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Abstract

Background: With the completion of the international HapMap project, many studies have been conducted to
investigate the association between complex diseases and haplotype variants. Such haplotype-based association
studies, however, often face two difficulties; one is the large number of haplotype configurations in the
chromosome region under study, and the other is the ambiguity in haplotype phase when only genotype data are
observed. The latter complexity may be handled based on an EM algorithm with family data incorporated, whereas
the former can be more problematic, especially when haplotypes of rare frequencies are involved. Here based on
family data we propose to cluster long haplotypes of linked SNPs in a biological sense, so that the number of
haplotypes can be reduced and the power of statistical tests of association can be increased.

Results: In this paper we employ family genotype data and combine a clustering scheme with a likelihood ratio
statistic to test the association between quantitative phenotypes and haplotype variants. Haplotypes are first
grouped based on their evolutionary closeness to establish a set containing core haplotypes. Then, we construct
for each family the transmission and non-transmission phase in terms of these core haplotypes, taking into account
simultaneously the phase ambiguity as weights. The likelihood ratio test (LRT) is next conducted with these
weighted and clustered haplotypes to test for association with disease. This combination of evolution-guided
haplotype clustering and weighted assignment in LRT is able, via its core-coding system, to incorporate into
analysis both haplotype phase ambiguity and transmission uncertainty. Simulation studies show that this proposed
procedure is more informative and powerful than three family-based association tests, FAMHAP, FBAT, and an LRT
with a group consisting exclusively of rare haplotypes.

Conclusions: The proposed procedure takes into account the uncertainty in phase determination and in
transmission, utilizes the evolutionary information contained in haplotypes, reduces the dimension in haplotype
space and the degrees of freedom in tests, and performs better in association studies. This evolution-guided
clustering procedure is particularly useful for long haplotypes containing linked SNPs, and is applicable to other
haplotype-based association tests. This procedure is now implemented in R and is free for download.

Background
High-density sets of SNPs, especially haplotypes, have
been used widely in genetic research to explore possible
association with complex diseases. Haplotypes are con-
sidered to be the biological units containing more infor-
mation about transmission, and thus may be better
biomarkers to use in examining the disease susceptible

region. However, haplotype phase is often unknown
when only genotype data are observed. This linkage
phase ambiguity often leads to large degrees of freedom
in statistical tests, and may result in estimation of many
haplotypes with rare frequencies. Collection of family
genotype data may help in determination of haplotype
phase if information from other family members can be
incorporated and cross-referenced. Additionally, the use
of family data can avoid spurious association arising
from population admixture. Nevertheless, the statistical
analysis of family data may not be straightforward. For
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instance, the nonparametric transmission disequilibrium
test (TDT) and other similar tests utilize the transmitted
and non-transmitted alleles (or haplotypes) to detect
association. For uncertainty both in transmission and in
phase, most procedures adopt an expectation-maximiza-
tion (EM) algorithm in computation of score statistics
or likelihood functions, such as FBAT [1] and FAMHAP
[2,3]. These methods infer haplotypes based on nuclear
families, where any number of children and configura-
tion of missing genotype data are allowed. FBAT consid-
ers score statistics for the number of risk haplotypes
among affected offspring; whereas FAMHAP adopts a
likelihood approach to estimate haplotype frequencies
and to test for association based on nuclear family
members or unrelated individuals.
As for addressing the problems that result when a

large number of different haplotypes are involved in
analysis and when certain haplotypes occur with very
low frequency, several approaches have been adopted.
Some studies have deleted haplotypes with small esti-
mated frequencies [4,5], and some have combined these
rare haplotypes to form a new group. Although these
procedures can reduce the total number of parameters
and the inflated variation due to small frequencies, they
risk information loss due to the arbitrary deletion or
grouping of rare haplotypes. In contrast, several proce-
dures have adopted an approach which uses a measure
of evolutionary relationship to cluster rare haplotypes in
case-control studies [6-10]. These clustering algorithms
define a core set of haplotypes that are considered
“ancient,” where being ancient is approximated by being
more frequent [7-10]. Once the core set is determined,
rare haplotypes are then clustered with their ancestors
as well as denoted by them. For family data, we want to
employ such a clustering scheme, so that the statistical
tests can be conducted more efficiently.
Under the assumption of random mating and with the

