number of CNV segments per
individual in original data.

Additional file 2: Supplementary Tables.
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