use of transmitted and non-transmitted haplotypes from
parents, we construct for family data a core set of haplo-
types based on estimates of haplotype frequencies. In
the following sections, we start with the notation used
in Becker and Knapp [2], conduct the clustering proce-
dure for family data based on frequency estimates from
FAMHAP, determine the pair of transmitted and non-
transmitted core-coding haplotypes, and introduce the
assignment of coding to be used later in our tests of dis-
ease association. The uncertainty in phase explanation,
in transmission status, and in core representation asso-
ciated with each genotype will be expressed with
weights. Unlike the analysis for case-control studies,
these weights are essential for further statistical analysis
of pedigree data. We next adopt this transformed data
in a likelihood ratio test (LRT) of association, and call it
LRT-C. This LRT-C modifies the original test in

FAMHAP in terms of the core haplotypes. To evaluate
if the proposed clustering approach can identify cor-
rectly the true core haplotypes and to demonstrate the
advantage of LRT-C accrued by inclusion of an evolu-
tionary interpretation, we conduct simulation studies by
applying a coalescent-based whole genome simulator
GENOME [11]. For the purpose of comparison with
other tests, we consider the original LRT in FAMHAP, a
score test in FBAT, and a naïve LRT with all rare haplo-
types clustered to form a new group (LRT-G).

Methods
Notation
Following the same notation used in Becker and Knapp
[2], let Gi denote the set of unphased genotypes in the i-th

family, Gi = (Gf
i ,G

m
i ,G

c1
i ,G

c2
i , ...,G

cni
i ), where the super-

scripts index the members in the i-th family. For example,

Gf
i
and Gm

i are multilocus genotypes of father and mother,

respectively, and GCl
i denotes the genotype of the l-th

child, where 1 ≤l≤ni and ni is the number of children in
the i-th family. If haplotypes j and k are compatible with

the father’s genotype Gf
i
, this relation is denoted by

j |k = Gf
i
. Similarly, if haplotypes u and v are compatible

with the mother’s genotype GCl
i , it is then denoted by

u |v = Gm
i . The rest are deduced analogously. Furthermore,

if the l-th child is the proband in the i-th family, then his/
her haplotype transmission patterns will be inferred with
reference to each sibling’s genotype information as well as
the parents’ information. Therefore, we define Cl

Gi
as the

haplotype explanation set containing all possible haplotype
transmission patterns compatible with, Gi,

Cl
Gi

= {(j, k, u, v) : j |k = Gf
i , u |v = Gm

i ,

j |u = Gcl
i , s(G

cl′
i , j, k, u, v) > 0 all l′ �= l}

where s(Gcl′
i , j, k, u, v) represents the number of trans-

mission patterns of (j, k, u, v) that are compatible with
the genotype Gcl′

i of the child l’.
It is worth noting that, under the null hypothesis of

no association, Cl
Gi
is the intersection of all Cl′

Gi
for l’ =

1,...,ni in the i-th family. Consequently, the estimation of
haplotype frequency is independent of who the proband
is. In contrast, when the gene is associated with the dis-
ease, the haplotype explanation set Cl

Gi
and the estima-

tions of the transmitted and non-transmitted haplotype
frequencies will depend on the ascertained proband.
Therefore, throughout this paper, we rearrange the
order of children such that the first child is always the
first affected one in each family. In the following, we
use FAMHAP to estimate the configurations of haplo-
types and their corresponding frequencies based on
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likelihoods. In fact, at this stage of computation, other
public software programs like FBAT and Transmit [12]
can provide stable estimates as well.

Step 1 Clustering haplotypes
With the frequency approximating the “age” of haplotypes,
a cladistic clustering approach is conducted based on their
evolutionary relation. Similar to the haplotype clustering
method for case-control studies in Tzeng [6], here we
identify first the ancestor (core) and descendent haplo-
types based on family data, and then cluster the descen-
dents with their ancestors for dimension reduction.
The selected core haplotypes are the leading c haplo-

types with a cumulative sum of frequencies reaching

90%, and are defined as the set H(0) = {h0(1), h0(2), ..., h0(c)}
with corresponding frequencies∏(0) = {π0

(1),π
0
(2), ...,π

0
(c)}.

The superscript is the number of generations in the
evolutionary tree, and the subscript stands for the order
of haplotype frequency from large to small. Similarly,
the set of haplotypes with one step mutation from H(0)

is denoted as H(1), and those m steps away are contained
in H(m). For each set H(m), the corresponding haplotype
frequencies are denoted as ∏(m), where m = 1,...,M and
M is the largest distance. Between any two adjacent sets
H(m) and H(m-1), an allocation matrix B(m) is defined to
represent the probability that a certain haplotype in H
(m) is a direct descendant of a haplotype in H(m-1) [6,13].
Therefore, the frequencies of the core haplotypes can be
revised as

(
∏∗

core
)t = (

∏(0)
)t + (

∏(1)
)tB(1)

+ (
∏(2)

)tB(2)B(1) + · · ·

+ (
∏(M)

)tB(M)B(M−1) · · ·B(2)B(1)

where (∏(m))t is the transpose of ∏(m). Detailed expla-
nation is provided in Additional file 1.
Note that the above derivations do not require the

information of haplotype phase for each family member.
In other words, any software which provides estimates
of haplotype frequencies can be applied at this stage.
However, we prefer FAMHAP because it also computes
for each family the compatible transmitted and non-
transmitted haplotypes, along with the weights, which
will be utilized in the following steps of recoding and
testing.

Step 2 Recoding transmission and non-transmission
haplotypes for analysis
After determining the core haplotypes with updated fre-
quencies, we begin to rewrite the remaining non-core

haplotypes in terms of their corresponding ancestor
haplotypes in the core. In other words, all representa-
tions including haplotype explanation, phase uncertainty,
and transmission stages are rewritten as a function of
the core in order to reduce dimensionality. This recod-
ing procedure can be carried out via the allocation
matrix B(m) defined earlier. Let matrix Γm be the pro-
duct of m matrices B(m),B(m-1),... and B(1), thus the row
dimension of Γm indicates the number of rare haplo-
types in H(m), and the column dimension of Γm stands
for the number of core haplotypes in H(0). For instance,
the i-th row in Γm is

�m
i =

[
B(m)B(m−1) · · ·B(2)B(1)

]
i, (1)

where c this -dimensional row vector lists the prob-
abilities that the i-th haplotype in H(m) is to be clustered
with the ancestor haplotypes in the core. Therefore, in
the following the original frequency πm

(i) of a rare haplo-

type is replaced by γm
(i), a linearly weighted sum of the

modified core haplotype frequencies

γm
(i) = �m

i × ∏∗
core . (2)

The transmission status, along with its probability,
haplotype phase ambiguity, and evolution uncertainty,
can now be re-arranged, before statistical analysis, using
equation (2). For instance, under the alternative hypoth-
esis of association, the frequency of the i-th haplotype
in H(m) for the transmission group Tr becomes
γm
(i),T (= �m

i × ∏∗
Tr.core), where

∏∗
Tr.core is the updated core

haplotype frequency vector

(
∏∗

Tr.core
)t = (

∏(0)

Tr
)t + (

∏(1)

Tr
)tB(1)

+ (
∏(2)

Tr
)tB(2)B(1) + · · ·

+ (
∏(M)

Tr
)tB(M)B(M−1) · · ·B(2)B(1)

and
∏(m)

Tr
is the frequency vector of transmitted haplo-

types in H(m). For the non-transmission group NTr, the
calculations of γm

(i),NTr and
∏∗

NTr.core are carried out in the
same way.

Step 3 Likelihood ratio test with clustered haplotypes
(LRT-C)
We now derive the likelihood ratio test statistic with all
parameters rewritten in terms of the core haplotype fre-
quencies. This amounts to rewriting Becker and Knapp’s
[14] procedure with only (c - 1) parameters,

−2·
{

n∑
i=1

ln L1∗
i (

∏∗
core

|H0)

−
n∑
i=1

ln L1∗
i (

∏∗
Tr.core

,
∏∗

NTr.core
|H1)

}
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where n is the number of families and

L1∗
i (

∏∗
Tr.core

,
∏∗

NTr.core
|H1) is the likelihood of the i-th

family under the alternative with the first child being
affected

L1∗
i (

∏∗
Tr.core

,
∏∗

NTr.core
|H1) =

∑
(j,k,u,v)∈Cl

Gi

γj.Trγk.NTrγu.Trγv.NTr

ni∏
l′=1
l′ �=l

s(GCl′
i , j, k, u, v)

4
.

The gj.Tr and gu.Tr stand for frequencies in the new
representation (2) for the transmitted haplotypes (j,u),
and gk.NTr and gv.NTr are the modified frequencies for
the non-transmitted haplotypes (k,v). The function s is
the number of transmission patterns compatible with
the genotype Gcl′

i of the l’-th child cl ’, as defined in
Becker and Knapp’s paper. Note that the value of will
not differ no matter what haplotypes, core or not, are
being investigated. That is, there is no need to recom-
pute s with respect to the core system, and its value
derived when specifying the haplotype explanation set

Cl
Gi

in the beginning of this procedure can be used
directly here.

Results
To evaluate the performance of the likelihood ratio test
with clustered haplotypes in family studies, we conduct
simulations to first examine the reconstruction and
identification of core haplotypes, and next to evaluate
the impact of this clustering scheme on the likelihood
ratio test. The results are compared with three family-
based association methods, FAMHAP [2], FBAT [15],
and finally an LRT using a naïve group composed exclu-
sively of rare haplotypes (LRT-G).

Sampling scheme for simulations
The SNP haplotype sequences were first simulated
based on a coalescent-based whole genome simulator
GENOME [11]. These sequences were generated from a
population with an effective size of 10,000, with the
number of SNPs assumed to follow a Poisson distribu-
tion with mean equal to the product of mutation rate
10-6/bp, and with 1,000 base pairs per each fragment.
The recombination rate between ten consecutive frag-
ments was assumed to be 10-4. Default settings were
used for other parameters such as the mutation and
migration rates of 10-6 and 2.5 × 10-4, respectively. This
resulted in 100 sequences with 972 SNPs. After deleting
alleles with minor allele frequency (MAF) less than 5%,
536 SNPs were left. Haploview [16] was next used to
identify haplotype blocks and to extract tag SNPs.
Finally, seven blocks were determined. We selected the
longest block, the seventh, for use in constructing the

data for nuclear families and derived 13 tag SNPs which
formed 15 haplotypes in this region. Figure 1 shows the
linkage disequilibrium (LD) plot with haploview. A com-
plete plot of LD for all tag SNPs with corresponding
haplotype blocks is displayed in Additional file 2. Fig-
ures 2 and 3 display the corresponding minor allele fre-
quencies and the haplotype frequencies, respectively.
In the following simulations the number of families N =
200 was considered. For each family, the number of
children, in addition to the proband, follows a Poisson
distribution with mean 2, and this value was kept the
same for this family in each replication. Let one of the
marker loci ‘ A ’ denote the liability allele with fre-
quency p fixed at 0.1, 0.25, or 0.5. Let fi be the pene-
trance function, where i = 0, 1, 2, and let r = f1/f0 = 2,
2.5, or 3 be the relative ratio. The prevalence K was set
at 1% under the recessive, additive, and dominant mod-
els. These values for simulation settings are listed in
Table 1. There were 27 simulation settings considered,
and there were 1,000 replications under each setting.
For each family, we generated first the haplotypes of the
proband, next the parents’ non-transmitted haplotypes,
and then the haplotypes of other siblings. All haplotype
data were transformed to genotypes before analysis.

Identification of core haplotypes and tests of association
Once the family genotype data were simulated, they
were used to estimate haplotype compositions, corre-
sponding frequencies, and also the set of core haplo-
types. Figure 4 displays the average number of
haplotypes identified in the simulation studies under the
additive model for various numbers of families (N = 50,
100, and 200) and relative ratios (r = 2 and 3). These
numbers are all close to the true value 15. Results under
the dominant and recessive models are similar (data not
shown here). In Figure 5, we plot the average percentage
of identified core haplotypes among the set of ten true

Figure 1 LD plot. LD plot of the simulated region.
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core haplotypes. The percentages are high indicating
good representation and consistency of this evolution-
guided clustering procedure for family data. It can be
observed in the figure that the percentage of core haplo-
types being identified by our procedure is not much
affected by the frequency p of the susceptible allele A,
or by the mode of inheritance. For example, under
recessive models with r = 2 (the solid pink line in Figure
5), the percentages are 90%, 91%, and 89% for p = 0.1,
0.25, and 0.50, respectively, corresponding to the aver-
age numbers 9.4, 9.4, and 9.2 core haplotypes being

identified among the 10 true cores. In addition, when p
is fixed at 0.5, the percentages are 89%, 90%, and 89%
for the additive, dominant, recessive model, respectively,
implying robust performance of the evolutionary cluster-
ing procedure.
After the core haplotypes are determined, the next

step is to construct the likelihoods under the null and
the alternative hypotheses, respectively, with all haplo-
type frequencies replaced by the revised core frequen-
cies. This new modified likelihood ratio test with
clustered haplotypes, LRT-C, is compared with a non-
parametric score test in FBAT, an LRT with all rare
haplotypes grouped into a single class (LRT-G), and an
original test in FAMHAP. The resulting powers for N =
200 are displayed in Table 2. Under each setting, the
largest power among the three tests is indicated in bold-
face. In most cases, LRT-C is more powerful than the
other three tests. In addition, the power gain from LRT-
C is substantially pronounced when the relative ratio r
is large. The power of LRT-G is between that of LRT-C
and the original FAMHAP most of the time, whereas
FBAT is always the least powerful, except when the
allele frequency p is 0.1 under the recessive model. Type
I errors are presented in Table 3, under the null hypoth-
esis that none of the SNPs (with allele frequency ranging
from 0.05 to 0.5) nor the haplotypes (with frequency
ranging from 0.01 to 0.16) is associated with the disease.
Note that the type I errors of LRT-C, LRT-G and FAM-
HAP are all around nominal values; while that of FBAT
is the smallest.
The above Table 2 seems to indicate a poor relation-

ship between the power performance and the allele fre-
quency p = P(A) under the recessive model. For
instance, when p = 0.1, the power under the additive
and dominant model is satisfactory; while the power
under the recessive model is only around 0.05. One pos-
sible explanation could be the influence from pene-
trance, prevalence, and p on P(A|D), where P(A|D) is
the allele frequency among diseased individuals. Because
P(A|D) can be written as [f2 . p2 + f1 . p . (1 - p)]/K (see
Additional file 3 for details), its value is closer to P(A)
under the recessive model. For example, p(A) = 0.1 cor-
responds to P(A|D) = 0.11 when r = 2, which indicates
that the allele A and disease status D are close to inde-
pendent. In other words, it is unlikely in this case that
the allele A is the susceptible marker and, therefore, the
power becomes low. In contrast, under the additive
model, P(A|D) is 0.21 if r = 2 and p = 0.12. In this case,
the allele A may be the susceptible gene and thus the
power is larger. More details on the derivation of P(A|
D) can be seen in Additional file 3 and the comparison
between P(A|D) and P(A) is displayed in Figure 6. The
black solid line in Figure 6 represents the case where
the magnitudes of P(A|D) and P(A) are equal.

Figure 2 Minor allele frequencies. Minor allele frequencies of the
13 SNPs consisting of the haplotype region.

Figure 3 Haplotype frequencies . Frequencies of the 15
haplotypes considered in simulation studies.
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Performance evaluation under population admixture
Another issue of note concerns the effect of population
stratification on the power of LRT-C. To investigate this
effect, we performed further simulation studies with
data generated from two populations via GENOME.
Similar to the procedures described above, we extracted
tag SNPs with Haploview and selected a block with 13
tagSNPs to construct genotype data for N = 200 families

with 100 families from each population. The liability
allele frequency p was set at 0.085, 0.270 and 0.530, cor-
responding to allele frequencies (0.09, 0.43, 0.51) for the
first population and (0.08, 0.11, 0.55) for the second.
The number of children, penetrance function, relative
ratio, genetic models and prevalence were the same as
previously defined. Table 4 lists the power of the four
association tests under the population admixture data,
where LRT-C is the most powerful and FBAT has the

Table 1 Penetrance values for simulation settings

additive model dominant model recessive model

104 × f0 104 × f1 104 × f2 104 × f0 104 × f1 104 × f2 104 × f0 104 × f1 104 × f2

r = 3

p = 0.1 71 214 357 72 217 217 98 98 294

p = 0.25 50 150 250 53 160 160 89 89 267

p = 0.5 33 100 167 40 120 120 67 67 200

r = 2.5

p = 0.1 77 192 308 78 195 195 99 99 246

p = 0.25 57 143 229 60 151 151 91 91 229

p = 0.5 40 100 160 47 118 118 73 73 182

r = 2

p = 0.1 83 167 250 84 168 168 99 99 198

p = 0.25 67 133 200 70 139 139 94 94 188

p = 0.5 50 100 150 57 114 114 80 80 160

Numbers listed are scaled penetrance values (104 × f0, 10
4 × f1, 10

4 × f2) corresponding to different allele frequencies (p) and relative ratios (r) under three
genetic models

The prevalence K is set at 0.01

Figure 4 Average number of identified haplotypes under the
additive model. The number of haplotypes identified in the
simulations under various numbers of families (N), relative ratios (r),
and liability allele frequencies (p) under additive models. Red lines
are for N = 200 families, blue for N = 100 families, and pink for N =
50. Solid lines are for r = 2 and dashed lines for r = 3.

Figure 5 Average of percentage of identified core haplotypes.
The average percentage of identified core haplotypes among the
10 true core haplotypes under different allele frequencies p. Red
lines are for N = 200 families, blue for N = 100 families, and pink for
N = 50. Solid lines are for r = 2 and dashed lines for r = 3.
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smallest power. This result demonstrates that the effect
of population admixture on LRT-C is much smaller
than it is on either FAMHAP or TRANSMIT, whereas
FBAT and the HAP-TDT option in FAMHAP [14,17]
can escape only partially from this admixture problem
[18], especially when the mode of inheritance is not
additive. In addition, the newly developed feature HAP-
TDT in FAMHAP does not allow missing data, which
makes it less appealing than the original feature in
FAMHAP where missing genotype data is allowed for
family members.

Discussion
In this paper, we have constructed a family-based asso-
ciation test using clustered haplotypes. The four key
steps are: (1) to determine the core set on the basis of
haplotype frequencies, (2) to perform the clustering pro-
cedure based on a haplotype cladogram, (3) to represent
the rare haplotype frequencies in terms of the revised
core frequencies, and (4) to incorporate the phase ambi-
guity, transmission uncertainty, and core-representation
variability via likelihood weights. Our simulations show
that both haplotype reconstruction and core identifica-
tion perform well with more than 91% accuracy for
cases where number of families N ≥ 100. In addition,
the results show great improvement in test power, as
compared to the original FAMHAP, FBAT, and LRT-G.
Our proposed procedure is useful for long haplotypes
containing many SNPs in LD. If the SNPs are not in

LD, then it is not appropriate to consider haplotypes as
the unit for analysis. In addition, if the haplotypes are of
short length, then both the dimensionality and phase
ambiguity will not be hard to handle. We have also
embedded this clustering algorithm in the likelihood
ratio test under FAMHAP, and this program can be
downloaded freely from the author’s website http://
homepage.ntu.edu.tw/~ckhsiao/download(en).html.
One issue that merits discussion concerns the number

of haplotypes in the core set. As a rule of thumb, we
selected the several leading haplotypes with 0.9 cumula-
tive frequency. This choice is somewhat arbitrary. In
fact, there is a trade-off between the increase in infor-
mation (represented via frequency) and the reduction in
dimensionality. A possible alternative, depending on the
sample size and number of dimensions under considera-
tion, would be to use Shannon’s information with a pen-
alty function. This criterion works by finding l
haplotypes such that Shannon’s net information reaches
its maximum. This criterion, however, is sensitive with
respect to sample size. When sample size gets large, the
penalty decreases faster than the entropy term, and thus
results in inclusion of all haplotypes in the core set,
even those with small frequencies. In other words, this
criterion does not effectively reduce dimensionality
when large sample size prevails.
There are several potential applications for the asso-

ciation test presented here. In many association tests,
the chi-square approximation can be poor due to the
existence of many haplotypes and/or rare haplotypes.
Our clustering procedure may improve the performance
of such statistical methods. Although we only demon-
strate its impact on the likelihood ratio test, we believe
other tests would benefit from this clustering procedure
as well. For instance, after the haplotype phase and

Table 2 Number are the power of four family-based association tests at 5% significance level with N = 200

Additive model Dominant model Recessive model

LRT-C LRT-G FAMHAP FBAT LRT-C LRT-G FAMHAP FBAT LRT-C LRT-G FAMHAP FBAT

r = 3

p = 0.1 0.956 0.914 0.931 0.916 0.898 0.835 0.860 0.864 0.058 0.059 0.062 0.087

p = 0.25 0.997 0.991 0.990 0.987 0.926 0.888 0.863 0.888 0.382 0.334 0.341 0.156

p = 0.5 0.944 0.900 0.896 0.887 0.409 0.382 0.353 0.338 0.941 0.920 0.909 0.117

r = 2.5

p = 0.1 0.815 0.734 0.786 0.743 0.737 0.643 0.683 0.652 0.067 0.063 0.071 0.083

p = 0.25 0.952 0.917 0.912 0.891 0.804 0.748 0.730 0.753 0.256 0.209 0.212 0.089

p = 0.5 0.852 0.794 0.798 0.773 0.322 0.295 0.277 0.267 0.805 0.753 0.726 0.094

r = 2

p = 0.1 0.535 0.438 0.473 0.422 0.446 0.381 0.400 0.368 0.049 0.052 0.054 0.054

p = 0.25 0.769 0.696 0.676 0.645 0.519 0.439 0.452 0.426 0.153 0.138 0.141 0.060

p = 0.5 0.698 0.646 0.607 0.575 0.201 0.193 0.192 0.165 0.490 0.438 0.444 0.068

Table 3 Type I errors of the four family-based association
tests at the 5% significance level

LRT-C LRT-G FAMHAP FBAT

N = 200 0.044 0.045 0.051 0.038
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transmission status are identified and recoded via the
core for each family, the tests in TRANSMIT or FBAT
or other kinds of haplotype inference [19-22] can be
modified. Another application is to use the clustered
haplotypes in regression analysis to incorporate the
environmental influence on quantitative traits [23,24].
Because FAMHAP provides for each family and its indi-
vidual family members the list of all possible haplotype
explanations with corresponding likelihoods, this infor-
mation can be utilized in further analyses. In addition, it
would be interesting to extend this clustering approach
to data containing both independent and related indivi-
duals. A mixture of family-based and population-based
data are sometimes considered in meta-genetic analysis

to enhance the power of an association study. Applying
this clustering technique can further reduce the dimen-
sion of parameters and achieve a larger power in detec-
tion of genetic association with common diseases.
Finally, we would like to point out that we consider in
this paper only simulations from one single population
or from a mixture of two populations. Though the
results look promising, other scenarios are warrant for
further investigation.

Conclusions
For family genotype data, we consider an evolution-
guided clustering tool that clusters rare haplotypes in
order to achieve dimensional reduction, and a

Figure 6 Plots of P(A|D) versus p under three genetic models. The values of P(A|D) correspond to different p ’s under additive model (red
line), dominant model (solid blue line), and recessive model (dashed blue line). The left panel is for r = 2 (Left) and the right for r = 3 (Right).
The straight black line indicates when magnitudes of P(A|D) and p are equal.

Table 4 Numbers are the power of four family-based association tests for population stratification data at the 5%
significance level with N = 200

Additive model Dominant model Recessive model

LRT-C LRT-G FAMHAP FBAT LRT-C LRT-G FAMHAP FBAT LRT-C LRT-G FAMHAP FAT

r = 3

p̄ = 0.085 (0.09, 0.08) 0.918 0.903 0.868 0.793 0.860 0.855 0.771 0.716 0.057 0.066 0.091 0.061

p̄ = 0.27 (0.43, 0.11) 0.908 0.850 0.880 0.838 0.644 0.573 0.638 0.580 0.348 0.309 0.343 0.036

p̄ = 0.53 (0.51, 0.55) 0.847 0.838 0.819 0.710 0.273 0.279 0.268 0.188 0.877 0.884 0.857 0.065

r = 2.5

p̄ = 0.085 (0.09, 0.08) 0.739 0.727 0.678 0.519 0.651 0.640 0.564 0.464 0.046 0.055 0.076 0.054

p̄ = 0.27 (0.43, 0.11) 0.778 0.702 0.752 0.682 0.442 0.380 0.470 0.352 0.217 0.198 0.232 0.046

p̄ = 0.53 (0.51, 0.55) 0.747 0.748 0.728 0.595 0.195 0.208 0.224 0.133 0.724 0.705 0.686 0.069

r = 2

p̄ = 0.085 (0.09, 0.08) 0.446 0.446 0.400 0.261 0.361 0.346 0.337 0.233 0.040 0.044 0.078 0.046

p̄ = 0.27 (0.43, 0.11) 0.448 0.404 0.459 0.354 0.234 0.210 0.267 0.171 0.109 0.101 0.143 0.028

p̄ = 0.53 (0.51, 0.55) 0.544 0.527 0.507 0.355 0.142 0.137 0.141 0.091 0.370 0.362 0.359 0.041

The two proportions in parentheses (in the first column) indicate the two frequencies under each population, and p̄ is their average
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parametric likelihood ratio test that accounts for the
uncertainty associated with transmission phase. This
procedure is able to preserve biological information and
to improve statistical testing power. Simulation studies
of long haplotypes with SNPs in LD show that the pro-
posed likelihood ratio test with clustered haplotypes
(LRT-C) outperforms FAMHAP, FBAT, and a naïve
LRT-G.

Additional material

Additional file 1: Derivation of haplotype frequency estimates and
haplotype explanation set for each family based on genotype data.

Additional file 2: The complete plot of LD for all tag SNPs.

Additional file 3: Derivation of P(A|D).
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